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Abstract: Interior tomography of X-ray computed tomography (CT) has many advantages, such as a
lower radiation dose and lower detector hardware cost compared to traditional CT. However, this
imaging technique only uses the projection data passing through the region of interest (ROI) for
imaging; accordingly, the projection data are truncated at both ends of the detector, so the traditional
analytical reconstruction algorithm cannot satisfy the demand of clinical diagnosis. To solve the above
limitations, in this paper we propose a high-quality statistical iterative reconstruction algorithm that
uses the zeroth-order image moment as novel prior knowledge; the zeroth-order image moment can
be estimated in the projection domain using the Helgason–Ludwig consistency condition. Then, the
L1norm of sparse representation, in terms of dictionary learning, and the zeroth-order image moment
constraints are incorporated into the statistical iterative reconstruction framework to construct an
objective function. Finally, the objective function is minimized using an alternating minimization
iterative algorithm. The chest CT image simulated and CT real data experimental results demonstrate
that the proposed approach can remove shift artifacts effectively and has superior performance in
removing noise and persevering fine structures than the total variation (TV)-based approach.

Keywords: dictionary learning; direct current component; interior tomography; statistical iterative
reconstruction

1. Introduction

The Interior problem reconstructs a region of interest (ROI) inside a patient or an
object from data along X-ray paths through the ROI [1]. This ROI reconstruction problem
does not have a unique solution in an unconstrained image space, even if we know the
object support (OS) exactly [2]. As a result, reconstructions with filtered backprojection
(FBP) suffer from a Direct Component(DC) shift and low-frequency artifacts, which make
it difficult to meet the clinical diagnostic needs of physicians.

An X-ray is harmful to the human body. Hence, it is highly desirable to perform
interior reconstruction for radiation dose reduction. Over the last few decades, a variety
of ROI image reconstruction algorithms, which can improve the quality of reconstructed
ROIs by incorporating smart prior knowledge into the image reconstruction process, have
been developed. In particular, a theoretically exact local reconstruction methodology,
which is referred to as interior tomography, has been proved and developed. Kudo H.
and Ye YB have proven that if a sub-region in an internal ROI is known, the ROI can be
reconstructed using differentiated backprojection (DBP) projection on a convex set (POCS)
technique [3–5]. Subsequently, a singular value decomposition (SVD)-based DBP method
has been developed for interior tomography [6,7]. Jin X et al. improved a novel continuous
SVD method for interior reconstruction, assuming a known sub-region [8]. However, in
many important applications, such as perfusion cardiac CT and micro-CT, a sub-region is
not always available.

Inspired by compressed sensing theory, researchers have proposed an accurate recon-
struction algorithm which incorporates sparse prior information of ROI into an iterative
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reconstruction model. For example, Yu et al. showed that if ROI can be expressed as a
segmented constant function, the algebraic iterative reconstruction algorithm with total
variation (TV) sparse constraints can accurately reconstruct ROI images [9,10]. Yang et al.
proposed that if ROI is a piecewise polynomial function, then ROI can be accurately
reconstructed by minimizing the high-order TV sparsity constraint [11]. With the devel-
opment of compressed sensing theory, many new sparse priors have been introduced to
improve the quality of reconstructed ROI. Esther Klann et al. developed an algorithm
for interior tomography of a piecewise constant function using a Haar wavelet basis [12].
John Paul Ward et al. proved that the exact reconstruction of ROI is guaranteed using a one-
dimensional generalized total variation seminorm penalty [13,14]. Subsequently, Liu et al.
employed the curvelet transform coefficients to regularize the interior problem and obtained
a curvelet frame-based regularization method for interior tomography [15]. Zhao et al.
applied the Mumford–Shah-TV regularization method to the interior tomography and
developed an algorithm based on split Bregman and OS-SART iterations [16]. Tatiana A.
Bubba et al. proposed a nonsmooth regularization approach based on shearlets for ROI
tomography [17]. Nevertheless, all of the above algorithms exploit the sparse property of
the image but ignore the fact that the projection data usually contain noise during a real
CT scan. Considering the noise characteristics of the projection data, Xu et al. proposed a
statistical interior tomography method with a TV sparsity constraint [18]. However, the
ROI images reconstructed with TV regularization may lose some detailed features and
contain blocky artifacts in the case of noisy projections.

One crucial issue in interior tomography is that intensities drop around the peripheral
region of a ROI. When a priori information does not exist or is not sufficiently strong, image
intensity could deviate dramatically from the truth near the boundary of the ROI. There are
a number of ways to suppress this problem by introducing additional information about
the object to be reconstructed. Currently, an effective means is to enforce object support
(OS). However, this is not always available in practical scenarios. Hence, we hypothesize
that the zeroth-order image moment is a surrogate, which can be easily measured in the
projection domain.

Sparse representation and dictionary learning (DL) have achieved great success in the
medical imaging community, such as in low-dose image reconstruction [19,20], limited-
angle CT reconstruction [21], spectral CT [22], etc. The extensive experimental results have
shown that the DL-based regularization term is superior to the TV-based candidate in terms
of preserving image details and removing artifacts. Encouraged by the above findings,
here, we introduce the DL and zeroth-order image moment into the statistical iterative
reconstruction (SIR) framework for interior tomography to further lower the radiation
dose. The zeroth-order image moment can be estimated in the projection domain using the
Helgason–Ludwig consistency condition (HLCC). An alternating minimization algorithm
is developed to optimize the objective function.

The novelties of the proposed method are as follows. Firstly, an l1-normdictionary
learning penalty is introduced into the SIR framework for the ROI image reconstruction to
obtain a reconstruction performance that is superior to the existing TV penalty. Secondly,
most CS-based interior tomography methods assume that the object support is known
before the reconstruction of the proposed SIRDL + HL method using direct current priors
which can be estimated using projection data and the Helgason–Ludwig consistency
condition. Thirdly, an alternating minimization algorithm is developed to minimize the
associated objective function, transforming the image reconstruction problem into a sparse
coding sub-problem and an image updating sub-problem. To accelerate the convergence
speed of the proposed alternating minimization algorithm, an order subset strategy is
applied during the iteration process.

The rest of this paper is organized as follows. In Section 2, we first briefly review
related mathematical theories and then establish the proposed reconstruction framework.
In Section 3, both the numerical simulation and Sheep lung real CT projection experiments
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are performed to evaluate the proposed method. In Section 4, we discuss the results and
conclude the paper.

2. Materials and Methods
2.1. Statistical Iterative Reconstruction

The transmission X-ray CT can be described in a discrete form using the following
statistical model:

yi∼ Poisson(bi exp(− pi)), i = 1, . . . , I, (1)

where y = (y1, . . . , yI)
T is a vector representing the raw detector measurements, where

the corresponding blank scan b = (b1, . . . bI)
T, pi =

J
∑

j=1
aijµj = [Aµ]i is the projection data

that measure the integral of the X-ray linear attenuation coefficients; µ = (µ1, · · · , µJ)
T is

a vector representing the attenuation coefficients of the imaged object; A =
{

aij
}

is the
I × J system matrix that models the imaging system; the element aij of the system matrix
represents the length of the intersection between the ith projection path and the jth pixel,
which is determined by the focal spot position and the detector pixel position and the
symbol T denotes the transpose operator.

SIR is obtained by minimizing the following cost function:

Φ(µ) =

{
I

∑
i=1

wi
2
([Aµ]i − pi)

2 + βU(µ)

}
(2)

where wi respects the maximum likelihood estimated by the inverse of the variance of
the projection measurement; U(µ) is known as the regularization term that presents prior
knowledge of the image object and β is the regularization parameter that adjusts the balance
between the data-fitting term and the regularization term.

2.2. L1Norm Sparse Representation Based on Learned Dictionary

Leta binary matrix Rs =
{

rs
nj

}
∈ RN×J be an operator that extracts the s-th patch

of µ. Rsµ is the vector representation of a square 2D image patch of
√

N ×
√

N pixels.
D ∈ RN×M is a dictionary of M atoms represented in columns dk ∈ RN . Then, the sparse
representation of Rsµ with D is to find a sparse vector α = [α1; . . . ; αM] (i.e., most of the
coefficients in α are zero or insignificant) such that Rsµ ≈ Dα. The sparse vector α can be
obtained by solving the following minimization problem:

argmin
α

{
‖Rsµ−Dα‖2

2 + λ‖α‖1

}
(3)

where λ is a regularization parameter.
A key component of sparse representation modeling is the choice of dictionary. In the

majority of cases of good dictionary learning, the training patches are usually extracted
from the high-quality sample images of the same style to become the reconstructed image.
Given a batch of training patches X = [x1, . . . xS] ∈ RN×S, the target of dictionary learning
is to find a dictionary that makes each patch in the training set sparsely represented by the
atoms of the dictionary; that is, to jointly optimize the dictionary D and the representation
coefficient matrix α = [α1, . . .αS] such that xi ≈ Dαi and ‖αi‖1 ≤ T. This can be expressed
by the following minimization problem:

argmin
α,D

{
‖X−Dα‖2

2 + λ‖α‖1

}
(4)

A fast online learning algorithm has been developed to solve the above dictionary
learning problem [23], which is an iterative optimization method that alternates between
sparse coding of the image patch set based on the current dictionary and updating the dic-
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tionary D. An optimization toolbox named Sparse Modeling Software has been distributed
on the internet to solve the above dictionary learning problem [24]. In this paper, we apply
this toolbox to train a dictionary.

2.3. Direct Current Priors

The HLCC plays an important role in image reconstruction from the imperfect projec-
tion data [25] (e.g., due to noise, motion and truncation), since these projections no longer
satisfy the HL conditions. The zeroth-order HLCC applied to the equi-angular fan-beam
geometry can be expressed in the following equation [26]:

∫ +π/2

−π/2
p(ξ, ψ + ξ − π/2)E cos ξdξ = m0,0 (5)

where E is the distance from an X-ray source to the rotation center and m0,0 is the zeroth-
order image moment, namely the sum of the image pixel values (which is the so-called
direct current (DC) component). The variables ξ and ψ are the angle of an X-ray relative to
the central X-ray and a projection view angle, respectively. After computing the DC value,
denoted as C in the following, of the image to be reconstructed using Equation (5), we can
incorporate the difference between the measured/assumed and reconstructed results into
the objective function in Equation (2). In this study, we consider C as a prior estimated
from clinical CT images, which can also be directly measured with one or more complete
fan-beam view.

2.4. Optimization of SIRDL + HL Method

In this paper, we introduced the sparse representation based on L1norm dictionary
learning and direct current priors into the SIR framework. This is different from most
CS-based interior tomography methods, assuming that the object support is known before
reconstruction. We proposed using direct current priors which can be estimated using
projection data and HLCC. The joint regularization model based on L1 norm dictionary
learning and HLCC, termed as SIRDL + HL, can be formulated as:

min
µ,αs

 I

∑
i=1

wi
2
([Aµ]i − pi)

2 +β
S

∑
s=1

(‖Rsµ−Dαs‖2
2 + λ‖αs‖1) + γ

∥∥∥∥∥ J

∑
j=1

µj−C

∥∥∥∥∥
2

2

 (6)

where β is the regularization parameter that balances the data-fitting term and L1 norm
sparse representation based on the learned dictionary term, and γ is the regularization
parameter that balances the data-fitting term and the direct current prior regularization term.
The proposed objective function can be efficiently solved by an alternating minimization
algorithm. Mathematically, Equation (6) contains the following two sub-problems, which
can be solved in an alternation manner of the two following sub-problems.

Sub-problem A:

min
α

{
S

∑
s=1

(‖Rsµ−Dαs‖2
2 + λ‖αs‖1)

}
(7)

The sub-problem A is called sparse representation, which is closely related to one of
the following convex constrained optimization problems:

min
α
‖αs‖1 s.t. ‖Rsµ−Dαs‖2

2 ≤ ε (8)

where ε is a nonnegative real parameter. In this paper, the LASSO algorithm [23] is applied
to solve Equation (8).
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Sub-Problem B:

min
µ

 I

∑
i=1

wi
2
([Aµ]i − pi)

2 +β
S

∑
s=1
‖Rsµ−Dαs‖2

2 + γ

∥∥∥∥∥ J

∑
j=1

µj−C

∥∥∥∥∥
2

2

 (9)

This sub-problem aims to update an image with respect to a fixed dictionary and
associated sparse representation, which can be solved by the separate parabolic surrogate
method [27]. Equation (9) can be iteratively solved as:

µ̃k+1
j = µk

j −

I
∑

i=1

(
aijwi

([
Aµk

]
i
− pi

))
+ 2β∑

s

N
∑

n=1
rs

nj

([
Rsµ

k
]

n
−
[
Dαk+1

s

]
n

)
+ 2γ(

J
∑

j=1
µ̃k

j − C)

I
∑

i=1

(
aijwi

J
∑

m=1
aim

)
+ 2β∑

s

N
∑

n=1
rs

nj

J
∑

m=1
rs

nm + 2γ

(10)

where the superscript k = 1, . . . , K represents the iteration number.
The implementation details of the proposed optimization algorithm are presented in

Algorithm 1.

Algorithm 1: The outline of the optimization algorithm.

1. 8 × 8 size image blocks are extracted from selected CT images to construct training samples,
then we train dictionary D using an online learning method and estimate the value of direct
component C using projected data.
2. Given:ε > 0, β > 0, γ > 0, C, K.
3. Initialize: µ0 = 0 α0 = 0.
4. Repeat:
5. Update the αk+1 using (8) and LASSO algorithm.
6. Update the reconstructed image µk+1 using (10).
7. Until: the stop criteria are met.
8. Output: µK

3. Experiments and Results

To verify the proposed reconstruction performance, the simulated and real CT data
experimental results of the proposed algorithm are presented in this section. Meanwhile,
the experimental results are compared to the SIR algorithm based on TV minimization
without object support constraints (denoted as SIRTV + BOS); the SIR algorithm based
on TV minimization with object support [18] (denoted as: SIRTV + OS); results of the SIR
based on dictionary learning without object support (SIRDL + BOS) and the SIR algorithm
based on dictionary learning with object support constraints [19] (SIRDL + OS).

3.1. Human Chest Simulation
3.1.1. The Simulated Low-Dose Projection

A human chest image [28] was downloaded from the website (http://wiki.kek.jp/
pages/viewpage.action?pageId=13667347 accessed on 10 May 2021) to verify the perfor-
mance of the above five different reconstruction algorithms. In this study, we used the down-
loaded chest image, which is given in Figure 1, as the ground truth. The size of the chest
CT image was 512 × 512 pixels and the real size of each pixel was 0.9766 mm × 0.9766 mm.
The equi-angular fan-beam uniformly collected the projection data of 360 views that only
passed through the ROI region under the circular trajectory of 360◦. The distances from the
X-ray source to the rotation center and the detector were 570 mm and 1140 mm, respectively.
In order to simulate low-dose projection data, Poisson noise with the photon numbers of
Np = 1 × 105, Np = 5 × 104 and Np = 1 × 104 was added to the ideal projection data to
obtain three groups of low-dose projection data. The chest image, object support and ROI
are shown in Figure 1.

http://wiki.kek.jp/pages/viewpage.action?pageId=13667347
http://wiki.kek.jp/pages/viewpage.action?pageId=13667347


Tomography 2022, 8 2223

Tomography2022, 8, FOR PEER REVIEW 6 
 

 

was 0.9766 mm × 0.9766 mm. The equi-angular fan-beam uniformly collected the 
projection data of 360 views that only passed through the ROI region under the circular 
trajectory of 360°. The distances from the X-ray source to the rotation center and the 
detector were 570 mm and 1140 mm, respectively. In order to simulate low-dose 
projection data, Poisson noise with the photon numbers of Np = 1 × 105, Np = 5 × 104 and Np 

= 1 × 104 was added to the ideal projection data to obtain three groups of low-dose 
projection data. The chest image, object support and ROI are shown in Figure 1. 

 
Figure 1. The chest image. The display window is [−1000 900]HU. 

3.1.2. Global Dictionary Learning 
Image blocks with a size of 8 × 8 were firstly extracted from the chest CT image as 

training samples; then, image blocks with very small variance were removed. Finally, an 
online learning method was used to train the dictionary containing 256 atoms. The 
trained dictionary is shown in Figure 2. 

 
Figure 2. The dictionary trained using the chest image in Figure1. 

3.1.3. Reconstruction Results 
Using the fan-beam HLCC, we obtained the value of DC as 2.3328 × 103.The sparse 

coding error of the proposed algorithm was set as ε  = 1 × 107; the maximum number of 
iterations was K = 50; number of ordered subsets was 40; and parameters β under the 
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Figure 1. The chest image. The display window is [−1000 900]HU.

3.1.2. Global Dictionary Learning

Image blocks with a size of 8 × 8 were firstly extracted from the chest CT image as
training samples; then, image blocks with very small variance were removed. Finally, an
online learning method was used to train the dictionary containing 256 atoms. The trained
dictionary is shown in Figure 2.
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Figure 2. The dictionary trained using the chest image in Figure 1.

3.1.3. Reconstruction Results

Using the fan-beam HLCC, we obtained the value of DC as 2.3328 × 103.The sparse
coding error of the proposed algorithm was set as ε = 1 × 107; the maximum number
of iterations was K = 50; number of ordered subsets was 40; and parameters β under
the different low-dose projections of 1 × 105, 5 × 104 and 1 × 104; the Poisson noise
was set as 0.05, 0.08 and 1.5, respectively. For the parameters γ under different low-dose
projections of 1 × 105, 5 × 104 and 1 × 104, the Poisson noise was set as 1.13 × 10−7,
1.18 × 10−7 and 1.20 × 10−7, respectively. The reconstruction ROI of the five different
methods under different noise levels is shown in Figure 3. It can be seen that both the
SIRTV + BOS and SIRDL + BOS results have an obvious DC artifact. The DC artifact of
the SIRTV + OS and SIRDL + OS results is very small, but the proposed algorithm in this
paper basically eliminated the DC artifact. In addition, when the noise increased gradually,
there were obvious block artifacts in the reconstruction result of the TV constraint, while
the reconstruction algorithm based on the dictionary learning constraint eliminated the
block artifacts and retained fine structures.
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3.1.4. Quantitative Analysis

In order to quantitatively evaluate the reconstruction performance of the proposed
algorithm, we used two classical evaluation indexes to evaluate the experimental results;
RMSE and SSIM were used to quantitatively measure the reconstruction algorithms:

RMSE =
‖µ− µ∗‖2√

NR
(11)

SSIM =
(2

¯
µ

¯
µ
∗
+ c1)(2σµµ∗ + c2)

(
¯
µ

2
− ¯
µ
∗

2 + c1)(σ2
µ + σ2

µ∗ + c2)

(12)

where µ is the reconstructed ROI; µ∗ is the golden reference ROI; NR is the number of

pixels in the reconstructed ROI;
¯
µ and

¯
µ

*
are the mean value of µ and µ∗; σµ and σµ∗ are

the variation of µ and µ*; σµµ∗ is the covariance of µ and µ∗ and c1 and c1 are constants
that we chose according to the reference [29].

Table 1 lists the RMSE and SSIM of the reconstruction results by different methods.
It can be seen that the SIRTV + BOS algorithm has the maximum RMSE value and mini-
mum SSIM value, whereas the SIRTV + HL algorithm has the minimum RMSE value and
maximum SSIM value, indicating that the reconstruction quality of the proposed method is
the highest.

Table 1. RMSE (HU)/SSIM comparisons of the reconstructed ROI images from simulated projection
using different algorithms.

Algorithm
1 × 105 5 × 104 1 × 104

RMSE SSIM RMSE SSIM RMSE SSIM

SIRTV + BOS 258.2 0.3617 258.4 0.3629 259.4 0.3482
SIRTV + OS 139.2 0.6971 139.6 0.6829 142.3 0.6076

SIRDL + BOS 200.0 0.3903 201.1 0.3861 205.0 0.3746
SIRDL + OS 131.3 0.7108 132.3 0.6913 134.3 0.6238
SIRDL + HL 128.6 0.7204 134.3 0.7101 127.2 0.7021
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3.2. Real CT Projection

A sheep chest was scanned with both normal (100 kV, 150 mAs) and low-dose (80 kV,
17 mAs) protocols on a SIEMENS Somatom Sensation 64-Slice CT Scanner using a circular
cone-beam scanning mode. The sinogram of the central slices was extracted, which is
fan-beam geometry. The radius of the trajectory was 57 cm. The 1160 projections were
uniformly collected over a 360◦ range. For each projection, 672 detector elements were
equi-angularly distributed to define a field of view (FOV) of 50.1 cm in diameter. We
first reconstructed the global data of a goat lung at normal dose and low dose using the
algorithm in the literature [19]; the reconstructed image was 768 × 768 pixels, the actual
size was 43.63 cm × 43.63 cm, and we used this reconstructed image as the reference image.
Then, we selected the area with a 61 pixels radius as the ROI. Finally, only the projection
data through the ROI were kept, and the truncated projection data were obtained only
through the ROI. The selected ROI is shown in Figure 4.
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Figure 4. Reconstructed images from real CT projection data: (a) Normal dose; (b) low dose. The
display window is [−700 800]HU.

To obtain a high-quality dictionary, an image block of size 8 × 8 pixels was extracted
from the lung region of Figure 4a as a training sample in this section, and then a dictionary
containing 256 atoms was trained using the dictionary learning method described in
Section 3.1.2, as shown in Figure 5.
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According to the equal-angle fan-beam HLCC, the DCs of a normal dose and low dose
were calculated as 2.9965 × 103 and 3.1623 × 103, respectively, and the parameters of the
SIRDL + HL algorithm were set, as shown in Table 2. The reconstruction results of the five
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different algorithms for normal dose are shown in Figure 6. The representative profiles
along the horizontal and vertical lines are shown in Figure 7. The above experiments were
repeated with a low-dose sinogram, and corresponding results are shown in Figures 8 and 9.
The experimental results show that the image support constraint has a strong influence on
the TV-based interior reconstruction method, and the reconstruction results of the SIRDL +
HL algorithm basically eliminate the DC offset artifacts. The reconstructed image quality
based on the TV constraint decreased significantly when the number of view angles was 580,
while the reconstructed image quality of the SIRDL + HL method was basically the same as
that of the full-view data. The reconstructed image quality based on the TV constraint had
serious block artifacts when the number of view angles was 290, while the reconstructed
image quality of this algorithm could obtain high reconstruction image quality.

Table 2. Selection of parameters of SIRDL + HL algorithm for normal (low)-dose sheep lung data.

The Number of
View ε β γ

The Number of
Subset

The Number of
Iteration

1160 6.25× 10−5 0.015(0.020) 1.27× 10−7 40 50
580 6.25× 10−5 0.022(0.030) 8.00× 10−8 20 80
290 6.25× 10−5 0.033(0.060) 4.00× 10−8 10 150Tomography2022, 8, FOR PEER REVIEW 10 
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To investigate the effect on the accuracy of an estimated DC value on the recovery
of an intensity drop, the reconstructed ROIs from the normal-dose sinogram with four
different DC values near the true value are shown in Figure 10. The corresponding central
horizontal and vertical profiles are shown in Figure 11. It can be seen that the proposed
algorithm is robust with respect to the DC value.
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4. Discussion and Conclusions

Mathematically, there is no unique solution to the interior problem in CT reconstruc-
tion, and the reconstructed ROI image exhibits the DC shifts. Based on the assumption of a
constant in the ROI region, TV-based interior tomography can eliminate the above artifacts
well; however, in practical applications, the above assumptions do not necessarily hold, so
TV constraint-based interior tomography will still show a slight DC artifact under the tight
object support constraint. As early as 1992, the mathematician Maass had investigated the
singular value decomposition of the Radon transform under the 2D interior problem and
pointed out that the ROI reconstruction was almost exact except for a smooth unknown
bias function, which is an approximately constant low-frequency component. Therefore,
the difference between the DC value of the reconstructed image during the iterative process
and the DC value calculated beforehand as a new constraint can eliminate the DC offset
artifacts well.

Since dictionary sparse representation based on image blocks can effectively preserve
the local structure information of images while suppressing image noise, introducing
dictionary-based sparse representation into the statistical iterative reconstruction frame-
work can effectively solve the interior problem, especially in a low-dose case. Extensive
comparison of the experimental results shows that the performance of the dictionary
learning-based interior tomography is better than that of the TV-based interior tomography.

The DC value of the cross-section where the ROI region is located needed to be
calculated. In this paper, we used the untruncated projection data to calculate the value.
Figures 10 and 11 illustrate that the DC value of the cross-section image has little effect
on the reconstruction results. In fact, we can use the truncated data to estimate the DC
value. For example, we can estimate the ratio of the area of a cross-section of the human
body to the area of the organ of interest; then, we can estimate the DC value of the whole
cross-section using the DC value of the projection through the ROI region and the above
ratio. The next step is to use the truncated projection data to estimate the DC component of
the image of the cross-section where the ROI region is located.

In conclusion, we have incorporated sparse representation in terms of a learned
dictionary and the constraint in terms of an image DC value into the SIR framework for
interior tomography. Experimental results have demonstrated that our proposed approach
reduces the DC artifact effectively and the DL-based algorithm outperforms the TV-based
method in preserving fine structures, especially in a low-dose situation.
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