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Abstract

Myriophyllum spicatum, more commonly known as Eurasian watermilfoil

(EWM), is one of the most invasive aquatic plants in North America, causing

negative ecological and economic impacts in ecosystems where it proliferates.

Many control strategies have been developed and implemented to mitigate

EWM growth and spread, although the results are mixed and there is no con-

sensus on lake-specific strategies. Here, we describe the development of a pre-

dictive model using a support vector technique, that predicts the success of

biological pest control using Euhrychiopsis lecontei (the milfoil weevil), a mil-

foil specialist, to reduce EWM in lakes. Such a model is informed by lake char-

acteristics (limnological and landscape) and augmentation strategies. To

develop our predictive model, we performed a metadata analysis from 133 -

published peer-reviewed literature and professional reports of milfoil weevil

augmentation field experiments that contained information on lake character-

istics. The predictive model’s algorithm uses a support vector machine (SMV)

to learn patterns among lake characteristics, along with the recorded augmen-

tation strategy and the reported success of each study, where success is a mea-

sure of EWM change over a season and is recorded in a variety of ways

(e.g., EWM biomass change, EWM percent change, EWM visual change, etc.,).

Overall, the model results suggests that shallower lakes, more frequent weevil

augmentations, and larger weevil overwintering habitat are the most impor-

tant predictors for EWM reduction success by weevil augmentation. Although

watermilfoil weevil augmentation is a promising mitigation strategy, it may

not work for all lakes. However, in terms of suggesting weevil augmentation,

our model is a valuable tool for lake stakeholders and resource managers, who

can use it to determine whether milfoil weevil augmentation, which can be

very costly due to the difficulties in finding and raising milfoil weevils, will be

a useful and sustainable approach to control EWM in their lake community.

Received: 28 May 2021 Revised: 9 December 2021 Accepted: 7 February 2022

DOI: 10.1002/eap.2625

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any

medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

© 2022 The Authors. Ecological Applications published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecological Applications. 2022;32:e2625. https://onlinelibrary.wiley.com/r/eap 1 of 16
https://doi.org/10.1002/eap.2625

mailto:dtwhite@clarkson.edu
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://onlinelibrary.wiley.com/r/eap
https://doi.org/10.1002/eap.2625


KEYWORD S
biocontrol, Eurasian watermilfoil, machine learning, milfoil weevils, predictive modeling,
support vector machine

INTRODUCTION

Eurasian watermilfoil as an aquatic
invasive species and its control

One of the most widespread invasive aquatic plant species
throughout North America isMyriophyllum spicatum, more
commonly known as Eurasian watermilfoil (EWM) (Les &
Mehrhoff, 1999; Parsons et al., 2011; Smith & Barko, 1990).
EWM is one of the many invasive varieties of watermilfoils
that are believed to have been introduced to North America
in the 1940s, following purposeful introduction from
Europe, Asia, and North Africa, with its first reliable record
documented in 1942 (Les & Mehrhoff, 1999). EWM nega-
tively impacts lake ecosystems (Les & Mehrhoff, 1999;
Smith & Barko, 1990), causing reduction of dissolved oxy-
gen, changes in water temperature (Caspers et al., 2009),
and the formation of dense monocultures that push out
native aquatic plants (Smith & Barko, 1990). One of the
most invasive qualities of this plant is its multiple modes of
reproduction (Smith & Barko, 1990). In addition to sexual
reproduction and seed dispersal, vegetative reproduction in
EWM occurs by the formation of new stems at the parent
root mass, and by stem fragmentation (Martin &
Valentine, 2014). Stem fragmentation occurs when pieces of
the parent plant break off and settle at the lake bottom
where they take root and continue growth as a new plant
clone. In addition to undesired ecological effects, EWM cau-
ses negative social impacts, decreasing the quantity and
quality of recreational activities like boating, swimming,
and fishing (Hussner et al., 2017; Schultz & Dibble, 2012),
as well as economic losses due to increased cost of degraded
shoreline land use values (Rockwell, 2003) and lake-front
property devaluation (Olden & Tamayo, 2014).

Much experimental and field work has been done to
implement control strategies to mitigate invasive water-
milfoil growth and spread (Coetzee et al., 2011; Creed &
Sheldon, 1995; Gross et al., 2020; Hussner et al., 2017;
Laitala et al., 2012; Marko & White, 2018). Control strate-
gies incorporate localized methods, such as hand harvesting
and strategic placement of mats (Laitala et al., 2012), as well
as global (i.e., lake-wide strategies) that include mechanical
harvesting (Gross et al., 2020; Hussner et al., 2017), herbi-
cidal treatment (Gross et al., 2020; Hussner et al., 2017;
Marko & White, 2018), and the use of various biocontrols
(McKnight & Hepp, 1995; Newman, 2004). Localized
methods can be useful for small-scale removal but are costly

(in terms of time) and inefficient for large-scale removal.
Global methods target invasive plants but can cause more
harm to native plants than local methods, which can target
just invasives. In addition, global methods can be very
expensive in terms of physical cost, and herbicides may
require additional permits depending on state (Wersal
et al., 2010). Although some control methods have proved
successful in certain lakes, many have not. Here, we address
mitigation of EWM by offering insight into a sustainable
control strategy using biocontrol with a native insect. This
approach is sustainable in terms of being a cost- and labor-
efficient method that does not cause harm to the local
environment.

The sustainable control strategy we analyze is the aug-
mentation (addition of a native species) of an infested water
body with the biocontrol insect, Euhrychiopsis lecontei, com-
monly known as the milfoil weevil (Newman, 2004;
Newman & Biesboer, 2000; Reeves et al., 2008; Sheldon &
Creed, 1995). These weevils are native to North America
and are milfoil specialists, known to preferentially target
EWM (as well as other invasive, hybrid, and native species
of watermilfoil) without causing damage to native plants
(Creed & Sheldon, 1995). Some biocontrols can have
adverse effects on native species, however previous field
studies have shown that native aquatic plants are rarely
used by the milfoil weevil for rearing and feeding and thus
the milfoil weevil does not impact their growth (Sheldon &
Creed, 1995). Adult milfoil weevils can fly, but generally
remain submersed where they lay their eggs in beds of
EWM and the larval instars burrow into EWM tissues
(Newman, 2004). In the winter, milfoil weevils overwinter
in leaf debris until spring (Thorstenson et al., 2013).
Hollowed-out EWM tissues reduce the plants fitness and
reduces its buoyancy (Creed & Sheldon, 1993), making colo-
nization by fragmentation from weevil-impacted plants less
of a concern. Milfoil weevils have been studied in the past
as a biocontrol for EWM, where augmentation in the field
has shown mixed results (Havel et al., 2017; Jester
et al., 2000). In some experiments, augmentation of local
weevil populations through control interventions have
shown reduction in EWM biomass when augmentation tar-
gets existing stands of EWM (Creed & Sheldon, 1993, 1995;
Newman, 2004; Reeves et al., 2008; Sheldon & Creed, 1995).
However, other experiments have shown little to no
change, and sometimes even increases in overall EWM bio-
mass (Jester et al., 2000; Reeves et al., 2008). Most other bio-
controls for EWM are either ineffective or detrimental, as in
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the case of addition of Ctenopharyngodon idella (grass carp)
(McKnight & Hepp, 1995), applications of the fungus
Mycoleptodiscus terrestris, or addition of the native aquatic
midge Cricotopus myriophyll (McKnight & Hepp, 1995).
One limitation of milfoil weevil augmentation, and with
augmentation in general, includes the fact that augmenta-
tion may need to be repeated (Michaud, 2018). For this rea-
son, we provide details of riparian zone restoration in terms
of restoration of milfoil weevil overwintering habitat
(Thorstenson et al., 2013), as an additional part of the aug-
mentation strategy to ensure natural stabilization of milfoil
weevil populations.

Previous mathematical models of aquatic macrophyte
growth have been developed to study both seasonal
(Herb & Stefan, 2003; Miller et al., 2011) and yearly plant
growth (Best et al., 2001). These predictive models are
mechanistic in nature, taking into account how macro-
phytes are dependent on lake characteristics such as
water clarity, available nutrients, water temperature, as
well as the metabolic properties of the plant itself. Miller
et al.’s model focuses on EWM growth, while also taking
into account the effect of milfoil weevils on season bio-
mass (Miller et al., 2011). Other models take geospatial
and field data into account (plant location and lake
boundary), merging this with other model variables that
characterize the growth characteristics of invasive macro-
phytes, like EWM (Buchan & Padilla, 2000; Olson
et al., 2012). In addition to the above predictive models
for growth and spread, other models have been developed
to provide information on the likelihood of an invasive
watermilfoil invasion, based on lake and plant character-
istics. For example, in (Thum & Lennon, 2010), the
authors perform a Principal Component Analysis (PCA)
using a correlation matrix from 17 environmental vari-
ables to identify the major environmental gradients in
lakes across a given test region to gain qualitative insight
into environmental characteristics of lakes occupied by
invasive watermilfoil. Here, we complete an analysis of
the same light, in the sense that we build a model that
provides details on the probability of success of EWM
reduction by weevil augmentation.

To build our predictive model of EWM reduction by
weevils, we first complete a metadata analysis of all mil-
foil weevil augmentation studies to date, to collect infor-
mation on (1) lake characteristics important for EWM
growth and weevil survival and (2) weevil augmentation
strategies. We then use this metadata to run a machine-
learning algorithm that finds connections and patterns
among lake sites that were successful at EWM reduction
and those that were not. First, we discuss the methods
used in data collection, which incorporates the selection
of model predictors (which we call features). Model fea-
tures include data we believe important for determining

weevil success at EWM reduction and weevil survival, in
addition to those related to EWM growth and spread.
Model features also include the augmentation strategy
employed, such as how many weevils are added and how
often they are added. To build our machine-learning
algorithm, a support vector machine (SVM), we train the
model to data based on known outcomes of success
(EWM reduction or increase) called our model target,
where the target is recorded in a myriad of ways
(e.g., measurements of biomass, records of percent
change, or visual inspection). Second, we discuss the
SVM construction, which is used to find the connections
between our defined features and targets. We then test
our model using data that is not incorporated in the
training data set. In particular, we split the data into a
training set (three-fourths of the data), and test set (one-
fourth of the data) randomly. This random splitting
process is repeated 500 times until the model gives a
relatively consistent/constant output for model accuracy
(the final results of each run are averaged). Finally, we
describe the results of our study, which indicates that our
model can be 87% effective at predicting weevil success
or failure in a given lake. Thus, any interested stake-
holder who would want to consider weevils as a sustain-
able control strategy for their lake can implement our
model and base their decision to augment a lake on the
model prediction. In particular, decision making can be
informed by determining the probability of success of a
given augmentation strategy for a given lake.

METHODS

Metadata assembly: Literature search of
peer-reviewed articles and contractor
reports

The overall project goal was to predict whether an aug-
mentation of the milfoil weevil would prove successful
in controlling EWM in a given lake, given known char-
acteristics of the lake and an augmentation strategy. As
stated previously, the definition of success relies not
only on how stakeholders define success, but also on
lake-specific data that is publicly available. As we will
show later in the results section, this second point more
heavily guided us towards our definition of success. To
run our machine-learning algorithm, we collected data
for the set of features related to a lake’s limnological
and landscape characteristics, as well as the weevil aug-
mentation strategy. The collection and sorting of this
data are what we refer to as our metadata analysis.
Such an analysis can be quite laborious since it requires
the collection of data from a variety of sources,
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including peer-reviewed articles, technical reports from
industry, along with reports from local lake associa-
tions. We included all papers and reports that indicated,
at minimum, EWM changes and augmentation strate-
gies, and we removed a handful of papers and reports
where a large portion of data were missing. After
obtaining an initial set of data, we found that the data
collected were often reported differently between stud-
ies (e.g., certain data might have different units, or be
collected at different times in the year, etc.,), and orga-
nizing this data in such a way that the features are con-
sistent such that they can be incorporated into a predictive
model can be tricky. In this section, we describe the collec-
tion of such data, citing sources as well as other tools and
methods used to interpret and record information. We
break the data up into two categories: augmentation fea-
tures and lake characteristics, where lake characteristics
correspond to limnological and landscape features. Limno-
logical characteristics include information such as lake
depth, chemical composition, and Secchi depth, and land-
scape features provide information on the shoreline (habit-
able shoreline for overwintering weevils), as well as
latitude, and lake area.

The metadata analysis resulted in 133 cases of mil-
foil weevil augmentation (these data are summarized
in part in Table 1; the complete table can be found in
White, 2022). Within the 133 cases, 34 lakes through-
out the United States and Canada were represented.

Augmentation features included the number of wee-
vils added, as well as the augmentation treatment fre-
quency (corresponding to the number of times weevils
are stocked). The number of weevils added was reported
in one of two ways: studies either recorded the absolute
number of weevils added to a milfoil bed, or they
recorded the ratio of weevils added to each EWM stem.
The majority of studies (114 of the 133 cases) recorded
absolute number of weevils added, so this measurement
was used in the model. For the remaining 19 cases, we
took the average value of weevils added from all other
studies, which was 5036 weevils per lake, and used this
value for the number of weevils added. As stated later in
the results section, we test our model using (1) all data,
which includes the averaged weevil data for the 19 miss-
ing cases, and (2) only data for which the absolute value
of weevils was recorded. A second model feature describ-
ing the weevil augmentation process is the treatment

TAB L E 1 Table of model features and targets for 13/133 studies (full table provided in White, 2022)

Study site Latitude
Area
(ha)

Maximum
depth (m)

Buffer
zone (km)

Phosphorus
(μg/L)

Secchi
depth (m)

Treatment
frequency

Augmentation
(average no.
weevils)

Biological
success
(Y = 1,
N = 0)

Big Sand Lake (Jester
et al., 2000)

46.06 563.2 19.8 11.3 19.0a 2.9a 1 N/A 1

Eagle Lake
(Jester et al., 2000)

42.70 208.0 3.6 9.3 19.0a 2.4 1 N/A 1

Lower Spring Lake
(Jester et al., 2000)

42.88 41.6 3.3 2.2 44.3a 1.3a 1 N/A 1

Whitewater Lake
(Jester et al., 2000)

42.76 256.0 11.6 5.8 15.0a 1.3a 1 N/A 0

Nancy Lake (Jester
et al., 2000)

46.09 309.8 11.9 14.2 14.6a 4.2a 1 N/A 0

Pearl Lake (Jester
et al., 2000)

44.09 36.8 15.2 1.3 12.3a 5.8a 1 N/A 0

Beaver Dam Lake
(Jester et al., 2000)

45.55 444.8 32.3 13.9 9.9a 4.0a 1 N/A 0

Cedar Lake
(Ward &
Newman, 2006)

44.96 68.0 16.0 2.7 25.0a 2.8, 2.8,
2.5, 2.5

1, 1, 2, 2 N/A,N/A,
NA,N/A

1, 0, 0, 0

Little Bearskin (Havel
et al., 2017)

45.71 74.0 8.1 3.7 20.8, 66.4,
33.1, 20.8,
66.4,33.1

1.8 1 2157,0,0,
2719,0,0

1, 0, 0, 1, 1

Manson Lake (Havel
et al., 2017)

45.56 96.0 16.2 4.5 11.0, 12.6,
14.7, 11.0,
12.6, 14.7

4.8a 1 3013, 0, 0,
2912, 0, 0

0, 0, 0, 0, 0, 1

Note: Metadata analysis for 13/133 studies. Full table of metadata analysis shared here. Information for model target (biological success 0 = failure,
1 = success) and the eight most highly ranked model features, Lake location (name and latitude), area, maximum depth, buffer zone (measure of
shoreline suitable for weevil overwintering), phosphorus (P), Secchi depth, augmentation strategy (number of weevils added), and treatment
frequency.
aCorresponds to estimate values. Where N/A reported, average weevil number 5036 used.
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frequency, defined as the number of times an EWM
patch had been augmented. The number of weevils added
and the treatment frequency for each of the 133 cases
examined are summarized in Table 1.

Limnological features include the lake’s maximum
depth, as well as the features phosphorus and Secchi
depth. Lake depth is an important feature, since deeper
lakes inhibit plant growth as light availability decreases
exponentially with depth. The maximum depth was
recorded for each body of water when available. In two
bays, the maximum depth was not recorded, and was
estimated by using contour maps of lake depth. Specifi-
cally, the depth was calculated by averaging the greatest
contour depth with the contour line adjacent to it.

The features phosphorus and Secchi depth were also
included in our study and provide measures as to how
habitable a lake is for EWM growth. Phosphorus (con-
centrations are listed as μg/L) is generally the primary
limiting nutrient in most freshwaters (Cao et al., 2012).
In general, phosphorus concentrations fluctuate greatly
among bodies of water, and result in ranges of aquatic
macrophyte and phytoplankton proliferation. Secchi
depth is a simple and reliable method to measure the
amount of light penetrating to a certain depth in a lake
due to both water color and turbidity and is measured by
placing a Secchi disk in the water and recording the
depth (in m) that the disk is no longer visible. In most
reports examined, Secchi depths were recorded in varying
years, at varying times throughout the growing season,
and sometimes not the same year as the augmentation
study. In addition, these measurements were often
recorded in multiple locations throughout the body of
water. Whenever data was available for phosphorus and
Secchi depth at multiple locations, averages were taken.
If data for phosphorus concentrations or Secchi depth
were missing in a particular study, then all available data
(data for every study) for phosphorus and Secchi depth
were averaged, and our model was run using (1) all data
(including averages used for missing data), and (2) only
the data where the values for phosphorus and Secchi
depth were known. When all data sets with missing phos-
phorus, Secchi depth, and weevil numbers were removed
from the model, the resulting model included a total of
n = 54 studies. Thus, we ran our model with all 133 data
sets, and with 54 data sets (the first data set we refer to as
“All augments” and the second we refer to as “All
augmentsa”). In future work, if more augmentation stud-
ies are reported, we will develop a model that works to
fill in missing data using more comprehensive missing
data schemes (Little & Rubin, 2002).

Landscape features that describe the terrain sur-
rounding a lake were calculated using the distance draw-
ing tool on satellite images in Google maps. Landscape

features correspond to total shore length, buffer zone
length, and lake surface area, where the buffer zone is
defined as the perimeter of habitable land for milfoil wee-
vils to overwinter. A buffer zone is terrestrial terrain that
contains duff (decaying leaf litter and debris), typically
found below shrubs and forest that affords shelter for
over-wintering weevils and is 3–5 m in breadth
(Thorstenson et al., 2013). Finally, lake surface area was
collected from lake association databases, and when sur-
face area could not be found from such databases, it was
determined using the draw tool in Google Maps.

The final data collected from each study is the change
in EWM, which we use to define the model’s target of
success. As stated previously, due to recorded data com-
ing from different sources, not all EWM changes were
recorded in a similar way. In particular, some reports
included information on percent decreases and increases,
while others gave absolute changes. In addition, most
studies simply indicated if there is an increase or decrease
in EWM. Therefore, when trying to determine connec-
tions between our model features and target, we tested
our model using several different definitions of success,
where each definition is based on how the change in
EWM was recorded. These definitions resulted in five dif-
ferent variables for target success, where the first target
included all augmentation studies, and included the qual-
itative statement of either EWM increase (failure) or
decrease (success) (n = 133, between 34 lakes that
included averaged data, and n = 54 when average data
were removed). The final four targets used quantitative
definitions of success and included EWM stem density
measured as stems/m2 (n = 47, among 11 lakes), EWM
biomass change measured in g/m2 (n = 44, among nine
lakes), EWM percent change in mass from the beginning to
the end of a given growing season (n = 95, among 30 lakes),
and relative abundance of EWM change (n = 50, between
11 lakes). Relative abundance records the change in the per-
cent difference of EWM as compared to native plants,
within a 1-m2 region. Here, both EWM and native plant
density were measured in g/m2. Since native plant density
was typically only recorded at the beginning of a study, we
made a simplifying assumption that native plant density
would not change by the end of the study (i.e., change was
based only on EWM change).

Building a machine-learning algorithm
of milfoil weevil success based on weevil
augmentation studies

Here we describe the methods used to predict the success
of milfoil weevil augmentation at reducing EWM within
a given lake. The overall goal of this modeling approach
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is to provide a tool for stakeholders to predict whether
weevils can be a successful control method to reduce
EWM within a given water body, and if so, to describe an
appropriate weevil augmentation strategy. First, we
describe the machine-learning algorithm by outlining the
details for how we train and validate the model. In addi-
tion, we describe the algorithm used to run our model,
which uses a SVM to classify weevil augmentation stud-
ies as either success or failure.

Our model uses a supervised learning approach to
predict our target, based on a set of input features. We
implement a classification model, where our target takes
on one of two values, success or failure, and the model
features include a list of each lake’s limnological and
landscape characteristics, as well as the weevil augmenta-
tion strategy (i.e., the number of weevils added and the
frequency of additions in a single season). The model
learns (from the training sets) which combinations of
lake characteristics and augmentation strategies are
likely to correspond to a successful biocontrol program.
The model can then use these patterns, by inputting
characteristics of new lakes, to predict the success or fail-
ure of a biocontrol program for a given augmentation
strategy. See Figure 1 for a description of the models util-
ity in developing such future biocontrol programs.

The SVM algorithm

We use an SVM to classify milfoil weevil augmentation
experiments as either success or failure (Géron, 2017).
SVMs are predictive algorithms that are based on sta-
tistical learning frameworks, and work to assign a clas-
sification (here our classes are the target’s success or
failure) to a given input feature set (a group of features
with their values). To make predictions, the SVM is
first trained with example feature sets with known
classifications, by mapping training examples to points
in feature space that maximize the distance between
groups of points with different classifications (our two
target sets of success or failure). Typically, a hyper-
plane defines a separating plane between these two tar-
get sets, where an additional margin (a gap around the
hyperplane), called support vectors, exists between the
two target sets. The margin can be manipulated and
made smaller or larger, so as to best separate these two
target sets. To determine the type of hyperplane used
to separate the data, a kernel is selected, where each
kernel defines (roughly) the shape of the plane that
will separate the target sets. Different kernels include
linear kernels, polynomial kernels, and radial basis
functions RBF (Géron, 2017). For example, the degree/
order of a polynomial is selected when using polyno-
mials to define the hyperplane for the SVM. As an
example, a linear SVM, which is an order 1 polynomial,
uses linear functions to separate target sets. If we only
consider two features, for example the number of wee-
vil augmentations and latitude, the separating hyper-
plane can be a line. Figure 2 describes two variations of
this example, where the hyperplane/line is illustrated
by the thick black line, and the margin (the support
vectors) are described by the dashed black lines. In
many cases, a low degree polynomial, such as a line,

F I GURE 1 A schematic of the models use in future biocontrol

programs. Once we have trained, tested, and validated our model,

we can input feature sets, including a variety of augmentation

strategies, to determine weevil efficacy of Eurasian watermilfoil

reduction (with some probability of success)

F I GURE 2 An example of a two-feature linear support vector

machine (SVM) describing hyperplane (line) that best separates

success and failure. Left image C = 1; right image C = 1000. The

dashed lines are the support vectors that the model attempts to

separate the data with. The SVM with C = 1 has a larger margin of

separation compared to C = 1000. Data is scaled between �1 and 1
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may be too general and under fit the data. Conversely,
if the polynomial degree is too large, the model will
over fit.

SVM hyperparameters

Before running the SVM algorithm, the data for fea-
tures and targets are organized in a matrix, where each
study’s features are stored in a single row, such that
each column represents a single feature across all stud-
ies. The final column of the matrix defines the target of
success or failure, where the data is formatted such that
units for each feature are converted to match. Next, the
kernel is selected and the SVM is implemented by set-
ting the SVMs hyperparameters Gamma and C. Such
hyperparameters are controllable inputs for the model
that change the model behavior. Intuitively, the
Gamma parameter defines how far the influence of a
single training example reaches, with small values
meaning “far” and large values meaning “close.” In
other words, a large value for Gamma gives target
points more weight on the entire separation plane
(which can cause overfitting), while a small value for
Gamma describes the inverse, that is, a single target
point is less likely to change (have an effect on) the
location of the hyperplane. The C parameter trades off
correct classification of training examples against maxi-
mization of the margin (the separation of the support
vectors). A large C prioritizes as few miscalculations as
possible, whereas a smaller margin is accepted if the
decision function is better at classifying all training
points correctly. Conversely, a small C prioritizes find-
ing the hyperplane with the widest margin, even if
some points are misclassified. In other words,
C behaves as a regularization parameter in the SVM.

We choose to use linear and polynomial kernels. Each
of these kernels behaves differently, where there are
slight variations in the hyperparameters. For the linear
model, an array of possible Cs and weights are chosen.
For example, in the linear model, the choices for C are
1 and 10 and the possible weights x are between 0.10 and
0.90 (iterated by 0.10), such that there are two C values
and nine weightings. The targets defined by success have
their C value multiplied by x and the targets defined by
failure have their C value multiplied by 1 � x. Therefore,
the model is trained with the 18 possible permutations of
hyperparameter sets. For polynomial models, an array of
possible Cs, weights, Gamma, and the polynomial degree
are chosen. An SVM was made with each possible per-
mutation of C and weightings, and the SVM with the best
f1 score (described in Model validation) was selected as
the final model.

Model training
The SVM is trained by splitting the data into a training
set and a test set, where the training set is typically bigger
than the test set. The model will know both the feature
sets and target values (success or failure) of the training
set, and it will use the SVM algorithm, with chosen
hyperparameters values as previously described, to find
and define the pattern between the features and targets
for the training set. The test set is then used to validate
the SVM, and is not used in defining/training the model.
Thus, the SVM has no knowledge of a study from the test
set (i.e., it does not know if a study is classified as a suc-
cess or failure). Instead the test set of features will later
be used in model validation, where using the relation-
ships between features and target already determined
during training, the model predicts a target of either suc-
cess or failure. The SVMs were trained using the tech-
nique of cross-validation called Kfold (Géron, 2017). This
method is used to determine how best to split the train-
ing and test data. We split all the rows of data evenly into
K groups (called folds), where we set K equal to 4. The
first fold is used as the test set and the remaining K � 1
folds are the training sets. Cross validation consists of
repeating the above process such that each group/fold is
used as a possible test set. We repeated the process
500 times and averaged the results, where 500 times was
selected because the f1 score varied only by <0.01 after
this point, which is the value we select as a lower
threshold.

Model validation
The model’s strength is evaluated by comparing the
predicted targets to the actual targets. A good model will
consistently predict the correct target and a bad model
will often misclassify the targets. One way to test the
strength of a model is to calculate the number of true
positive (TP), false positive (FP), true negative (TN), and
false negative (FN) results. TP corresponds to the number
of positive examples correctly predicted by the classifica-
tion model, whereas FP corresponds to the number of
negative examples wrongly predicted as positive by the
classification model. Similarly, TN corresponds to the
number of negative examples correctly predicted by the
classification model, and FN corresponds to the number
of positive examples wrongly predicted as negative by the
classification model. In addition to calculating TP, FP,
TN, and FN results, we can calculate the recall R and pre-
cision P, for the same set of simulation results. Recall and
precision are two widely used metrics employed in appli-
cations where successful detection of one of the classes is
considered more significant than the detection of the
other classes (Tan et al., 2014). Here, it is more important
to correctly predict success compared to failure, and so
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we use these metrics in our analysis. Definitions for
R and P are given by Equations (1) and (2), respectively
(Tan et al., 2014). R, defined by Equation (1), is the frac-
tion of the total successes that are labeled correctly. Clas-
sifiers with large recall have few positive examples
misclassified as a negative class. The recall parameter
describes how many lakes with reduced EWM are
accounted for in the model’s predictions of success,
which is the percentage of EWM reductions that the
model is able to predict. The denominator represents the
total successes (i.e., EWM reduction):

R¼ True positive
True positiveþFalse negative

: ð1Þ

P, defined by Equation (2), is the fraction of experiments
the model correctly labels as a success. The higher the
precision is, the lower the number of false positive errors
calculated by the classifier. In this study, given a model
prediction for success, the probability that a decrease in
EWM actually occurs is defined by precision. Stated
another way, precision defines how often the model will
suggest that weevil augmentation in a lake will result in
reduced EWM

P¼ True positive
True positiveþFalse positive

: ð2Þ

The metric f1 score, given by Equation (3), describes the
harmonic mean between P and R. This value is typically
closest to the smallest of the values P and R. Thus, if both
P and R are reasonably large, then the f1 score is
large, too

f1¼ 2
P�R
PþR

: ð3Þ

The best hyperparameters were chosen by training the
data (both features and targets) over an array of hyper-
parameter values and choosing the model that results in
the best f1 score, defined by Equation (3) as the weighted
average of precision P and recall R (0 < f1 score < 1). We
choose this metric for selecting hyperparameters since it
is typically closest to the smallest of the values P and R,
and we get a good indication of accuracy in terms of the
“worst” of P and R. This is, if both P and R are large, then
the f1 score will be large too, close to 1).

Defining model targets
One of the most important and challenging tasks in this
modeling effort is defining the target values as success or
failure. As stated in the previous section, some reports
record quantitative measurements for EWM biomass at

the beginning and end of an augmentation experiment,
while others simply indicate whether biomass is reduced
or not. Thus, we describe multiple definitions of weevil
success, where each definition is based on publicly avail-
able data for a given lake. We tested the SVM against a
target that uses two classes representing success or failure,
marked as 1 and 0, respectively. The target is defined and
tested using two methods, increase/decrease (inc/dec—a
qualitative measurement) and topx (a quantitative measure-
ment). The inc/dec method, using a qualitative measure, is
defined by a statement of EWM decrease or increase by the
end of the study (n = 133, between 34 lakes). The topx
method can only be used for data sets that have quantitative
measures for change in EWM. The quantitative sets were
additionally tested with splits based on the topx% of EWM
decreases. For example, setting topx to 20%, 20% of EWM
targets with lowest EWM were marked as success and the
remaining rows below the split were set to failure. The over-
all goal of testing the top percent splits is to test how the
model responds to predicting extreme changes in EWM.
Since there were few cases with extreme changes of EWM
decrease, the 10%–40% split results were similar for all
quantitative measures (results not shown), and so the split
topx was fixed between 30% and 40% for all quantitative tar-
get studies. The two methods (qualitative and quantitative)
resulted in six model targets, which each depend on the
data for EWM success or failure. The first target, which we
call “All augments,” uses the qualitative measure of success
and failure, and encompasses all of the data we collected
and uses the inc/dec method. The second target is a subset
of “All augments,” called “All augmentsa,” and removes all
averaged data, such that only data recorded in reports is
used. The other four targets, tested with both the inc/dec
method and the topx methods, consist of those using quan-
titative measures of success and failure, including change in
EWM stem density, dried EWM biomass, EWM percent,
and relative abundance of EWM (amount of EWM com-
pared to other natives). Figure 3 provides a descriptive sche-
matic of the full modeling process, from data collection and
filtering to model building, including model training, test-
ing, and validation.

Model reduction and ranking of features

In the first stages of running our SVM, we had selected a
large list of potential model features that we thought
would be important in defining weevil success at reduc-
ing EWM, where a subset of these features are summa-
rized in Table 1. A complete data set that summarizes
this initial set of features is given in the linked Open
Source Spreadsheet. To simplify the model, we performed
feature reduction, a method conducted using a ranking
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technique to simplify the model such that only the most
important features for predicting weevil success at reduc-
ing EWM were used. By removing some features from
the model, not only was the model easier to build
(in terms of computational time), but it’s also more prac-
tical in the sense that less information needs to be known
about a lake and a given augmentation strategy to predict
success or failure. Ranking was completed using a recur-
sive feature elimination (RFE) algorithm that removed
the least important (lowest ranked) feature first
(Géron, 2017). RFE is a wrapper function we applied to
the SVM, in an iterative fashion such that one feature
was removed at each iteration. After each iteration, the
model was retrained with the remaining list of features.
The process was repeated until a minimum feature count
was reached (i.e., here we set that count to eight

features). Similar to model selection, the minimum fea-
ture count was evaluated based on the resulting weighted
f1 score.

RESULTS

In this section, we show results for the model’s f1 score,
precision P, recall R, and accuracy, after training while
performing model reduction and ranking, and then test-
ing our SVM for each of the six model targets that
describe success and failure. Note that each model target
is classified as success or failure based on data recorded
as either (1) an increase or decrease in EWM, (2) EWM
stem density change, (3) EWM biomass change, (4) per-
cent change in EWM, or (5) the change in relative abun-
dance of EWM, as compared to native plants. In addition
to these five targets, we further separated our largest tar-
get set All augments into two subsets where (1a) corre-
sponds to All augments and incorporates all n = 133 data
sets (including averaged missing data), and (1b) corre-
sponds to All augmentsa, and includes only data for
which values are reported, n = 54.

Table 2 summarizes model reduction results, provid-
ing the f1 scores for our largest target set, All augments.
In particular, the first column illustrates an increasing f1
score up to seven or eight features, stabilizing just above
65% for all additional features (results not shown). Thus,
we include eight features in our results for All augments.
For all other target sets studied, there were approximately
four features that were considered “important” (features
1–4, which correspond to latitude, surface area, lake
depth, and buffer zone). In particular, in Table 2, we also
illustrate f1 scores for features 3–8 and you can see that
for all targets except All augments, the f1 scores do not
change after feature 4 (i.e., features 5–8), and in some
cases do not change by much. However, for comparison
across each model target, we select the same eight fea-
tures obtained for our largest target set All augments.

After performing model reduction, we also looked at
ranking the features in terms of importance (i.e., ranking
in terms of those that achieve higher f1 scores), where
1 corresponds to the most important feature. Table 3
illustrates the ranking for the top eight features used in
predicting weevil success at reduction of EWM from the
“all augments” study. These features include lake lati-
tude, surface area, maximum depth, buffer zone, phos-
phorus, Secchi depth, and weevil augmentation strategy.
It is interesting that the top two features for predicting
weevil success, using the largest target set All augments
(shown in column 1 of Table 3), are weevil treatment fre-
quency and maximum lake depth. For the subset All
augmentsa, which removes missing data, weevil

F I GURE 3 A schematic of the data collection process and

filtering (the metadata analysis) in connection with the machine

learning algorithm. Data is added to a spreadsheet and filtered

(lakes with data missing are removed). Once filtered data is

recorded as either an input (a model feature such as lake

characteristics or augmentation information) or output (model

targets of success = 1 or failure = 0). Then, model features and

targets are placed into the machine learning algorithm (which uses

a support vector machine (SVM) classification algorithm) where

data is randomly split into training sets (three-quarters of the data)

and training sets (one-quarter of the data) many times. The model

is then validated on a set of known targets for which it was not

trained
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treatment frequency and buffer zone are the top two fea-
tures (shown in column 2 of Table 3). In both these stud-
ies, the absolute number of weevils added had less of an
impact on predicting weevil success as compared to the
number of augmentations, which ranked seven out of
eight features for All augments, and five out of eight fea-
tures for All augmentsa. This result suggests that it is
more important to consider the number of times one aug-
ments a lake, rather than the absolute number of weevils
added at any given time. In particular, the more times
weevils are stocked in a single season, the better the

outcome of success at EWM reduction. In addition, for
the smaller target set All augmentsa, the top two features
include augmentation frequency and buffer zone, such
that lakes with lakes with larger weevil habitat will have
a better outcome of success. As weevils need to overwin-
ter to be able to naturally sustain their populations, this
result makes sense. In addition to looking at the average
ranking of parameters, it is useful to look at their aver-
ages and variance. Figure 4 describes a box and whisker
plot for the ranking of the eight model features across all
six target sets (Figure 4a) as well as across five targets,

TAB L E 2 The f1 scores for eight highest ranked features for all five target sets

Feature no. All augments

All augmentsa

(averaged/missing
data removed)

EWM stem
density
change

EWM
biomass
change

EWM
percent
change

Relative
abundance
of EWM

3 60.09 � 0.19 65.64 � 0.26 44.32 � 0.36 65.47 � 0.28 46.39 � 0.25 54.86 � 0.28

4 63.22 � 0.17 65.39 � 0.27 48.03 � 0.40 68.22 � 0.30 49.91 � 0.28 56.06 � 0.30

5 63.88 � 0.18 65.15 � 0.27 49.39 � 0.40 69.11 � 0.31 51.23 � 0.28 55.65 � 0.30

6 64.74 � 0.17 65.07 � 0.27 49.51 � 0.40 69.19 � 0.31 52.54 � 0.28 56.33 � 0.30

7 65.18 � 0.17 65.05 � 0.27 49.48 � 0.40 69.12 � 0.30 52.61 � 0.27 56.89 � 0.32

8 65.15 � 0.17 64.99 � 0.27 49.41 � 0.40 69.07 � 0.30 52.69 � 0.26 57.16 � 0.31

Note: f1 scores for eight highest ranked features for all five target sets. The top eight features are defined by our largest target set, which includes qualitative
information on Eurasian watermilfoil (EWM) increase/decrease (any increase is classified as a failure, and any decrease is classified as a success). Overall, each
target set showed a large drop in f1 score between three and four features. In addition, the f1 score only started to increase after the first few features were

removed (results not shown).
aData removed from adjusted “All augments” is averaged phosphorus, Secchi depth, and number of weevils, which gives us a total of n = 54 feature sets.

TAB L E 3 Ranking for eight highest ranked features for all six target sets

Targets of success

Features
All
augments

All augmentsa

(averaged/missing
data removed)

EWM stem
density change

EWM
biomass
change

EWM
percent
change

Relative
abundance
of EWM

Latitude 4.1 5.1 6.3 1.3 1.5 1.1

Area (ha) 1.7 6.1 1.3 3.9 1.2 1.3

Maximum depth (m) 1.2 2.4 2.3 4.9 1.0 1.0

Buffer (km) 2.0 1.7 1 1.5 2.7 3.5

Phosphorus (μg/L) 2.5 7.1 1.6 2.1 2.0 2.1

Secchi depth (m) 1.4 3.2 3.3 2.9 1.0 2.7

Treatment frequency 1 1 4.3 1 1 4.4

Average no. weevils 3.2 4.1 5.3 5.9 3.6 1.7

Note: Ranking of model features from most important (ranked as 1) to least important. The top two highest ranked model features are shown in boldface type
in each of the columns (describing the highest ranked features in each target set). It is shown that four out of six of the targets tested show that augmentation
treatment frequency (how many times weevils are added) is the most important predictor of weevil success. In addition, three out of six of the targets tested
showed that maximum lake depth was an important predictor of weevil success. In addition, two out of six target sets showed buffer zone as one of the most
important predictors of weevil success. The model we select as our primary target is the “All augmentsa” target shown in the first column, which illustrates that

treatment frequency and buffer zone are the top two most important features needed to predict weevil success.
aData removed from adjusted “All augments” is averaged phosphorus, Secchi depth, and weevil number, which gives us a total of n = 54 feature sets.
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where we remove the largest target set that used averaged
data (Figure 4b).

To test the strength of our model, we tested and com-
pared the SVM prediction results to known results of suc-
cess or failure. Tables 4 and 5 show the SVM results for
each testing strategy 1–6 for the linear and polynomial
SVM, respectively, where each table summarizes the

models f1 score, precision P, recall R, and accuracy. As
milfoil weevil augmentation can be expensive, we treated
precision as the most important parameter to indicate
model success, in the sense that models that have higher
percentages of false positive results (resulting in a lower
P) would be a less desirable model result. In a similar
light, recommending weevil augmentation that could be
beneficial is less important in the sense that we are not
wasting resources (i.e., a false positive is less desirable
than a false negative).

From Table 4, we conclude that the second target
strategy All augmentsa (the subset of All augments) is the
best for predicting weevil success in the sense that (1) it
has a small number of false positives compared to false
negatives; (2) it has the highest recall (aside from stem
density, which has the highest false positive count, so we
exclude it); (3) it has the highest precision; and (4) it has
the second highest f1 score (the target “EWM biomass
change” has the highest f1 score, but has a very low pre-
cision, so we exclude that target, also). In Table 5, we
show the results of our polynomial SVM. As the percent-
age of false positive results are high in each target
(except for the target “Change in the relative abundance
of EWM”, which has extremely low precision and
recall), shown by the values bolded in Table 5, we
decide that our linear SVM does a better job at
predicting weevil success, as compared to the higher
order polynomial model.

DISCUSSION

Control and management of aquatic invasive species is
one of the most important issues facing lake communi-
ties, due to the fact that such invasive species have nega-
tive impacts on both the lake’s natural ecosystem (Les &
Mehrhoff, 1999; Smith & Barko, 1990) and the local econ-
omy (Olden & Tamayo, 2014; Rockwell, 2003). With vari-
able success at EWM reduction using current management
strategies, in addition to a lack of understanding of the
long-term ecological and economic impacts of such inva-
sions, it is becoming increasingly important to determine
sustainable mitigation strategies that are cost effective, eas-
ily implemented, and cause little to no harm to the natural
environment. In this study, we focus on understanding the
sustainable approach of augmentation using the milfoil spe-
cialist, the milfoil weevil, as a biocontrol for EWM. In par-
ticular, we developed a predictive model to determine if
EWM reduction via weevil augmentation will be successful
in a given lake. Such a predictive model can be used by lake
community stakeholders to determine if weevil augmenta-
tion is an appropriate EWM mitigation strategy for a given
lake community.
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F I GURE 4 Box plot of feature ranking. Here, ranking of

features 1 through 8 across 2a: All target sets, and 2b: Target sets

excluding “All augments” where missing data is averaged. In each

plot, the red line corresponds to the mean, the blue box to the total

variation in the data, the black lines to the standard deviation, and

red crosses to outliers. Here, we see that in both cases, treatment

frequency, lake area, and buffer zone are ranked in the top four of

eight features (features are lake location (latitude), area, maximum

depth, buffer zone (measure of shoreline suitable for weevil

overwintering), phosphorus (P), Secchi depth, augmentation

strategy (number of weevils added), and treatment frequency.

However, in 2a, lake depth in also ranked in top four, whereas in

2b latitude is ranked in the top four
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Field reports that studied EWM reduction via weevil
augmentation were mixed in the sense that there were no
clear indicators as to why some augmentations were suc-
cessful while others were not (Havel et al., 2017; Jester
et al., 2000; Reeves et al., 2008). In particular, there was
no obvious connection or pattern between lakes that
showed weevil success at reducing EWM. Here, we devel-
oped a model, using machine learning techniques, which
helped us to determine those connections and patterns.
In particular, we simulated a classification SVM that pre-
dicts a target of success or failure based on a set of input
features, which include lake characteristics such as lake
latitude, surface area, maximum depth, buffer zone,
phosphorus, Secchi depth, and the weevil augmentation
strategy. We used six targets of success, all of which
included some measure of EWM decrease or increase,
representing success or failure, respectively.

In order to define each target set, and to determine
the features listed in Table 1 (those features used in our
predictive model), we completed a metadata analysis that
consisted of a total of 133 cases collected from 13 studies
and 34 lakes. Many of our initial feature ideas did not
end up in our final predictive model, due to the fact that
(1) data for a wanted feature was missing or incomplete
or, (2) after feature ranking, features ranked much lower
than the eight recorded. Some features that we collected
that did not go into the final analysis were shore length,
wetland, open land, average depth, chlorophyll concen-
tration, pH, panfish populations (known to eat milfoil
weevils (Ward & Newman, 2006), as well as the start and
end month of the study. Features that ranked low
included shore length, wetland, open land, and average
lake depth. Riparian wetlands include all shorelines adja-
cent to any wetlands of the body of water and open land

TAB L E 4 Model outputs for linear SVM for all model targets

Targets of success
(across) versus
model validation
parameters (down)

All
augments

All augmentsa

(averaged/missing
data removed)

EWM stem
density change

EWM
biomass change

EWM percent
change

Relative
abundance
of EWM

Accuracy 66.48 � 0.10 67.41 � 0.14 57.74 � 0.15 76.11 � 0.12 58.21 � 0.14 64.31 � 0.18

False negative 24.72 � 0.10 28.77 � 0.09 4.42 � 0.05 21.58 � 0.09 34.37 � 0.12 27.99 � 0.10

False positive 8.80 � 0.08 3.81 � 0.13 37.84 � 0.14 2.31 � 0.08 7.41 � 0.10 7.70 � 0.16

Precision 72.62 � 0.20 86.90 � 0.46 57.84 � 0.10 33.97 � 0.91 60.27 � 0.59 26.00 � 0.78

Recall 47.42 � 0.18 42.92 � 0.21 92.19 � 0.09 14.15 � 0.43 24.76 � 0.27 13.2 � 0.39

f1 score 65.04 � 0.10 64.90 � 0.15 49.16 � 0.23 69.61 � 0.17 52.82 � 0.18 57.69 � 0.19

Note: Results for linear SVM model. For each of the targets tested, we can see that false positives are kept at a minimum (are low) for every case except that of
stem density (the lowest value between false negative and false positive is shown in boldface type for each target). In addition, we can see that the “All
augments” and adjusted “All augmentsa”, which included n = 54 data sets with missing data for phosphorus, Secchi depth, and weevil numbers removed.

Results show similar trends in model accuracy and f1 score and recall. However, there is a significant increase in model precision, and a significant decrease in
FP. This results in a better/more accurate model overall.
aData removed from adjusted “All augments” is averaged phosphorus, Secchi depth, and number of weevils, which gives us a total of n = 54 feature sets.

TAB L E 5 Model outputs for polynomial SVM for all model targets

Targets of success
(across) versus
model validation
parameters (down)

All
augments

All augmentsa

(averaged/missing
data removed)

EWM stem
density change

EWM biomass
change

EWM
percent
change

Relative
abundance
of EWM

Accuracy 64.95 � 0.14 65.60 � 0.20 57.20 � 0.14 69.69 � 0.24 63.36 � 0.19 67.40 � 0.13

False negative 13.54 � 0.10 18.24 � 0.14 4.26 � 0.03 12.64 � 0.15 17.74 � 0.13 28.48 � 0.09

False positive 21.52 � 0.11 16.18 � 0.16 38.54 � 0.14 17.67 � 0.20 18.90 � 0.13 4.12 � 0.10

Precision 61.04 � 0.14 67.60 � 0.26 57.43 � 0.09 42.78 � 0.53 59.87 � 0.22 32.39 � 0.89

Recall 71.17 � 0.21 64.30 � 0.29 92.41 � 0.06 50.90 � 0.66 61.12 � 0.30 11.81 � 0.34

f1 score 64.79 � 0.15 65.25 � 0.21 48.20 � 0.22 70.22 � 0.24 63.25 � 0.19 59.58 � 0.17

Note: Results for polynomial SVM model (polynomial of order 3). In this particular model, the percentage of false positives is higher than for the linear model,
so we stick with our linear SVM, as one of the goals of our decision-making process is to minimize false positives (i.e., it’s more costly (in terms of time and
money) to suggest weevil augmentation in a lake where it is likely not to work then it is to not prescribe weevil augmentation in a lake where it could work.
aData removed from adjusted “All augments” is averaged phosphorus, Secchi depth, and number of weevils, which gives us a total of n = 54 feature sets.
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includes any shorelines with <5 m of forested land,
including docks and shorelines containing mostly rocks
and beaches. Both types of land are not suitable for wee-
vil overwintering, so it makes sense that these features
ranked lower at predicting weevil success. Features that
had a lot of missing data included fish population infor-
mation, chlorophyll concentration, water pH, and month
of augmentation study. Of those features we removed
from the study, we feel that the panfish population size
and the month at which the augmentation study started
are most important for future consideration, in the sense
that no other features used in the current version of our
model are linked to these two features. We suggest that
average depth ([lake volume]/[lake area]), and chloro-
phyll concentration correlate with physical and chemical
features recorded and used in our model, such as maxi-
mum lake depth (Neumann, 1959) and phosphorus con-
centration (Quinlan et al., 2021), respectively. We should
also point out that we initially described buffer zone
length in two ways: by measuring the absolute buffer
length zone (in m), and the percent buffer zone, mea-
sured as a percentage of the total shore length that is ade-
quate for weevil overwintering. We had initially thought
that the second measure (percent buffer zone) might be
ranked higher than absolute buffer zone length, but this
was not the case. Percent buffer zone results were almost
identical to absolute buffer length (results not shown),
thus we kept absolute buffer length as the primary buffer
zone feature.

Performing feature reduction helped to optimize the
number of input features required to predict EWM reduc-
tion success or failure, in addition to ranking features in
terms of importance (1 being the best predictor of success
or failure). The results of feature reduction and ranking
indicated that eight features were required for the large
qualitative study (the All augments target), while four or
less were required for all other studies (the five other tar-
gets). This result helped to simplify the original model,
which consisted of over 20 model features, in terms of
computational speed as well as ease in everyday practice
(less data needs to be known about a lake than originally
assumed). In order to compare f1 scores, precision, and
recall across all target sets, we kept all eight features for
each model, including lake latitude, surface area, maxi-
mum depth, buffer zone length, phosphorus concentra-
tion, Secchi depth, number of weevils added, and the
number of weevil applications. Lake latitude is related to
temperature, such that lakes at higher latitudes tend to
be colder. EWM growth rates are directly correlated with
lake temperature, such that EWM grows better and faster
in warmer environments. Although we might expect
more EWM in warmer lakes, we know that weevils also
grow better in warmer water (Mazzei et al., 1999). In that

case, warmer lakes might also provide a larger EWM hab-
itat for weevils to damage. Overall, this dynamic inter-
play between EWM growth and weevil success at
damaging EWM is not straightforward to quantify
highlighting the importance of our modeling approach.
Buffer zone is also shown to be important at predicting
weevil success. As milfoil weevils require a place to over-
winter, it makes sense that lakes with larger buffer zones
encourage weevil overwintering, and hence are likely to
lead to success at reducing EWM growth (Thorstenson
et al., 2013). The water quality parameters such as phos-
phorus and Secchi depth also rank highly for predicting
weevil success. Like lake temperature, it’s not entirely
straightforward to predict whether low versus high
Secchi depth would be a better indicator of weevil success
at EWM reduction. In particular, turbid lakes with low
Secchi depth often inhibit the growth of EWM since
murky water inhibits light penetration at deeper levels
(Jones et al., 2012; Smith & Barko, 1990). In Table 1, a
low Secchi depth of 1.8 m is recorded for Bearskin Lake,
indicating turbid or highly colored water. However, for
the five sites tested in that lake, three showed success
and two resulted in failure. Finally, it is shown that the
weevil augmentation strategy is an important predictor of
weevil success (both the number of weevils added and
the frequency of augmentations). In particular, stocking
more weevils and performing multiple stockings in a sin-
gle season results in a better outcome of EWM reduction
success. This result is an important one, since our work
looks to define optimal EWM control strategies in terms
of developing weevil augmentation programs.

In terms of ranking, there is no single most highly
ranked feature across all model targets. However, from
the average rankings given in Table 3, we see that both
maximum lake depth and treatment frequency
(as opposed to the absolute number of weevils added) are
the best two predictors for each model (better than any
other feature pair). This result suggests that light attenua-
tion, when shortwave radiation from the sun is attenu-
ated by the water (Herb & Stefan, 2003), is one of the
most important predictors of success, such that shallower
lakes might be more conducive to weevil augmentation
than deeper lakes, in addition to more frequent weevil
augmentations (stocking per season). Previous work
looking a weevil survival fitness has shown that weevils
do better in shallow water, which is consistent with the
results we have found here (Newman, 2004; Parsons
et al., 2011). These authors attribute wave shelter, higher
temperature, predation refuge (but not light), are likely
contributing factors to weevil success in smaller lakes. In
addition, the modeling work by Miller et al. (Miller
et al., 2011) has shown diminishing returns between
single-season stockings of weevils and EWM control
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efficacy. That is, past 50 weevils added per season, the
reduction in biomass as described by the models simu-
lated biomass peak at the end of season is negligible. This
result is consistent with our results in the sense of defin-
ing a successful weevil augmentation program. That is,
one should consider the treatment frequency as a better
indicator of success than the number of weevils added.

In addition to average model ranking, we illustrate
results using a box and whisker plot in Figure 4, to high-
light averages and variances in the feature ranking
between all target sets. For the All augments target set, in
addition to lake depth and treatment frequency, lake sur-
face area and buffer zone are ranked among the top four
features when comparing across all target sets. From this
perspective buffer zone and treatment frequency, which
correlate to weevil survival, in addition to lake surface
area, which might correlate to the size of an EWM patch
and/or the distance to weevil overwintering sites (lakes
with smaller areas are more successful) might be the best
long-term predictors of weevil success at reducing EWM.

The results from the SVM simulation showed that a
linear kernel in the SVM outperformed that of the poly-
nomial kernel. In general the two models had similar f1
scores (described by Tables 4 and 5, respectively), how-
ever the linear model had a lower false positive rate, as
compared to the polynomial model. The low false posi-
tive rate is important because false positives represent the
model suggesting failure of weevil augmentation in a
lake. A high false positive rate would be a worst-case out-
come for a predictive model like ours, in the sense that
we would suggest weevil augmentation in a situation that
would waste time and money. Comparatively, the linear
model showed higher false negatives, but this simply rep-
resents a missed opportunity to reduce EWM and is a
more acceptable mistake in the sense that one does not
waste time and resources. However, the focus on mini-
mizing false positives by choosing the linear model
means that the model is less useful for all lakes; this is
seen by the low recall of 43% for All augmentsa, meaning
that only half of the lakes that could benefit from weevil
augmentation are recognized by the model.

A clear model limitation is the amount of publicly
available data. Here, we have worked to compile the most
complete data set of weevil augmentation reports, which
includes 133 cases among 34 lakes. As many of the
reports were completed independently from each other,
data was often measured or recorded in different ways. In
addition, many cases were missing data that we initially
thought important for predicting weevil success. The
additional data that we feel would improve our study, in
the sense that these features are not correlated with any
other model features used in the current model, are the
month of weevil augmentation, as well as panfish

population density. Panfish are expected to be found in
most, if not all, lakes in our study. Fishless lakes are rela-
tively rare in this region and, when they exist, are either
ephemeral (e.g., vernal pools), so shallow (maximum dep-
th <4 m; Fang & Stefan, 2000) that winter fish kills due to
hypoxia occur during ice cover, they are acidic, or are high
elevation lakes where steep slopes prevent colonization by
fish (Schilling et al., 2008). Since panfish are the primary
predators for weevils (Ward & Newman, 2006), knowledge
of their abundance in the lakes of the database of 133 cases
weevil augmentations would be useful.

A second limitation also ties into data availability. In
particular, we believe that some of our quantitative defi-
nitions of success (like overall biomass change, or change
in species abundance), would give a more accurate
description of weevil success at EWM reduction. How-
ever, each of these target sets had only n = 44 and n = 50
cases for each, respectively, as compared to the qualita-
tive target of All augments, for which n = 133 cases. In
future augmentation studies, it is important for individ-
uals to measure EWM increase or decrease in a quantita-
tive manor, such as dried mass or stem density, so that
(1) data can be more accurately compared across lakes
and (2) more data is available to recalibrate (validate)
and test our model.

In addition to the above-mentioned limitations of our
model, it would be useful to do a more in-depth study of
the correlation between a lake’s buffer zone to post-
augmentation success. In many of the studies looked at,
multi-year surveying was not completed to test for suc-
cess in the years that follow an augmentation. Since most
of our studies record data over one growing season, it
could be the case that buffer zone might rank more
highly if we consider post-augmentation success in our
overall definition of success. We would recommend that
any groups completing augmentation studies complete
surveys in the years that follow and make this data avail-
able for future model extensions. In addition to this, we
would recommend that in tandem to recording absolute
numbers of weevils added, that individuals record wee-
vils per stem (as some studies have done). This measure-
ment is likely to prove more useful than absolute weevil
numbers as it gives us information about the number of
weevils added relative to the size of a milfoil patch.

Although watermilfoil weevil augmentation is a
promising mitigation strategy, it may not work for all
lakes. However, results here show that, regardless of the
target used in the model development, weevil frequency,
buffer zone, lake depth, and lake surface area, are the
most important indicators in weevil success. In particu-
lar, augmentation programs on lakes that use multiple
augmentations and have 1arge buffer zone for weevils to
overwinter will be more successful. It should be noted

14 of 16 WHITE ET AL.



that, with proper training and funding, lakes with little to
no buffer zones can be created/restored by reconstructing
shoreline around a lake. Our results also indicate
shallower lakes and those with smaller surface areas, are
likely to be more successful for weevil augmentation pro-
grams. Shallow lakes have already been described as being
more successful habitats for weevils (Newman, 2004;
Parsons et al., 2011), and we suggest small surface areas
could correspond to smaller traveling pathways to weevil
overwintering sites.

In terms of suggesting weevil augmentation, our lin-
ear model’s precision score is around 87% (using All
augmentsa as the model target). As false positives are
undesirable in the sense that we do not want to suggest
weevil augmentation unless we have some level of cer-
tainty of success (because it can be expensive in terms of
cost and time; Jester et al., 2000), we suggest that this
model, because of its low false positive outcome relative
to false negatives, is a reasonable model for testing weevil
augmentation outcomes. Other sustainable approaches
such as small-scale hand harvesting and strategic place-
ment of benthic mats in conjunction with weevil aug-
mentation, may prove the most sustainable approach to
biocontrol of EWM (Hussner et al., 2017; Laitala
et al., 2012; Marko & White, 2018; Newman, 2004).
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