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ABSTRACT
MicroRNAs (miRs) are short noncoding RNA molecules that regulate expression of target mRNAs. Many
published sources provide information about miRs and their targets. However, bioinformatic tools
elucidating higher level impact of the established total miR profiles, are still largely missing. Recently, we
developed a method termed OncoFinder enabling quantification of the activities of intracellular molecular
pathways basing on gene expression data. Here we propose a new technique, MiRImpact, which enables
to link miR expression data with its estimated outcome on the regulation of molecular pathways, like
signaling, metabolic, cytoskeleton rearrangement, and DNA repair pathways. MiRImpact uses OncoFinder
rationale for pathway activity calculations, with the major distinctions that (i) it deals with the
concentrations of miRs - known regulators of gene products participating in molecular pathways, and (ii)
miRs are considered as negative regulators of target molecules, if other is not specified. MiRImpact
operates with 2 types of databases: for molecular targets of miRs and for gene products participating in
molecular pathways. We applied MiRImpact to compare regulation of human bladder cancer-specific
signaling pathways at the levels of mRNA and miR expression. We took 2 most complete alternative
databases of experimentally validated miR targets – miRTarBase and DianaTarBase, and an OncoFinder
database featuring 2725 gene products and 271 signaling pathways. We showed that the impact of miRs
is orthogonal to pathway regulation at the mRNA level, which stresses the importance of studying
posttranscriptional regulation of gene expression. We also report characteristic set of miR and mRNA
regulation features linked with bladder cancer.

KEYWORDS
bladder cancer; gene
expression; intracellular
signaling pathway activation;
micro RNA; molecular
markers; new bioinformatic
method; total impact of miR
expression

Introduction

MicroRNAs (miRs) are 19 to 24 nucleotides long noncoding
RNA molecules that regulate the expression of target mRNAs
both at the transcriptional and translational levels.1,2 Since the
discovery of lin-4 gene producing a small noncoding RNA,
which affected the development of C. elegans,3 thousands of
miRs in eukaryotes were identified. They influence all major
physiological processes such as development, growth, differen-
tiation, immune reaction and adaptation to stress.4,5 Diverse
disease states such as cancer, infection and heart failure are
associated with distinct miR signatures suggesting that specific
miR programs are activated in pathophysiological processes.6,7

Each miR may have tens and even hundreds of different tar-
gets and it is a conservative estimate that nearly 30% of the
genes are regulated by at least one miR.1 An example is shown
on Figure 1, depicting a molecular signalization pathway laying
at the interface between Akt and ERK signaling. Effector miRs
targeting gene products participating in this pathway, identified

using miRTarBase,8 are schematized on the figure. For example,
gene AKT1 has 11 effector miRs, among them one - “has-miR-
124-3p” also targets genes AKT2 and AKT3. These and other
complex influence patterns lead to unique regulatory networks
specific to each molecular pathway.

To the date, many databases were published, which accumu-
late information on individual miRs and their targets.8,9 How-
ever, there are no currently available bioinformatic tools which
allow to estimate higher-level impact of the overall miR profile
in biosamples, e.g. in cell lines and in tissue samples.

Recently, we developed a bioinformatic technique termed
OncoFinder.10,11 It allows analyzing activity of intracellular
signaling pathways based on gene expression profiles, e.g.,
came from transcriptomic or proteomic data. The method
makes it possible to establish pathway activation strength
(PAS) profiles corresponding to intracellular molecular
pathways. Several approaches were published previously by
us and others to measure PAS basing on large scale gene
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expression data, which may deal with either transcriptomes
or proteomes. Khatri et al.12 classified those methods into 3
major groups: Over-Representation Analysis (ORA), Func-
tional Class Scoring (FCS) and Pathway Topology (PT)-
based approaches. ORA-based methods calculate if the
pathway is significantly enriched with differentially
expressed genes.13 These methods have many limitations, as
they ignore all non-differentially expressed genes and don’t
take into account many gene-specific characteristics. FCS-
based approaches partially tackle aforementioned problems
by calculating fold change-based scores for each gene and
then combining them into a single pathway enrichment
score.14 PT-based analysis also takes into account topologi-
cal characteristics of each given pathway, assigning addi-
tional weights to the genes (for a review, see ref. 15). To
account for gene expression variability within a pathway, a
set of differential variability methods has been developed.16

Differential variability analysis determines a group of genes
with a significant change in variance of gene expression
between case and control groups.17 This approach was fur-
ther extended and applied on the pathway level.18 Finally,
based on the kinetic models that use the “low-level”
approach of mass action law, OncoFinder performs quanti-
tative and qualitative enrichment analysis of the signaling
pathways. For each investigated sample, it performs a case-
control pairwise comparison and calculates the Pathway
Activation Strength (PAS), a value which serves as a quali-
tative measure of pathway activation. Unlike most other

methods this approach determines if the signaling pathway
is significantly up- or down-regulated compared to the ref-
erence. Negative and positive overall PAS values corre-
spond, respectively, to inhibited or activated state of
signaling pathway.10

OncoFinder is also, to our knowledge, a unique PAS cal-
culating method, which was reported to provide output
data with significantly reduced noise introduced by the
experimental transcriptome profiling systems.19 It was
shown to be efficient in finding new cancer biomarkers,
more stable than individual gene expression patterns.11 To
date, OncoFinder was applied for many objects including
induced pluripotent stem cells,20 leukemia and solid can-
cers,21,22,23 Hutchinson Gilford Disease,24 and Age-Related
Macular Degeneration Disease.25

Here, we propose a new biomathematical method named
MiRImpact, which enables to perform quantitative and
qualitative analysis of miRs influence on the activation of
intracellular signaling pathways. MiRImpact may be
regarded as an extension of OncoFinder technique. The
enclosed algorithm distinguishes the positive/activator and
negative/repressor roles of every gene product in each path-
way. By combining impacts of targeting miR with each
individual gene role in a pathway, we explore dependencies
between gene expression levels and miR profiles and iden-
tify trends in up- and downregulation of intracellular
signaling pathways. We took 2 most complete
alternative databases of experimentally validated miR

Figure 1. MiR interactions in OncoFinder pathway ”AKT_Pathway_ERK_Pathway.“ AKT_Pathway_ERK_Pathway is a terminal branch of AKT pathway responsible for the
interaction with ERK signaling. It consists of 6 functional nodes including 24 individual gene products. Diagram shows 25 effector microRNAs targeting them, basing on
the information from the database miRTarBase
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targets – miRTarBase and DianaTarBase, and an Onco-
Finder database featuring 2725 gene products and 271 sig-
naling pathways.

We applied MiRImpact to assess the regulation of sig-
naling pathways in human bladder cancer (BC). Globally,
BC is the ninth most common cancer. Approximately
356,000 new cases are reported annually worldwide.26 BC
accounts for 3.1% and 1.8% of the overall cancer mortality
in males and females, respectively. Early diagnosis of BC
can significantly prolong lifespan and improve the quality
of life of the patients. Routinely used methods of clinical
diagnostics are, in general, not efficient for detecting BC at
the early stages. There is an urgent need to develop novel
diagnostic tools that would efficiently detect and monitor
BC progression.27,28,29 Recently, we identified a number of
molecular pathways that may be used as the stable markers
of BC.21 These results were based on the high-throughput
detection of mRNA levels in the pathological tissues. How-
ever, the patient’s bladder tissues are not commonly avail-
able for a regular screening. From this point of view, urea
might be an ideal source of biomaterial for the analysis.
Unlike mRNAs which are prone to quick degradation in
biological fluids, miRs are known to be stable because of
binding with specific proteins that protect them from
cleavage by RNases.30 A fraction of known miR species
has been reported to be among the major molecular
markers of BC.30,31 Here, we applied MiRImpact to com-
pare trends in regulation of signaling pathways at mRNA
and miR levels. For the same biosamples, we found a gen-
eral orthogonal trend in the regulation of pathway activity
at those 2 levels. However, for a fraction of molecular
pathways that were previously identified as the stable BC
biomarkers, we found significantly more congruent regula-
tion at both mRNA and miR levels. We conclude, there-
fore, that MiRImpact may be beneficial for finding new
types of stable biomarkers of BC progression compatible
with the routinely available source of biomaterial. For
bladder cancer, for the first time, we report the signalome-
wide data on the regulation of signaling pathway activity
at the levels of mRNA and miR expression.

Results

MiRImpact method

MiRImpact biomathematical algorithm was built to enable
quantization of the effects, caused by the changes in overall
miR concentrations, on the activity of intracellular molecular
pathways. The algorithm was created on the basis of a rationale
previously published for the OncoFinder technique.19 As the
input information, OncoFinder digests gene expression data
(microarray or next generation sequencing transcriptomic data,
or proteomic data), and calculates for each molecular pathway
a so-called pathway activation strength (PAS) value. PAS values
may serve as the measure of pathological changes in an intra-
cellular signaling network.10,32 To calculate PAS, for each gene
product participating in a pathway, its molecular function is
defined, which may be either overall activator, unknown or
repressor role in a pathway. For each gene of a pathway p, its

activator-repressor role (ARRi;p) is defined, which depends on
the functional role of this gene product in a pathway:

ARRi;p D

¡ 1;
¡ 0:5;

0;

0:5;

1;

repressor

repressor> activator

neither

activator> repressor

activator

8>>>>>>>><
>>>>>>>>:

This is also important to identify control sample or a group of
control samples, which will be used as the norms for PAS calcu-
lation. Next, for each gene i, case to normal ratio (CNRi) is cal-
culated for the respective concentrations of mRNA or for
protein concentrations, depending on the origin of input data:

CNRi D CasemRNASignali
NormmRNASignali

In addition, 2 auxiliary coefficients are introduced:
1. beyond tolerance interval flag (BTIFi) determines if the

difference between case and norm is significant:

BTIFi D 0;CNRibelongstotoleranceçinterval

1;CNRidoesn
0
tbelongtotoleranceçinterval;

�

where the accepted interval ofCNRivalues (tol) is defined
by the user depending to the criteria of differential gene
expression used;

2. activator-repressor role (ARRi;p), which reflects role of
gene product i in pathway p, see above. PASp value is
expressed by the formula:

PASp D
X
i

ARRi;p�BTIFi�lg CNRið Þ;

where summation is made for all the genesi, whose prod-
ucts participate in a molecular pathwayp.PositivePASp
values indicate activation of a pathwaypcompared to
norms, whereas negative ones denote downregulation of
a pathway.

Similarly to OncoFinder approach, in MiRImpact method,
for each miR, a case to normal ratio is calculated for the respec-
tive miR concentrations (miCNRj):

miCNRj D CaseçmicroRNAçSignalj
NormçmicroRNAçSignalj

The miR beyond tolerance interval flag (miBTIFj) marker
determines if the difference between case and norm is signifi-
cant:

miBTIFj D
0;miCNRjbelongstomicroRNAçtoleranceçinterval

1;miCNRjdoesn
0
t belongtomicroRNAçtoleranceçinterval

�

The unique coefficient termed miR involvement index
(miII) determines, if a given mRNA transcript of a gene i is a
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molecular target of a miR j:

miIIj;i D 0; target

1; nottarget
:

�

The value of miR-defined activation strength of a pathway p
(miPASp) is calculated according to the following:

miPASp D
X
i

¡ARRi;p
� ��X

j

mIIj;i�miBTIFi�lg miCNRið Þ;

Similarly to OncoFider, a positive value ofmiPASp indicates
activation, whereas a negative one indicates repression of a
pathwayp, calculated basing on the available miR expression
data.

As the intracellular molecular pathway database, we took
previously published Oncofinder signaling database featuring
2725 unique genes and 271 signaling pathways.21,22 These data
are needed to identify genes involved in each pathway and their
functional roles expressed by ARR values. To find out mII
indexes, a database covering target gene product specificities of
miRs is needed. In this study, we used the most recent updates
of the 2 alternative knowledge bases on miRs and their experi-
mentally validated targets: miRTarBase8 and Diana TarBase.9

The target specificities of miRs cataloged there cover, respec-
tively, 72% and 18% of the genes listed in the OncoFinder data-
base, that was used here for the analysis of signaling pathways
(Table 1). Both databases include information on more than 50
thousands of molecular interactions of miRs with target mRNA
molecules, in case of miRTarBase - for 18 species, in case of
Diana-TarBase – for 24 species, including human. This infor-
mation is manually curated by the database developers basing
on published literature on functional experimental studies of
miRs. The most commonly used experimental approaches for
validating molecular targets of miRs are luciferase reporter
assay, Western blots and next generation sequencing
approaches.8,9

Biosamples

The bladder cancer (BC) samples were obtained from transure-
thral resection tissue material taken from 8 individual patients
treated in Moscow Oncological Research Institute. All patients
provided written informed consent to participate in this study.
The consent procedure was approved by the ethical committee
of the P.A. Hertzen Moscow Clinical Oncology Institute. Four
tissue samples for non-cancer controls were collected at the
Department of Pathology at the Faculty of Medicine, Moscow
State University, from autopsies from normal bladder tissues
taken from 4 independent healthy donors killed in road acci-
dents. Both the tumors and normal tissues were evaluated by a

pathologist to confirm the diagnosis and estimate the tumor
cell numbers. Gene expression in the BC and normal samples
was analyzed using the Illumina HumanHT-12v4 Expression
Bead array (Illumina, USA). This gene expression platform
contains more than 25,000 annotated genes and more than
48,000 probes derived from the National Center for Biotechnol-
ogy Information RefSeq (build 36.2, release 22) and the UniG-
ene (build 199) databases. The matching data on miR
expression for the same patients were obtained using massive
sequencing on an Illumina GAIIx platform. The number of
reads varied between the samples, with the mean value of
5,04 million reads per sample. The respective data on gene and
miR expression were published by us previously.21,31

Experimental design

Here, we re-analyzed the above BC gene expression and miR
expression data using OncoFinder and MiRImpact methods.
For the first time, we compared profiles of intracellular signal-
ing pathway activities at the levels of mRNA (OncoFinder) and
miR (MiRImpact) regulation. The outline of the data analysis is
schematized on Figure 2.

Signaling pathway activation analysis
Overall pathway activation profiles obtained using OncoFinder
for mRNA regulation level, and using MiRImpact for miR reg-
ulation level, differed dramatically. This was reflected by the
apparent differences between the PAS (Supplementary dataset
1) and miPAS (Supplementary datasets 2,3) scores. These two
values characterize pathway activity in a biosample at the
mRNA and miR levels, respectively. For the PAS scores, 48% of
the investigated signaling pathways were downregulated, and
34% were upregulated in all BC samples. Approximately 2% of
the pathways showed zero values in all the samples, and »16%
of the pathways showed opposite trends of regulation in the dif-
ferent BC samples (Supplementary dataset 4).

At the level of miPAS scoring, the results depended greatly
on the database used to establish molecular targets of miRs
(miRTarBase or Diana-TarBase). For a more complete database
miRTarBase, the distribution of up-, down-, intact and con-
trarily regulated pathways was similar to that observed for the
PAS scores (Fig. 3). In contrast, for a database Diana-TarBase
having far less molecular targets overlapping with the Onco-
Finder signaling pathway database (only 18% versus 72% in
miRTarBase), significantly greater proportion of unaffected
pathways showing zero miPAS scores was seen (21% compared
to only 2% for PAS scoring). This may be due to the relatively
low number of differentially regulated targets within the path-
ways that may be captured using the latter database.

Previously, we identified 44 molecular signaling pathways
which may serve as potent biomarkers of BC progression in

Table 1. Characteristics of validated miR target databases, based on the data collected from miRTarBase, Diana TarBase and OncoFinder pathway databases.

Data Base miRTarBase Diana TarBase

Number of miRs targeting gene products from OncoFinder database 596 183
Number of individual records 12103 3006
Number of target genes in OncoFinder database 1968 497
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humans.21 For 21 of them, we found literature data connecting
miR expression and pathway activation abnormalities in can-
cer. We identified for them forty-four published scientific
reports describing regulation of signaling pathways by various
miRs (Supplementary data set 5). Basing on our own experi-
mental analysis, for miRTarBase we observed congruence with
finding of pathway up/downregulated state in 10/21 molecular
pathways, and for Diana-Tarbase – in only 5/21 pathways.
Note that for both databases, there were no miPAS levels regu-
lated oppositely compared to the published data (Supplemen-
tary dataset 5). The remaining pathways that did not coincide
with both miRTarBase- and Diana-Tarbase-based versions of
MiRImpact, were either apparently inconclusively (bidirection-
ally) regulated in BC, or were unchanged according to miPAS
data. It should be mentioned here that the results of the litera-
ture search are typically based on published reports on very few
individual effector miRs, which may have distinct activities
compared to the whole pool of miRs associated with a given
pathway, which has never been previously investigated.

We next compared pathway activation signatures for the 44
above characteristic BC-associated pathways at the mRNA and
miR levels. In the case of miRTarBase version, 20 pathways had
contrary trends, and only 10 had common trends at the miPAS
and PAS levels. For Diana-Tarbase version, 9 pathways had
contrary trends, and 10 pathways – common trends on mRNA
and miR regulation levels. This suggests that the regulation of
many characteristic BC-linked pathways differs dramatically at
the mRNA and miR levels. For 11 and 6 characteristic pathways
we observed, respectively, common and contradictory trends in

pathway regulation using miRTarBase and Diana-Tarbase data-
bases (Supplementary dataset 5). Pathways commonly upregu-
lated according to both databases were ILK pathway_wound
healing and mTOR_Pathway_VEGF_pathway activation.
Downregulated pathways were 2 branches of AHR pathway:
AHR_Pathway_C_Myc_Expression and AHR_Pathway_-
Cath_D_Repression, a terminal branch of CREB pathway
(CREB_Pathway_Gene_Expression), a branch of Glucocorti-
coid receptor pathway (Glucocorticoid Receptor Pathway Cell
cycle arrest), 2 branches of ILK pathway: ILK_Pathway_Cell_-
motility and ILK_Pathway_G2_phase_arrest regulation, a
branch of JAK-STAT pathway (JAK mStat Pathway JAK degra-
dation), and an RNA Polymerase II Complex Pathway. Five
pathways were unchanged at the level of miR regulation,
according to both databases.

A fraction of consensus data obtained using both databases,
demonstrates that 3 molecular pathways previously shown to
be aberrantly regulated at the mRNA level,21 are congruently
regulated at the miR level as well. These are the branches of the
integrin-linked kinase (ILK) signaling pathway, responsible for
the cell motility and wound healing, and a branch of the
mTOR pathway, responsible for the activation of VEGF signal-
ing (Supplementary dataset 5).

Similar figure was seen when comparing miPAS values for
both miRTarBase and Diana-Tarbase versions of MiRImpact,
for all available pathways (Fig. 4). For the average miPAS values
among all the samples, the correlation was statistically signifi-
cant, but rather low (0.27), whereas for the different individual
BC samples it varied from 0.08 till 0.53 with the mean value of

Figure 2. Schematic outline of bladder cancer miR and gene expression data analysis. Corresponding mRNA and miR expression data were preprocessed for Oncofinder
and MIRImpact calculations. Output data were used to generate heatmaps and statistical dependencies between the results obtained using these 2 methods, and to iden-
tify up- and downregulated molecular pathways.
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0.26 (Supplementary dataset 6). Overall, this suggests that the
results of miPAS scoring, although roughly correlated, depend
greatly on the origin of miR target database used. Both data-
bases used in this study, although reported to include only
experimentally validated interactions with targets, produce out-
put results which are poorly compatible to each other. At pres-
ent, we still don’t know what database is better in terms of
realistic miR-target mRNA interactions, although miRTarBase
may look better because it is far more complete in terms of
greater number of miR targets and because it produced output
results which were closer to the literature-reported experimen-
tal data on pathway activation in response to miRs (10 path-
ways coincided, vs. only 5 in the case of Diana-Tarbase, see
above). We conclude, that further studies are needed to refine
the existing miR target databases and to eliminate the apparent
disagreements between them.

Comparison of pathway activation features at the mRNA
and miR levels also showed quite distinct peculiarities in
terms of variation between the individual samples. We
observed relatively uniform regulation of pathways at the
mRNA level, with relatively small number of pathways
showing significant variations between the individual sam-
ples. In addition, a significant fraction of the pathways
showed little or no difference in regulation compared to the
normal samples (Supplementary dataset 7). In contrast, at
the level of miR regulation, the apparently observed differ-
ences between the samples were significantly more sound,
as established for both miRTarBase and Diana-Tarbase
databases (Supplementary data sets 8 and 9, respectively).
In the latter cases, the majority of the pathways were also

strongly differential between the normal and cancer sam-
ples. These peculiarities of miPAS scores suggest that they
may be more sensitive compared to the PAS values to dis-
criminate between the individual cancer samples. This may
be highly beneficial for finding new diagnostic markers, e.g.
linked with the individual sensitivity of patient to treatment.

Finally, using both abovementioned miR target databases,
for the whole set of signaling pathways, the regulation at
the miR and mRNA levels, reflected by the miPAS and PAS
scores, was not reciprocally correlated (Fig. 5). This charac-
teristic trend was seen for all individual samples (Supple-
mentary datasets 10 and 11), and for the averaged samples
shown on Figure 5, as well. Of note, many molecular path-
ways showing zero PAS scores, at the same time had quite
distinct miPAS scores (Fig. 5). This lack of correlation
shown for both alternative databases clearly suggests that
transcriptional profiling at the mRNA level alone may be
not sufficient to estimate the activation of molecular
pathways.

Discussion

In this study, we used 2 alternative databases of experimentally
validated miR targets, miRTarBase and Diana-TarBase. We
observed a weak, but still statistically significant correlation
between the miPAS data calculated for both databases (Fig. 3).
However, the high level of noise (Fig. 3) reflects a big difference
between their content and completeness. The results obtained
suggest that the method MiRImpact may be compatible with
various databases collecting data on miR specificities and on

Figure 3. Regulation of molecular pathways at the PAS and miPAS levels. The MiRImpact and OncoFinder data were processed for 8 bladder cancer tissue samples. Upre-
gulated or downregulated states of pathway activation were defined as those if at least 5 over total 8 samples showed the respective trends, and the other samples did
not show contrary trends. “Inconclusive” results were obtained when either less when 5 samples displayed a certain trend, or when the different samples showed contrary
trends for a pathway activation. “Unchanged” states of the pathways mean that the absolute values of PASes or miPASes were lower than the defined significance thresh-
old. The data for miPAS calculation are shown for the 2 alternative miR target databases: miRTarBase (mTB) or Diana-TarBase (DTB).
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their specific activities. This means that the future develop-
ments based on the MiRImpact method may utilize any kind of
new miR target databases, either based on computational pre-
diction, or on experimental validation of miR interactions. Sim-
ilarly, the enclosed OncoFinder database of signaling pathways
may be updated, extended or replaced by another database of

molecular pathways, in a user-definitive way. Furthermore,
knowledge of the qualitative aspects of molecular interactions
between miRs and their targets, and between the molecules par-
ticipating in molecular pathways, may be used to tune the data-
bases in order to assign specific weighting coefficients to each
miR and/or gene product. The mathematical algorithm used

Figure 4. Comparison of microRNA Pathway Activation Strength (miPAS) values calculated using miRTarBase and Diana TarBase databases of miR targets, for an averaged
miR expression between all the samples under investigation. The resulting virtual sample is the result of averaging of miR expression measured by deep sequencing for 8
bladder cancer samples. The results for each individual sample are given on Supplementary dataset 6, showing correlation coefficients varying between 0.06 and 0.53
with the mean value of 0.26.

Figure 5. Pathway Activation Strength (PAS) versus microRNA Pathway Activation Strength (miPAS) for an averaged miR and mRNA expression between all the samples
under investigation. The resulting virtual sample is the result of averaging of miR expression measured by deep sequencing and mRNA expression measured using micro-
arrays, for 8 bladder cancer samples. The results for each individual sample are given on Supplementary datasets 10 and 11 for both miR target databases. “AVG” samples
were averaged at the level of mRNA/miR expression across all 8 BC samples, whereas “PAS AVG” was averaged at the level of PAS/miPAS values across all BC samples.
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here is rather universal and can be employed to trace also meta-
bolic, cytoskeleton rearrangement, DNA repair and other types
of intracellular molecular pathways, in any organism or species
of the interest. We provide evidence that miPAS values are
more variable between the samples than the conventional,
mRNA concentrations-based, PAS values. This feature of
miPAS can make it an especially useful tool for finding markers
of the processes, which are hardly distinguishable according to
the current molecular approaches. For example, miPAS values
may be a new type of somewhat more sensitive biomarkers for
accurate molecular diagnostics of various pathologies, or for
predicting response to drug treatment.

We propose here a new biomathematical method, MiRIm-
pact, which makes it possible to link large-scale miR expression
data and their estimated outcome on the regulation of intracel-
lular molecular pathways. MiRImpact utilizes a previously pub-
lished mathematical apparatus for pathway activity
calculations, with the major distinctions that (i) it deals with
the concentrations of miRs - known regulators of individual
gene products participating in molecular pathways, and (ii)
miRs are considered by default to be negative regulators of tar-
get molecules, if other is not specified. MiRImpact operates
with 2 types of databases: for molecular targets of miRs and for
gene products participating in molecular pathways. We applied
MiRImpact to compare regulation of human bladder cancer-
specific signaling pathways at the levels of mRNA and miR
expression. We took 2 most complete alternative databases of
experimentally validated miR targets – miRTarBase and Diana-
TarBase, and a previously published OncoFinder database fea-
turing 2725 gene products and 271 signaling pathways. The
apparently seen correlation between the data calculated using
miRTarBase and Diana-TarBase suggests that the algorithm
works in the same manner for both miR target databases. We
compared the obtained results with the literature data on the
impact of particular miRs on the respective signaling pathways.
For the data calculated using the miRTarBase, we observed a
greater congruence between the experimental and the literature
data (in 47% of the cases), whereas for Diana-TarBase, the data
were compatible in only 23% of the cases. We suggest, there-
fore, that the miRTarBase is currently a database of choice for
the estimation of molecular pathways regulation by miRs in
humans. The higher variability of miPAS clouds among the
samples, compared to previously published PAS values, can
make them superior biomarkers of various biological and path-
ological processes because of greater sensitivity.

We demonstrate here that at least for the human bladder
cancer (BC) tissues, the intracellular pathway regulation at the
miR level differs greatly from that at the mRNA level, thus
showing orthogonal dependencies for the extents of pathway
activation. So far, we cannot quantitatively compare the effects
of PAS and miPAS scores on the pathway activation. We pre-
sume that this will be done in the future by comparing high-
throughput miR, mRNA and proteomic expression data, at the
level of molecular pathways. To this end, a combination of
MiRImpact approach communicated here and of OncoFinder
technique published previously, may provide a feasible meth-
odological solution. MiRImpact method would provide infor-
mation on the activation of molecular pathways at the miR
level, whereas OncoFinder – at the whole-transcriptome

mRNA and proteomic levels. In addition, ribosome profiling
data33 may be processed with these bioinformatic tools to
uncover crosstalk between mRNA concentration, quantitative
measure of protein translation efficiency and final protein con-
centrations. Finally, we propose that other types of noncoding
RNAs than miRs can be also analyzed using MiRImpact
method, when their regulatory roles and target\effector gene
products are known. Connecting these data on pathway activa-
tion will be a matter of our further studies.

Methods

Biosamples

Gene expression microarray data were taken from the previous
publication,21 and the deep sequencing data for the pools of
miRs corresponding to the same biosamples were taken from
Zabolotneva et al.31

Mapping of miRs

Following FASTQ to FASTA conversion, the adapter sequence
(TGGAATTCTCGGGTGCCAAGG) was clipped from the 30-
end of the read. Remaining sequences were mapped to the data-
bases of miR targets using the short-read aligner Bowtie,34 and
processed by SAMTools.35

OncoFinder and MiRImpact software calculation

Quantile normalization was done for both microarray and
mapped deep sequencing data. A new project was created and
run for mRNA microarray expression according to the software
developer recommendations. In MiRImpact software, a new
miR project was created and run for with the following default
parameters, for both miRTarBase and Diana TarBase: target
database - Diana Tarbase, miRTarBase; sigma amount: 2. CNR
lower threshold: 0.67; CNR upper threshold: 1.5

Pathway activation data analysis

I. Heatmaps. Function heatmaps.2 (R package gplots) was
used for building heatmaps (Additional Materials 7, 8,
9).

II. Up- and downregulated pathways. We analyzed activa-
tions of 271 intracellular signaling pathways. For
mRNA data, we chose pval_threshold equal 0.05 and
assigned labels for each pathway according to the
following:
� –unchanged, if if absolute PAS/miPAS value was less

than threshold
� –upregulated, if the absolute PAS/miPAS value is

higher than the threshold and PAS/miPAS is positive
� –downregulated, if the absolute PAS/miPAS value is

lower than the threshold and PAS/miPAS is negative
We chose threshold value at the level of approximately 1/10

of a minimum difference among all samples between maximum
and minimum PAS/miPAS value within a sample. We assigned
pathways the following labels:
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We formed a consensus sample for 8 bladder cancer sam-
ples. Pathway was assigned quality if more than half (> 4) of
all samples had this quality. Otherwise we assigned quality
inconclusive. (Fig. 2) miRTarBase miPAS vs. Diana-TarBase
miPAS dependency was plotted using standard R plot function
(Fig. 3). PAS vs. miPAS dependencies were calculated with
both miRTarBase and Diana Tarbase validated targets and
were plotted using standard R plot function (Fig. 4).

Inspection of literature databases

To validate the method MiRImpact, we performed literature
search of miR involvement in intracellular signaling pathway
regulation. We analyzed articles indexed by National Center
for Biotechnology Information (NCBI), for 44 signaling intra-
cellular pathways which were previously identified as the effi-
cient biomarkers for BC using OncoFinder method.21 We used
the following search criteria: “(name of the pathway) C path-
way C miRNA” and “(name of the main pathway effector) C
pathway C miRNA”. We selected articles which described reg-
ulation of a particular signaling pathway by the the miRs in the
context of human cancer. The results were compared to the
pathway regulation data obtained using MiRImpact method for
bladder cancer samples (Supplementary Dataset 5).
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Voichiţa C, Dr�aghici S. Methods and approaches in the topology-
based analysis of biological pathways. Front Physiol 2013; 4:278;
PMID:24133454; http://dx.doi.org/10.3389/fphys.2013.00278

[16] Afsari B, Geman D. Learning dysregulated pathways in cancers from
differential variability analysis. Cancer Inform 2014; 13:61;
PMID:25392694

[17] Ho JWK, Stefani M, dos Remedios CG, Charleston MA. Differential
variability analysis of gene expression and its application to human
diseases. Bioinformatics 2008; 24:i390-8; PMID:18586739; http://dx.
doi.org/10.1093/bioinformatics/btn142

[18] Eddy JA, Hood L, Price ND, Geman D. Identifying tightly regulated
and variably expressed networks by Differential Rank Conservation
(DIRAC). PLoS Comput Biol 2010; 6:e1000792; PMID:20523739;
http://dx.doi.org/10.1371/journal.pcbi.1000792

[19] Buzdin AA, Zhavoronkov AA, Korzinkin MB, Roumiantsev SA,
Aliper AM, Venkova LS, Smirnov PY, Borisov NM. The OncoFinder
algorithm for minimizing the errors introduced by the high-through-
put methods of transcriptome analysis. Front Mol Biosci 2014; 1:8;
PMID:25988149; http://dx.doi.org/10.3389/fmolb.2014.00008

[20] Makarev E, Fortney K, Litovchenko M, Braunewell KH, Zhavor-
onkov A, Atala A. Quantifying signaling pathway activation to
monitor the quality of induced pluripotent stem cells. Oncotarget
2015; 6:23204-12; PMID:26327604; http://dx.doi.org/10.18632/
oncotarget.4673

[21] Lezhnina K, Kovalchuk O, Zhavoronkov AA, Korzinkin MB, Zabo-
lotneva AA, Shegay P V, Sokov DG, Gaifullin NM, Rusakov IG,
Aliper AM, et al. Novel robust biomarkers for human bladder cancer
based on activation of intracellular signaling pathways. Oncotarget
2014; 5:9022-32; PMID:25296972; http://dx.doi.org/10.18632/
oncotarget.2493

[22] Spirin PV, Lebedev TD, Orlova NN, Gornostaeva AS, Prokofjeva
MM, Nikitenko NA, Dmitriev SE, Buzdin AA, Borisov NM, Aliper

CELL CYCLE 697

http://dx.doi.org/14744438
http://dx.doi.org/10.1016/S0092-8674(04)00045-5
http://dx.doi.org/10.1038/nature03049
http://dx.doi.org/10.1038/nature03049
http://dx.doi.org/10.1016/0092-8674(93)90529-Y
http://dx.doi.org/10.1016/0092-8674(93)90529-Y
http://dx.doi.org/17379774
http://dx.doi.org/10.1126/science.1139089
http://dx.doi.org/10.1016/j.cell.2007.07.021
http://dx.doi.org/10.1016/j.cell.2007.07.021
http://dx.doi.org/10.1056/NEJMoa050995
http://dx.doi.org/21059241
http://dx.doi.org/10.1186/1745-6150-5-62
http://dx.doi.org/24304892
http://dx.doi.org/10.1093/nar/gkt1266
http://dx.doi.org/10.1093/nar/gkr1161
http://dx.doi.org/24723936
http://dx.doi.org/10.3389/fgene.2014.00055
http://dx.doi.org/10.18632/oncotarget.2548
http://dx.doi.org/10.1371/journal.pcbi.1002375
http://dx.doi.org/10.1371/journal.pcbi.1002375
http://dx.doi.org/10.1093/bioinformatics/bti565
http://dx.doi.org/10.1073/pnas.0506577102
http://dx.doi.org/10.3389/fphys.2013.00278
http://dx.doi.org/25392694
http://dx.doi.org/18586739
http://dx.doi.org/10.1093/bioinformatics/btn142
http://dx.doi.org/20523739
http://dx.doi.org/10.1371/journal.pcbi.1000792
http://dx.doi.org/10.3389/fmolb.2014.00008
http://dx.doi.org/10.18632/oncotarget.4673
http://dx.doi.org/10.18632/oncotarget.4673
http://dx.doi.org/10.18632/oncotarget.2493
http://dx.doi.org/10.18632/oncotarget.2493


AM, et al. Silencing AML1-ETO gene expression leads to simulta-
neous activation of both pro-apoptotic and proliferation signaling.
Leukemia 2014; 28:2222-8; PMID:24727677; http://dx.doi.org/
10.1038/leu.2014.130

[23] Aliper AM, Frieden-Korovkina VP, Buzdin A, Roumiantsev SA,
Zhavoronkov A. Interactome analysis of myeloid-derived sup-
pressor cells in murine models of colon and breast cancer. Onco-
target 2014; 5:11345-53; PMID:25294811; http://dx.doi.org/
10.18632/oncotarget.2489

[24] Aliper AM, Csoka AB, Buzdin A, Jetka T, Roumiantsev S, Moskalev
A, Zhavoronkov A. Signaling pathway activation drift during aging:
Hutchinson-Gilford Progeria Syndrome fibroblasts are comparable
to normal middle-age and old-age cells. Aging (Albany NY) 2015;
7:26-37; PMID:25587796

[25] Makarev E, Cantor C, Zhavoronkov A, Buzdin A, Aliper A,
Csoka AB. Pathway activation profiling reveals new insights into
age-related macular degeneration and provides avenues for thera-
peutic interventions. Aging (Albany NY) 2014; 6:1064-75;
PMID:25543336

[26] Parkin DM, Bray F, Ferlay J, Pisani P. Global cancer statistics, 2002.
CA Cancer J Clin 55:74-108; PMID:15761078; http://dx.doi.org/
10.3322/canjclin.55.2.74

[27] Kim W-J, Bae S-C. Molecular biomarkers in urothelial bladder can-
cer. Cancer Sci 2008; 99:646-52; PMID:18377416; http://dx.doi.org/
10.1111/j.1349-7006.2008.00735.x

[28] Majewski T, Lee S, Jeong J, Yoon D-S, Kram A, Kim M-S, Tuziak T,
Bondaruk J, Lee S, Park W-S, et al. Understanding the development
of human bladder cancer by using a whole-organ genomic mapping
strategy. Lab Investig 2008; 88:694-721; PMID:18458673; http://dx.
doi.org/10.1038/labinvest.2008.27

[29] S�anchez-Carbayo M, Cordon-Cardo C. Applications of array technol-
ogy: identification of molecular targets in bladder cancer. Br J Cancer
2003; 89:2172-7; PMID:14676790; http://dx.doi.org/10.1038/sj.
bjc.6601406

[30] Zabolotneva AA, Zhavoronkov A, Garazha A V, Roumiantsev SA,
Buzdin AA. Characteristic patterns of microRNA expression in
human bladder cancer. Front Genet 2012; 3:310; PMID:23316212;
http://dx.doi.org/10.3389/fgene.2012.00310

[31] Zabolotneva AA, Zhavoronkov AA, Shegay P V, Gaifullin NM,
Alekseev BY, Roumiantsev SA, Garazha A V, Kovalchuk O, Aravin
A, Buzdin AA. A systematic experimental evaluation of microRNA
markers of human bladder cancer. Front Genet 2013; 4:247;
PMID:24298280; http://dx.doi.org/10.3389/fgene.2013.00247

[32] Zhavoronkov A, Buzdin AA, Garazha A V. Borisov NM, Moskalev
AA. Signaling pathway cloud regulation for in silico screening and
ranking of the potential geroprotective drugs. Front Genet 2014;
5:49; PMID:24624136; http://dx.doi.org/10.3389/fgene.2014.00049

[33] Andreev DE, O’Connor PB, Fahey C, Kenny EM, Terenin IM,
Dmitriev SE, Cormican P, Morris DW, Shatsky IN, Baranov PV.
Translation of 50 leaders is pervasive in genes resistant to eIF2 repres-
sion. Elife 2015; 4:e03971; PMID:25621764; http://dx.doi.org/
10.7554/eLife.03971

[34] Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome.
Genome Biol 2009; 10:R25; PMID:19261174; http://dx.doi.org/
10.1186/gb-2009-10-3-r25

[35] Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth
G, Abecasis G, Durbin R. The Sequence Alignment/Map format and
SAMtools. Bioinformatics 2009; 25:2078-9; PMID:19505943; http://
dx.doi.org/10.1093/bioinformatics/btp352

698 A. V. ARTCIBASOVA ET AL.

http://dx.doi.org/24727677
http://dx.doi.org/10.1038/leu.2014.130
http://dx.doi.org/25294811
http://dx.doi.org/10.18632/oncotarget.2489
http://dx.doi.org/25587796
http://dx.doi.org/25543336
http://dx.doi.org/15761078
http://dx.doi.org/10.3322/canjclin.55.2.74
http://dx.doi.org/18377416
http://dx.doi.org/10.1111/j.1349-7006.2008.00735.x
http://dx.doi.org/18458673
http://dx.doi.org/10.1038/labinvest.2008.27
http://dx.doi.org/10.1038/sj.bjc.6601406
http://dx.doi.org/10.1038/sj.bjc.6601406
http://dx.doi.org/23316212
http://dx.doi.org/10.3389/fgene.2012.00310
http://dx.doi.org/10.3389/fgene.2013.00247
http://dx.doi.org/10.3389/fgene.2014.00049
http://dx.doi.org/25621764
http://dx.doi.org/10.7554/eLife.03971
http://dx.doi.org/19261174
http://dx.doi.org/10.1186/gb-2009-10-3-r25
http://dx.doi.org/19505943
http://dx.doi.org/10.1093/bioinformatics/btp352

	Abstract
	Introduction
	Results
	MiRImpact method
	Biosamples
	Experimental design
	Signaling pathway activation analysis


	Discussion
	Methods
	Biosamples
	Mapping of miRs
	OncoFinder and MiRImpact software calculation
	Pathway activation data analysis
	Inspection of literature databases

	Disclosure of potential conflicts of interest
	Funding
	References

