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Dissecting the expression 
relationships between RNA-binding 
proteins and their cognate targets 
in eukaryotic post-transcriptional 
regulatory networks
Sneha Nishtala1, Yaseswini Neelamraju1 & Sarath Chandra Janga1,2,3

RNA-binding proteins (RBPs) are pivotal in orchestrating several steps in the metabolism of RNA in 
eukaryotes thereby controlling an extensive network of RBP-RNA interactions. Here, we employed 
CLIP (cross-linking immunoprecipitation)-seq datasets for 60 human RBPs and RIP-ChIP (RNP 
immunoprecipitation-microarray) data for 69 yeast RBPs to construct a network of genome-wide RBP- 
target RNA interactions for each RBP. We show in humans that majority (~78%) of the RBPs are strongly 
associated with their target transcripts at transcript level while ~95% of the studied RBPs were also 
found to be strongly associated with expression levels of target transcripts when protein expression 
levels of RBPs were employed. At transcript level, RBP - RNA interaction data for the yeast genome, 
exhibited a strong association for 63% of the RBPs, confirming the association to be conserved across 
large phylogenetic distances. Analysis to uncover the features contributing to these associations 
revealed the number of target transcripts and length of the selected protein-coding transcript of an RBP 
at the transcript level while intensity of the CLIP signal, number of RNA-Binding domains, location of 
the binding site on the transcript, to be significant at the protein level. Our analysis will contribute to 
improved modelling and prediction of post-transcriptional networks.

Progress in proteomics together with other omics technologies have now convincingly shown the existence of 
an additional and perhaps more important gene regulatory layer in cellular networks, which acts in concert 
with other layers of regulation to control gene expression and translation in a highly coordinated complex sys-
tem defined as post-transcriptional regulatory network. For instance, in one of the large-scale omics studies 
comparing transcriptome and proteome levels it was shown that ~30% of the variance in protein abundance 
in yeast cannot be explained by mRNA expression levels1. Comparison of the dynamic transcriptome and 
proteome profiles in yeast also revealed the presence of several classes of post-transcriptionally regulated pro-
teins, accounting for more than 40% of the proteome2. In another study, a comparison of functional clusters 
inferred from transcriptome and translatome data in yeast revealed the presence of three groups of proteins: 
transcriptionally co-regulated proteins cluster together in transcriptome as well as translatome data and rep-
resent metabolic processes; post-transcriptionally co-regulated proteins cluster together only in translatome 
data and consist of RNA-binding, ribosomal and protein synthesis proteins; and dually co-regulated proteins 
have intermediate co-clustering characteristics and hence are likely regulated at both levels3. Increasing num-
ber of studies now suggest that the lack of mRNA-protein correlation in eukaryotic cells can be explained due 
to the post-transcriptional control mediated by several regulatory RNAs with the major protein players being 

1Department of Bio Health Informatics, School of Informatics and Computing, Indiana University Purdue University, 
719 Indiana Ave Ste 319, Walker Plaza Building, Indianapolis, Indiana 46202, USA. 2Centre for Computational Biology 
and Bioinformatics, Indiana University School of Medicine, 5021 Health Information and Translational Sciences 
(HITS), 410 West 10th Street, Indianapolis, Indiana, 46202, USA. 3Department of Medical and Molecular Genetics, 
Indiana University School of Medicine, Medical Research and Library Building, 975 West Walnut Street, Indianapolis, 
Indiana, 46202, USA. Correspondence and requests for materials should be addressed to S.C.J. (email: scjanga@
iupui.edu)

received: 25 February 2016

accepted: 21 April 2016

Published: 10 May 2016

OPEN

mailto:scjanga@iupui.edu
mailto:scjanga@iupui.edu


www.nature.com/scientificreports/

2Scientific Reports | 6:25711 | DOI: 10.1038/srep25711

RNA-binding proteins (RBPs)4,5. Recent studies also show that RNA-binding proteins (RBPs) which play a crucial 
role in the post-transcriptional regulation of gene expression4–6 themselves exhibit distinct expression dynamics 
in post-transcriptional regulatory networks7 and tend to bind functionally related mRNAs with most mRNAs 
bound by multiple RBPs, resulting in a complex network of post-transcriptional regulatory interactions8,9.

In prokaryotes, functionally related genes are often organized into operons to facilitate co-expression and to 
reduce expression fluctuation among the resulting protein products10. Indeed, coordinated regulation of func-
tionally related genes by reducing their expression variation in a cell is important for the survival of organisms 
with limited resources and has been observed in eukaryotes as well11–14. Hence, it was proposed that posttran-
scriptional regulons in eukaryotes may play an equivalent role to operon structures in prokaryotes in coordinat-
ing the expression of their target genes during posttranscriptional regulation15–17. According to the RNA regulon 
theory, trans-acting factors like RBPs combinatorially regulate multiple mRNAs to achieve functionally coherent 
translation in the face of stochastic gene transcription14. This posttranscriptional regulation of genes is important 
in splicing, transport, localization, translational control, stability and degradation of RNAs9,14,18. These various 
phases of RNA metabolism are regulated when the RBPs bind to the RNAs to form RNP complexes4,9. Therefore, 
the fate of RNA is dictated by the interaction of RNAs with the RBPs within the RNP complexes6,19. Various 
RBP mediated events have been well documented using expression profiles which are specific to tissues and 
conserved across different species20–23. With large amount of transcriptomic and proteomic data and a multi-
tude of RBPs being identified, it has become possible to test if RBPs can direct the expression of their target 
transcripts using various flavors of RNA interactome datasets for RBPs in yeast and other model systems24–26. 
In particular, crosslinking immunoprecipitation (CLIP)-seq technology27 has proven to be a potent tool in the 
study and understanding of the transcriptomic in-vivo binding sites of RBPs at the single nucleotide level28. While 
experimental studies indicate that the function of RBPs on gene expression is complicated and sometimes can 
exhibit opposite trends depending on the growth condition, it is unclear whether RBPs can modulate expression 
levels of their target transcripts in humans and if there is an association between them in post-transcriptional 
regulatory networks29–32. Although a recent study suggests that RBPs are co-regulated with their target genes 
and plays an important role in coordinating their expression variation in yeast25, it is not clear how prevalent is 
this phenomenon and what factors contribute to such associations. In humans, numerous diseases have been 
linked to the defects in RBP function33–35. With many examples of RBPs being identified, it becomes feasible 
to test whether these post-transcriptional regulons can coordinate the expression of their target transcripts on 
a genome-wide level25 at least in model systems such as yeast and human with large-scale interactome data for 
multiple RBPs8,36,37, offering a unique opportunity to examine the regulatory relationships between RBPs and 
their target mRNAs3,7,25,26.

In this study, we map the CLIP binding sites of 60 RBPs on to the human genome to construct a RBP – RNA 
network. Further, we examined the correlation of each RBP’s expression at both transcript and protein levels with 
the target RNAs to see how these correlation patterns change. We then analyzed different factors impacting the 
change in expression patterns through a comprehensive two level analysis using different modelling techniques 
namely multivariate regression modelling, stepwise linear regression and Elastic net. We observed a higher level 
of association between the protein expressions of RBPs with their target transcripts compared to transcript level 
expression. Our results indicate that RBPs at both proteomic and transcriptomic levels play an important role in 
coordinating expression changes of the target RNAs and this can be explained by various factors governing the 
functions of these RBPs.

Results
Overview of the analysis.  As shown in Fig. 1, we downloaded CLIP data for 60 human RBPs from the 
CLIPdb database and used hg19 annotations from Ensembl database to build post-transcriptional regulatory 
networks linking RBPs to their target transcripts for each RBP (see Materials and Methods and Table 1). As 
discussed in Materials and Methods, we mapped the binding sites of each RBP to 300 bps upstream and down-
stream flanking regions of each exon and considered its corresponding transcript to be a target of the RBP if the 
binding sites map on these regions of the exons (Fig. 1). This allowed us to construct a genome-wide network of 
RBP-RNA interactions linking RBPs to their target transcripts in the human genome as summarized in Table 1. 
The target transcript annotations were compared with the quantified transcript level expression data across 16 
human tissues from the Human Body Map (HBM) project and were divided into three groups of transcripts for 
each RBP as described in Materials and Methods using ad hoc python scripts (Fig. 1). For each RBP, both the 
transcript level of one protein coding transcript and its protein expression data from Human Protein Atlas (HPA) 
were independently used for correlation analysis with its target transcripts as described in Materials and Methods. 
Similar approach was employed for analyzing the associations between RBPs and their target transcripts in the 
constructed post-transcriptional regulatory network of the yeast genome (see Materials and Methods). To under-
stand the different factors influencing the observed correlation patterns at both the transcript and protein levels 
in the human genome, we undertook a comprehensive modelling approach using three different feature selection/
reduction methods at two different levels – RBP centric and transcript centric level by considering the different 
factors listed in Tables 2 and 3. A discussion of the selected features is presented in the Materials and Methods and 
the respective results section.

Majority of the RBPs exhibit significant association with their target transcripts at the tran-
script level.  To understand how RBPs are associated with their targets, we correlated the expression of one 
of the protein coding transcripts (with the highest mean expression level across all the tissues) of each RBP with 
the expression of the target transcripts across 16 human tissues and compared it with control set of transcripts 
(all transcripts which do not belong to the class of target transcripts). To address the issue of the size of the 
control set, we also randomly sampled the control set of transcripts by sampling 100 times to extract each time 
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the same number of randomly selected transcripts as the number of target transcripts, which is referred to as 
the control-matched set. As a result of computing the spearman correlations between a RBP transcript and its 
target as well as non-target (control) transcripts, RBPs were divided into three classes based on comparing the 
distribution of correlation coefficients for targets versus control associations; 1) Significantly Congruent (SC) 
: RBPs would belong to this class if the distribution of RBP – target correlation coefficients have their median 
correlation coefficient significantly higher than that seen in the control set of transcripts (Wilcoxon test, p <​ 0.05) 
2) Significantly incongruent (SIC) : RBPs would belong to this class if the distribution of RBP – target correla-
tion coefficients have their median correlation coefficient significantly lower than that seen in the control set 
of transcripts (Wilcoxon test, p <​ 0.05) 3) No Significant change (NSC) : If no significant change in the median 
correlation coefficient is observed between the targets and the control sets, those RBPs would belong to this class. 
RBPs grouped into these three classes are supported by robust set of p–values as illustrated in Supplementary Fig. 
1. Figure 2 shows the six most significant SC and SIC RBPs at the transcript level. PTBP1 with PTB domain38,39, 
known to control pathways related to translational control and splicing and CSTF2T for mRNA – splicing40 are 
among the significant SC RBPs. FMR1 known to be important for translation control and documented to be 
implicated in several neurological disorders41 as well as LIN28A known for cardiac progenitor differentiation and 
translational control42 were found to be among the significant SIC RBPs. Supplementary Fig. 1 shows boxplots 
comparing the correlation coefficients for target versus control transcripts for all the 60 RBPs organized into SC 
(36 RBPs), SIC (11 RBPs) and NSC (13 RBPs) classes. Overall, we found that 78.33% of the RBPs comprised of SC 
and SIC classes, exhibited significant association with their targets at the transcript level, at a p-value threshold 
of 0.05.

Significant fraction of the yeast RBPs also exhibit an association with their target transcripts 
revealing the conservation of expression coupling.  To understand, whether our observation of find-
ing RBP – target expression correlations to be significantly non-random, is generic and conserved across organ-
isms, we analyzed the RBP – RNA network of the yeast genome using the same workflow (see Materials and 
Methods). Since humans and yeast are evolutionary distant, we hypothesized that the yeast genome would be an 

Figure 1.  Flowchart summarizing the major steps involved in the construction and analysis of the human 
post-transcriptional regulatory network controlled by RBPs, employed in this study. Data required for 
the analysis was downloaded from CLIP DB28 and Ensembl51. The binding sites of each RBP were mapped to 
target transcripts such that, if the binding site of the RBP falls within the 300 bps flanking regions and 300 bps 
upstream regions of at least one of its annotated exonic start or end coordinates, its corresponding transcript 
would be considered a target transcript of the RBP. A global network was created for each RBP. The target 
transcripts were mapped on to the RNA-seq expression data from the Human Body Map (HBM)52–54 and three 
categories of transcripts were constructed based on whether a transcript group is targeted by an RBP or not. One 
protein coding transcript for each RBP with highest mean expression level across all 16 tissues was chosen and 
spearman correlation was calculated with transcripts from each of the three categories of transcripts. Similarly, 
correlations between protein expression levels of RBPs and their target/non-target transcripts expression levels 
from corresponding matched RNA-seq samples were calculated using protein expression data downloaded from 
Human Protein Atlas (HPA)55. Different patterns in associations between the RBPs and the three categories of 
transcripts were identified and classified. To explain the observed associations, three different feature selection/
reduction methods were employed at two different levels, namely – RBP centric and transcript centric level.
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RBP # targets
Source of CLIP-Seq data 

(References)

AGO1 17,206 67,68

AGO2 64,425 67–76

AGO3 5,849 67

AGO4 1,517 67

ALKBH5 1,685 77

ATXN2 6,715 78

C17ORF85 2,199 77

CAPRIN1 7,506 77

CPSF1 9,132 79

CPSF2 1,813 79

CPSF3 2,832 79

CPSF4 3,486 79

CPSF6 38,973 79

CPSF7 45,556 79

CSTF2 36,829 79,80

CSTF2T 32,893 79

DGCR8 14,587 81

EIF4A3 35,729 82

ELAVL1 55,432 69,83–85

EWSR1 6,702 86,87

EZH2 116 88

FBL 4,019 89

FIP1L1 34,643 79

FMR1 10,732 90

FUS 2,150 87,91,92

FXR1 2,940 90

FXR2 9,230 90

HNRNPA1 9,587 93

HNRNPA2B1 2,013 93

HNRNPC 18,806 94,95

HNRNPD 6,121 96

HNRNPF 3,461 93

HNRNPH 3,608 97

HNRNPM 3,051 93

HNRNPU 10,318 93,98

IGF2BP1 15,328 67

IGF2BP2 10,668 67

IGF2BP3 10,022 67

LIN28A 16,860 42,99

LIN28B 21,277 99,100

MOV10 7,523 101

NOP56 2,007 89

NOP58 7,879 89

NUDT21 40,541 79

PTBP1 25,385 102,103

PTBP2 16,956 102,103

PUM2 1,938 67

QKI 1,358 67

RTCB 6,376 77

SRRM4 10,026 103

TAF15 3,197 87,104

TARDBP 12,138 105

TIA1 11,977 106

TIAL1 23,854 106

TNRC6A 828 67

Continued
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ideal model to show the generality of our observations across different species. The network used in this study43 
comprises of 69 RBPs corresponding to 24,932 RBP – RNA interactions. On performing a similar analysis to that 
described for the human RBPs, we found comparable results in the yeast genome. In particular, the correlation 
patterns revealed that 63.08% (41/65) of the RBPs display an association (Wilcoxon test, p <​ 0.05) (Supplementary 
Fig. 2). Among the RBPs which exhibited a significantly higher/lower correlation coefficient compared to con-
trol transcripts, 58.54% (24) could be classified as SIC and 41.46% (17) as SC RBPs. Figure 3 shows the six most 
significant SC and SIC RBPs. YJL080C, commonly known as - SCP160 is important for mRNA metabolism in 
yeast44 and interestingly, in our analysis, it is shown to be one of the most significantly associated RBPs with its 
target mRNAs. Similarly, YIR034C or LYS1 is important for mRNA binding in yeast45,46 and is one among the 
highly associated SIC RBPs. Supplementary Fig. 2 shows all the 65 RBPs organized into SC, SIC and NSC classes.

Most RBPs exhibit significant association with their target transcripts at the protein level.  
While we found that RBPs show good degree of associations with their targets in both the human and yeast 
genomes when the transcript levels of RBPs are employed, protein expression levels of RBPs in matched tissues 
or experimental conditions is rather limited. However, recent genome-wide protein levels for multiple human 
tissues resulting from the Human Proteome Map facilitate addressing this question, albeit using limited number of 
samples (see Materials and Methods). After identifying and mapping equivalent RNA-seq and proteomic samples, 
we correlated the protein expression data across nine tissues for each RBP with the corresponding target as well as 
control transcripts’ expression levels from the RNA-seq dataset and organized the RBPs in to three classes – SC, 
SIC and NSC. Figure 4 shows six most significant SC and SIC RBPs at the protein level. Several members of CPSF 
and HNRNP family exhibited significant correlation with their targets often in different directions. Supplementary 
Fig. 3 shows all the 58 RBPs organized into the three different classes – SC (11 RBPs), SIC (44 RBPs) and NSC (3 
RBPs). Note that two of the RBPs, RTCB and SRRM4 had no expression levels documented in the protein expres-
sion dataset and hence were not included in this analysis. Overall, we found that ~95% of the RBPs exhibited 
significant association with their target transcripts at the protein level (Wilcoxon test, p <​ 0.05). These results 
support the notion that the protein expression levels of most RBPs are strongly correlated with their target tran-
scripts expression levels. Indeed, this association is far stronger than that observed at the transcript level of an RBP.

RBP # targets
Source of CLIP-Seq data 

(References)

TNRC6B 643 67

TNRC6C 859 67

WDR33 1,626 107

YTHDF2 15,474 108

ZC3H7B 13,294 77

Table 1.   List of human RBPs, their number of target transcripts and source of CLIP data. Table shows a list 
of all the 60 RBPs employed in the analysis, the number of transcripts targeted by each of them and references to 
the studies which provide the CLIP-Seq data28. This list was generated by mapping the binding sites of each RBP 
with exonic coordinates and obtaining the corresponding transcripts of the mapped exons.

Variable Feature name Description

Response Median correlation coefficient of target 
transcripts

This was calculated by taking the median of all the correlation coefficients of each RBP with its 
target transcripts.

Predictor

Number of target transcripts The number of target transcripts of each RBP was obtained by the mapping the co-ordinates of the 
binding sites onto the annotated transcripts as described in materials and methods.

Median CLIP Signal
CLIP peaks in the bed format obtained from CLIPdb28 come with a P- value signifying the 
intensity of the CLIP binding for each binding site. The median P - value of the binding sites which 
were mapped to the targets, for each RBP, was calculated.

Number of RNA binding domains Number of RNA binding domains for each RBP was obtained from a previous study describing the 
compendium of human RBPs 5.

Number of protein-protein 
interactions

Human protein - protein interaction network was constructed using data from BIOGRID48. Then, 
for each RBP, its number of interacting partners was computed.

Number of protein coding transcripts The number of protein coding transcripts documented for each RBP was obtained from Ensembl51.

Number of annotated transcripts Total number of transcripts (protein coding, processed transcript, etc.,) documented for each RBP 
was also obtained from Ensembl51.

Length of the selected protein coding 
transcript

The length of the selected protein coding transcript used for computing correlation of each RBP 
with target transcripts and control transcripts was also obtained from Ensembl51.

Median distance of binding site from 
transcript

The closest distance of the start of the binding site from either ends on the transcript was calculated 
for each target transcript. The median value of this distance was then calculated for each RBP. 

mRNA - protein correlation The protein expression of each RBP was correlated with the mRNA expression across nine tissues 
with both RNA and protein expression data.

Table 2.   Different features employed to study their contribution towards observed correlation between 
RBPs and their post-transcriptional targets, in the RBP centric modelling. For each feature details about how 
it was computed is also listed.
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Only a small fraction of the RBPs show similar patterns of associations with their targets at 
both the protein and transcript levels.  To further understand and dissect our findings on RBP – target 
associations, we performed a comparative analysis of the outcomes for various human RBPs to see how these 
correlation patterns change within the transcript or protein levels and from the transcript to the protein levels of 
RBPs. Figure 5A summarizes the results of our analysis by showing the percentage of RBPs showing associations 
at the transcript and protein levels, number of RBPs falling into each of the three classes - SC, SIC and NSC, while 
Fig. 5B shows a heatmap showing the significance values (−​log(p-value)) of the RBP – target associations com-
pared to 100 matched control sets used in the previous sections. We find that at the transcript level 60% of the 
RBPs fall into the SC category while at the protein level, 18.97% fall into this category. Likewise, 18.33% RBPs fall 
into the SIC category at the transcript level while 75.86% RBPs fall into this category at the protein level.

Further, we observed that 12 RBPs exhibited similar trends at both the transcript and protein levels with six 
of them belonging to SC category and six belonging to the SIC category. To further understand the behavior of 
these 12 RBPs (sync RBPs) and how they are different compared to others (non-sync RBPs), we analyzed different 
network centrality measures using igraph47 package in R. This was achieved by constructing a protein interaction 
network for RBPs using two different sources - Biogrid databas48 and String database49 separately, to obtain an 
unbiased understanding of the differences in the network centrality measures irrespective of the dataset used. 
We found that closeness centrality for sync RBPs is higher than non-sync RBPs using interaction networks from 
both Biogrid and String databases (Wilcoxon test, p <​ 3.55E-08 and p <​ 1.80E-10 respectively) indicating that 
sync RBPs have shorter average path lengths to other proteins in the protein interaction network and hence 
must be well connected to other proteins (Supplementary Table 1). Using the interaction network from String 
database, we also found betweenness centrality to be different between the sync and non-sync groups (Wilcoxon 
test, p <​ 0.006). Therefore, we postulate that sync RBPs are likely functionally active and remain the same at the 
protein level too.

Figure 2.  Selected set of six human RBPs each belonging to the significantly congruent and incongruent 
categories, when only transcriptome data was used for computing the correlations between RBPs and their 
target/non-target transcripts. Boxplots showing the distribution of correlation coefficients between RBPs and 
transcripts belonging to the three categories, red: protein coding transcript of RBP correlated with its target 
transcripts, blue: protein coding transcript of RBP correlated with the same number of random non-targeted 
transcripts as the number of target transcripts in the post-transcriptional regulatory network of an RBP, green: 
protein coding transcript of RBP correlated with all the non-targeted transcripts.
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Different set of features influence the correlation observed at the transcript and protein levels.  
As listed in Table 2 and discussed in Materials and Methods, nine features were selected which we hypothesized 
to contribute to the observed correlation patterns between RBPs and their transcripts. We selected these features 
for RBP centric modelling because each of these features are likely contributing to the function or dynamics 
of an RBP, its influence on the target transcript or can be attributed to the strength of its binding signal on the 
target transcript in either a direct or indirect mode and hence would therefore be explanatory of the observed 

Variable Feature name Description

Response Correlation coefficient of 
RBP with target transcript

For each RBP, the correlation coefficient of the selected protein coding transcript (or protein 
expression at protein level) with each target transcript was selected as the response variable.

Predictor

CLIP Signal
CLIP peaks in the bed format obtained from CLIPdb28 come with a P- value signifying the intensity 
of the CLIP binding for each binding site. The median P - value of the binding sites which were 
mapped on to the target, for each RBP, was calculated.

Distance of binding site 
from 5′​ end The distance of the start of the binding site from the 5′​ end of each target transcript was calculated. 

Distance of binding site 
from 3′​ end The distance of the start of the binding site from the 3′​ end of each target transcript was calculated. 

Transcript Length The length of each target transcript was obtained from Ensembl51.

Transcript Type The biotype of each target transcript was also obtained from Ensembl51.

Table 3.   Different features employed to study their contribution towards observed correlation between 
RBPs and their post-transcriptional targets, in the transcript centric modelling. For each feature details 
about how it was computed is also listed.

Figure 3.  Selected set of six yeast RBPs each belonging to the significantly congruent and incongruent 
categories from the yeast post-transcriptional regulatory network of RBPs43. Boxplots showing the 
distribution of correlation coefficients between RBPs and transcripts belonging to the three categories, red: 
transcript expression of RBP correlated with its target transcripts, blue: transcript expression of RBP correlated 
with the same number of random non-targeted transcripts as the number of target transcripts in the post-
transcriptional regulatory network of an RBP, green: transcript expression of RBP correlated with all the non-
targeted transcripts.
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trend. We used three different feature selection approaches, multivariate regression, step wise linear regression 
and elastic net to identify a reproducible and robust set of important features. Figure 6a shows the significance 
(−​log(p-value) for all the features tested, at the transcript and protein level plotted as a heatmap. We found that at 
the transcript level, the number of target transcripts, number of protein coding transcripts and the length of the 
selected protein coding transcript were the most important features while at the protein level, median clip signal, 
number of RNA binding domains and median distance of the binding site on the transcript as important features. 
Similar results were obtained using the elastic net framework. Supplementary Fig. 4 displays the important fea-
tures obtained using this method.

Type of the transcript and distance of the binding site from either side of the transcript prove 
to be important features at the transcript centric level.  As listed in Table 3, five features were selected 
which we hypothesized to contribute to the observed correlation patterns between RBPs and their transcripts at 
the transcript level modelling (see Materials and Methods). Briefly, in transcript centric modelling, the response 
variable is the correlation coefficient between each RBP and its target transcript essentially enumerating all pos-
sible RBP-transcript pairs. As earlier, we used three different methods similar to the procedure described for the 
RBP centric modeling to uncover the robust set of features. Figure 6b,c show the significance (−​log(p-value)) 
of the different features for the various RBPs using multivariate regression modeling. A similar figure without 
clustering is available as Supplementary Fig. 5, for easier reference. We found that transcript type is a significant 
feature for 66.67% and 63.80% of the RBPs at the transcript and protein levels respectively. There were a total of 56 
transcript types that were available from Ensembl BioMart50 into which our target transcripts were classified. We 
therefore tried to understand which transcript type is more contributing to the response variable by inspecting 
the median correlation coefficient of each transcript type for each RBP showing transcript type as an important 
feature. We observed that interchangeably, protein coding transcript and processed transcript followed by miRNA 

Figure 4.  Selected set of six human RBPs each belonging to the significantly congruent and incongruent 
categories, when protein expression levels of RBPs and transcript levels of the target/non-targets was used 
for computing the correlations. Boxplots showing the distribution of correlation coefficients between RBPs 
and transcripts belonging to the three categories, red: protein expression level of an RBP correlated with its 
target transcripts, blue: protein expression level of an RBP correlated with the same number of random non-
targeted transcripts as the number of target transcripts in the post-transcriptional regulatory network of an RBP, 
green: protein expression level of an RBP correlated with all the non-targeted transcripts.
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and lncRNA were the important transcript types impacting the expression correlation. We also found that the 
distance of the binding site of the RBP from 3′​ or 5′​ end of the transcript were important factors for many RBPs.

Discussion
In summary, we find that RBPs exhibit significant co-expression patterns with their target RNAs although the 
extent and direction of co-expression can vary between RBPs and among members of the same RBP family. 
They show strong association with their targets at both protein and transcript levels, however a higher level of 
association was observed at the protein level. Most of the RBPs show different level of association at the protein 
and transcript level with only 20% of them showing similar trends at both the levels. Intensity of the clip signal, 
number of RNA binding domains and location of the binding site on the transcript prove to be important features 
which can explain the association observed at the protein level while number of target transcripts, number of 
protein coding transcripts for the selected RBP and length of selected protein coding transcript explain the asso-
ciations seen at the transcript level. On further dissecting the analysis, at the transcript centric level, we observe 
that the type of target transcript and the distance of the binding site from the 5′​ or 3′​ end of the transcript are the 
important factors. We also found contrasting trends i. e, same RBP can be an SC at the transcript level while being 
classified as an SIC RBP at the protein level - classified based on the expression associations of the RBPs with their 
target transcripts at the transcript and protein levels. It is interesting to note that different features were found to 
be significant at these two levels possibly suggesting the rational for the observed differences in directionality of 
the associations.

In this study, we present genome-scale evidence that majority of the RBPs are correlated in expression lev-
els with their post-transcriptionally controlled target transcripts in both the human and yeast genomes. To our 
knowledge this is the first study to report such an association in post-transcriptional regulatory networks and 
strengthens our understanding of the relationship between RBPs and their cognate targets. Our observations 
suggest that in disease conditions, expression associations between RBPs and target transcripts are likely altered. 
Hence, prognostic RBPs can be identified by comparing the extent and number of associations in healthy versus 
disease expression cohorts, enabling a means of rapidly profiling for RBP biomarkers in developmental diseases, 
cancer and other complex disorders4,5,33. In conclusion, our study provides a deeper insight into the behavior 
of various RBPs in the context of post-transcriptional regulatory networks. Thus, providing a roadmap for the 
identification of different post-transcriptional regulatory patterns thereby enabling rational design of experiments 
pertaining to protein – RNA associations.

Materials and Methods
Datasets employed for human RBP binding sites as well as tissue-specific RNA and protein 
expression levels.  To obtain a comprehensive understanding of the RBP-RNA interaction networks on a 
genome- wide scale and to study the characteristics of binding sites of RBPs on their target RNAs, we downloaded 
Crosslinking Immunoprecipitation followed by high-throughput sequencing (CLIP-Seq) data from CLIPdb data-
base28 for 60 RBPs in humans. Although there is data for 63 RBPs in CLIPdb, we limited our analysis to those 

Figure 5.  Summary of the various correlation patterns observed at the transcriptomic and proteome 
levels for human RBPs. (A) Distribution of RBPs into SC, SIC and NSC categories when the RNA and protein 
expression levels of the RBP respectively, are considered for computing the correlations. (B) Heatmap showing 
the significance (−​log(p-value)) of the observed correlation compared to that seen in random non-targeted 
transcripts for various RBPs when the RNA and protein expression levels of an RBP are considered. P-values 
are computed using the Wilcoxon test comparing the distributions of correlation coefficients between targeted 
and 100 sets of non-targeted transcripts for each RBP. In the heatmap, blue color represents the SC RBPs and the 
yellow color represents the SIC RBPs.
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RBPs with high quality CLIP-seq data, limiting the number to 60 RBPs. We obtained the complete set of 217,426 
annotated transcripts for the human genome from Ensembl using Biomart50,51. We mapped the binding sites onto 
the Ensembl HG19 version 7951 of the human genome to find all the target RNAs for each RBP. RNA-seq data for 
16 human tissues from Illumina’s Human Body Map (HBM) 2.052–54 was downloaded from ArrayExpress data-
base (http://www.ebi.ac.uk/arrayexpress) under the accession number E-MTAB-513. To study the correlation of 
protein expression levels of RBPs with RNA levels of RBP target transcripts, we downloaded mass spectrometry 
based proteomic data for over 17,000 human proteins across 30 tissues/cell lines (17 adult, 7 fetal tissues and 6 
hematopoietic cells) from Human Proteome Atlas (HPA)55.

Constructing RBP-RNA regulatory network.  Several studies have shown that RBPs bind 200–300 
nucleotides around the observed splice sites, which generally possess the identifiable sequence features56,57. We 
therefore considered a transcript to be a target of a RBP, if and only if the binding sites of the RBP fall within 
the 300 bps flanking regions or 300 bps downstream regions of at least one of its annotated exonic start or end 
co-ordinates. Based on this criterion, if at least one exon is mapped with a RBP’s binding site, the corresponding 
transcript is considered its target transcript. This allowed us to build a RBP – target transcript network for each 
RBP which was used in the downstream analysis (see Fig. 1). The union of unique number of transcripts targeted 
by each of the 60 RBPs is 121,131 transcripts. The number of target transcripts for each RBP based on the built 
regulatory network is listed in Table 1.

Correlation analysis to study the association between each RBP and its target transcripts.  
Transcript level expression was quantified for the downloaded RNA-seq data using Sailfish v0.6.358. TPM (tran-
scripts per million) values were considered for the quantification of expression levels of all the Ensembl anno-
tated transcripts in the human genome. The target transcripts which were mapped as described above for each 
of the 60 RBPs, were then matched with the genome-wide transcript levels across tissues and were divided into 
3 categories for each RBP – 1) RBP target transcripts 2) RBP control matched – defined as the set of randomly 
selected transcripts in the expression compendium equal in number as the number of target transcripts and 3) 
RBP control all – defined as the set of all the transcripts which were not annotated to be targeted by a RBP based 
on CLIP-seq data.

To identify a representative protein coding transcript encoding for an RBP among all the annotated transcripts 
in the RNA-seq data, a protein coding transcript with the highest mean expression level across all the 16 tissues 
was chosen. Spearman correlation was calculated between the transcript level expression of each RBP and every 
target as well as non-target transcript’s expression levels across the 16 tissues to generate correlation coefficients 
for the three different categories of transcripts namely RBP target transcripts, RBP control matched and RBP 

Figure 6.  Heatmaps showing the significance of various features influencing correlation at the RBP and 
transcript centric levels. Heatmaps show the significance values (−​log(p-value)) obtained by performing 
multivariate regression modelling to predict features influencing correlation at the (A) RBP level. (B,C) 
Transcript level when RNA and protein levels of RBPs were considered. Significance values for various features 
considered in this analysis are clustered hierarchically. Similar results were obtained using stepwise linear 
regression and elastic net regression modelling.

http://www.ebi.ac.uk/arrayexpress
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control all, defined above. Similarly, for the protein expression data upon mapping the tissues from this dataset 
with the tissues available in the RNA-seq dataset, we found 9 common tissues and hence spearman correlations 
were computed between the protein expression level of each RBP and its target as well as non-target transcript’s 
expression level from RNA-seq data which resulted in three categories of correlation coefficients for each RBP  
(see Fig. 1). Boxplots were plotted to represent the differences in the extents of correlation among the three 
categories of transcripts for each RBP and corresponding pairwise Wilcoxon test p-values computed using R to 
understand the significance of the observed patterns.

Identification of factors contributing to the observed association between RBPs and their target  
transcripts.  To understand what factors and the extent to which they might be contributing to the observed 
correlation patterns at the transcript and protein levels of RBPs, we employed multivariate modelling at two dif-
ferent levels, referred to as the RBP centric level and the transcript centric level in this study. We employed three 
different feature selection/reduction methods to identify the robust set of contributing features, namely – the 
lm function, the step LR function and the ElasticNet59 package in R. The lm function is an inbuilt function in R 
with a typical model in the form response ~ terms and is used to fit linear models and carry out regression and 
analysis of covariance and variance. Contrary to the lm method where all the features are included in the analysis, 
step function is an automated procedure where at the end of each step, variables with the most insignificant p – 
values are dropped and the procedure stops when the remaining features have a p – value significantly defined 
by a threshold value alpha. Ridge regression (L2 regularization term)60 uses all input features to fit a model, while 
LASSO (L1 regularization term)61 tries to find the most optimal fit. Elastic Net is a regularized regression model-
ling method which combines the above two methods and optimizes the bias and variance discrepancies between 
lasso and ridge.

At the RBP centric level, our goal was to understand and identify the general features which can likely explain 
the observed association between RBPs and their targets. These included nine features namely number of target 
transcripts controlled by an RBP, median CLIP signal of a RBP, number of RNA-binding domains in a RBP, num-
ber of documented protein interactions of a RBP, number of protein coding transcripts encoded by a RBP, total 
number of annotated transcripts by the gene encoding for RBP, length of the selected protein coding transcript, 
median of all the distances between the binding site of RBP and to the closest end of the transcript and correlation 
between mRNA-protein levels of an RBP, which could play a role in influencing the median correlation coefficient 
of all the target transcripts for each RBP. At the transcript centric level, our goal was to uncover the contribution 
of the transcript specific features such as CLIP signal on the target transcript, distance of binding site with respect 
to the 5′​ or 3′​ end of the transcript, length as well as type of the transcript on the correlation coefficient of each tar-
get transcript for each RBP. A detailed description of each of these features is listed in Tables 2 and 3 for RBP cen-
tric and transcript centric models respectively. RNA-binding domain annotations for RBPs were obtained from a 
previous study5 and the number of protein – protein interactions for each RBP was calculated by constructing a 
protein – protein interaction network using interaction data from the BIOGRID database48.

Post-transcriptional regulatory network of RBP – RNA interactions in yeast and analysis of 
correlation patterns.  We hypothesized that the observed correlation patterns of RBPs with their target 
transcripts is conserved across species. To test this hypothesis, we used the post-transcriptional regulatory net-
work of 69 RBPs and 24,932 RBP-RNA interactions in the yeast genome43. We downloaded RNA-seq data from 
a previous study generated under 18 different environmental conditions in yeast, with each condition having 
two biological replicates62. In particular, the data available at http://downloads.yeastgenome.org/published_data-
sets/Waern_2013_PMID_23390610/ for S. cerevisiae strain S288C reference genome sequence version R64-1-163 
were downloaded from Saccharomyces Genome Database64. Raw data was quality filtered, aligned using Tophat65 
and expression levels of transcripts quantified using Cufflinks66. Similar analysis as implemented for the human 
genome was executed to identify the association between RBPs and their target/non-target RNAs. Boxplots were 
plotted using R. We limited our analysis to only 65 RBPs as opposed to 69 RBPs since for four of the yeast RBPs, 
only 1 target was detected with negligible expression levels.
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