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Ion channels/pumps are essential regulators of organ homeostasis and disease. In the 
present review, we discuss the role of the mechanosensitive cation channel, transient 
receptor potential vanilloid 4 (TRPV4), in cytokine secretion and pulmonary inflammatory 
diseases such as asthma, cystic fibrosis (CF), and acute lung injury/acute respiratory 
distress syndrome (ARDS). TRPV4 has been shown to play a role in lung diseases 
associated with lung parenchymal stretch or stiffness. TRPV4 indirectly mediates hypo-
tonicity-induced smooth muscle contraction and airway remodeling in asthma. Further, 
the literature suggests that in CF TRPV4 may improve ciliary beat frequency enhancing 
mucociliary clearance, while at the same time increasing pro-inflammatory cytokine 
secretion/lung tissue injury. Currently it is understood that the role of TRPV4 in immune 
cell function and associated lung tissue injury/ARDS may depend on the injury stimulus. 
Uncovering the downstream mechanisms of TRPV4 action in pulmonary inflammatory 
diseases is likely important to understanding disease pathogenesis and may lead to 
novel therapeutics.

Keywords: transient receptor potential vanilloid 4, ion channels, asthma, pulmonary vascular disease, acute 
respiratory distress syndrome

inTRODUCTiOn

Ion channels and pumps play multiple important roles in cell homeostasis (1). They function to 
allow passive, agonist-induced, or voltage-dependent flux of specific ions in and out of the cell  
(1, 2). Dysregulation of channel function and/or expression can lead to organ dysfunction and 
disease (1–3). Recent studies have shown that a transient receptor potential (TRP) channel fam-
ily member, transient receptor potential vanilloid 4 (TRPV4), is implicated in inflammatory lung 
diseases such as asthma, cystic fibrosis (CF), acute lung injury/acute respiratory distress syndrome 
(ARDS), and pulmonary fibrosis (4–10). In fact, these studies show that TRPV4 can regulate inflam-
matory cytokines that play key roles in orchestrating lung tissue homeostasis and inflammatory 
lung disease (4, 7, 10–14). Dysregulation of cytokines leads to alterations in cell–cell interactions, 
lung tissue remodeling, and repair (15). Regulating cytokine secretion through the modulation of 
ion channels such as TRPV4 may mediate inflammatory lung diseases. Therefore, TRPV4 may be a 
potential target for lung disease pathogenesis (16). This review summarizes and integrates the data 
from our laboratory and others to further the understanding of the TRPV4–cytokine interaction in 
pulmonary inflammation.
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THe TRPv4 CHAnneL

Intracellular calcium is tightly regulated in a spatiotemporal 
manner through a system of ion channels and membrane pumps 
(17). One such channel is TRPV4, a transmembrane (TM) 
cation channel of the TRP superfamily (18). TRPV4 is an 871 
amino acid protein that has 6 TM domains, an ion pore located 
between TM5 and 6, an NH2 terminal intracellular sequence with 
several ankyrin-type repeats, and a COOH-terminal intracellular 
tail (19, 20). Both the NH2 and COOH termini interact with 
signal kinases, other molecules [e.g., nitric oxide (NO)], and 
scaffolding proteins (21). The intracellular tails contain several 
activity-modifying phosphorylation sites. TRPV4 is sensitized 
and activated by both chemical [5,6-epoxyeicosatrienoic acid 
(EET) and 4 alpha-phorbol 12,13-didecanoate (4-αPDD)] and 
physical stimuli (temperature 27–35°C, membrane stretch, and 
hypotonicity) (22–25). TRPV4 is ubiquitously expressed in many 
cell types in the respiratory system. In the setting of pulmonary 
inflammation, TRPV4 has been found to be highly expressed and 
upregulated in airway smooth muscle, vascular endothelial cells, 
alveolar epithelial cells, and immune cells such as macrophages 
and neutrophils (12, 16, 21, 26–28). TRPV4 has been implicated 
in the pathogenesis of asthma, CF, and sterile and infection-
associated ARDS (4–10, 29).

THe ROLe OF TRPv4 in inFLAMMATORY 
LUnG DiSeASeS

Asthma
Asthma is a chronic lung disease characterized by airway 
inflammation and remodeling, excess bronchial secretions, and 
smooth muscle hypertrophy and contraction leading to airway 
narrowing (bronchoconstriction). Recent work shows that 
TRPV4 mediates airway wall thickness, goblet cell recruitment, 
collagen expression, fibrotic airway remodeling, and increased 
expression of transforming growth factor-β (TGF-β) in a house 
dust mite (Dermatophagoides farinae) mouse model of asthma 
(30). The authors also show that TRPV4 mediates TGF-β-
dependent myofibroblast differentiation in vitro through the ras 
homolog gene family member A (RhoA), p38, and PI3Kα (30). 
In vitro exposure of airway smooth muscle or tracheal rings to 
hypotonic solutions causes smooth muscle cell contraction, and 
some asthmatic patients are hypersensitive to this stimulus. To 
that end, it has been found that small nucleotide polymorphisms 
in the G allele in the coding region and 3′ flanking region of the 
TRPV4 gene, as first identified in COPD, are associated with a 
greater reduction in pulmonary function after hypotonic saline 
administration (8, 31). Interestingly, the calcium and contractile 
response of smooth muscle cells to hypotonic saline involves 
interactions between the cysteinyl leukotriene pathway and 
TRPV4 (12, 32). These findings suggest that downregulation 
of TRPV4 may be a therapeutic target in some etiologies and 
genetic variants of asthma. Of note, different TRPV4 activa-
tion stimuli beyond hypotonicity utilize different pathways 
for TRPV4 activation. For example, hypotonicity induces 
TRPV4 activation through phospholipase A2 (PLA2)/P450 

epoxygenase-dependent generation of EETs, while heat and 
4αPDD are PLA2/P450-independent (25). Further study of the 
mode of TRPV4 activation in individual diseases would support 
disease-specific, pathway-targeted therapy. While asthma is an 
inflammatory disease, there is no current evidence linking Th2-
type cytokines and TRPV4 in the pathogenesis of asthma. Hence, 
this is an avenue for future studies.

Cystic Fibrosis
Cystic fibrosis is characterized by a mutation in the cystic fibrosis 
transmembrane conductance regulator (CFTR), a membrane-
based chloride channel, which initially causes dehydration of the 
airway surface liquid thereby increasing susceptibility to bacte-
rial and fungal infections (e.g., Pseudomonas, Staphylococcus, 
Burkholderia, atypical mycobacterium) (33). TRPV4 interacts 
with CFTR on several levels. TRPV4-dependent calcium influx 
in response to hypotonicity is reduced in human CF epithelial 
cells (34). Furthermore, other hypotonicity-induced TRPV4 
chemical activators (5,6-, 8,9-, 11,12-, and 14,15-EET) and their 
metabolites (5,6 DHET) have been measured in the sputum 
of CF patients (10). Although the current consensus suggests 
that dehydration of airway mucous is the predominant cause 
of impaired mucociliary clearance in CF, recent considerations 
have been put forth to increase ciliary function or ciliary beat 
frequency (CBF) as a means to improve mucociliary clearance 
(35, 36). Concordantly, TRPV4-deleted tracheal epithelial cells 
have decreased CBF in response to ATP, 4αPDD, and tempera-
ture, whereas CBF in response to hyperviscosity was similar in 
wild-type (WT) and TRPV4 deleted cells. These data suggest that 
TRPV4 agonism might increase CBF; however, the effects on CF 
prognosis remain to be determined (37).

The pathogenesis of CF is also characterized by cytokine-
mediated airway inflammation. Recently, both cytokines/
chemokines and lipid mediators secreted from epithelial cells 
have been identified as key components in the inflammatory 
process. In this regard, TRPV4 activation induces epithelial cell 
secretion of pro-inflammatory cytokines/chemokines and active 
lipid mediators (e.g., IL-8, cytosolic PLA2, prostaglandin E2, 
NF-κB, AA, etc.) in response to lipopolysaccharide (LPS) (10). 
Secretion of IL-8/KC, in both bronchial epithelial cells and in 
intact mice lungs in response to TPRV4 activation, was increased 
upon inhibition of CFTR (10). These data demonstrate that 
TRPV4 has pleotropic effects on CF pathogenesis. Further study 
of the individual molecular pathways downstream of TRPV4 in 
CF may identify selectivity in the TRPV4 responses that can then 
be marshaled for therapeutic intent.

ACUTe LUnG inJURY/ARDS

Acute respiratory distress syndrome is a syndrome characterized 
by patchy lung inflammation along with cytokine release leading 
to alveolar space edema, exudate, and collapse. The pathogen-
esis of ARDS is complex; it is characterized by endothelial and 
alveolar epithelial injury followed by recruitment and accumula-
tion of inflammatory cells in the injured alveolus (38). ARDS 
is a consequence of non-infectious (trauma, hemorrhage, lung 
ventilator stretch) or infectious (sepsis, pneumonia) causes (39). 
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As the biological processes that underlie the lung injury and 
their molecular drivers are not fully understood, medical 
therapy directed at the lung inflammatory response has yet to 
successfully modify the course of ARDS. Experimental animal 
and patient studies demonstrate the lung injury and resolution 
phases of ARDS are mediated through a complex orchestration of 
cytokines/chemokines (e.g., IL-1β, TNFα, IL-8, IL-6, and IL-10) 
(40–44). Studies show that both sterile (e.g., ventilator-induced 
stretch) and infectious [e.g., intra-tracheal (IT) LPS] triggers of 
ARDS result in stiffening (reduced compliance) of the lung tissue 
(45, 46).

The role of TRPV4 in ARDS is context/etiology-dependent. It 
has been shown that TRPV4 mediates the lung injury response to 
a sterile stimulus in vivo [i.e., hydrochloric acid (HCl)], as assessed 
by inflammatory cell influx, lung vascular permeability (wet/dry 
ratio, Evans blue dye extravasation, and total protein), lung histo-
pathology and physiology, and pro-inflammatory cytokine levels 
(IL-1β, VEGF, KC, G-CSF, MCP-1, RANTES, MIP-2, and IL-6)  
(7, 14). Protection from the acute lung injury response to IT HCl 
was noted in mice that lack TRPV4 (TRPV4 KO), or in mice that 
were treated with three different small molecule inhibitors of 
TRPV4 (7, 14). Importantly, two of these inhibitors (GSK2220691 
and GSK2337429A) show efficacy when administered 30 min after 
IT HCl (7). Thus, these inhibitors show promise as a novel and 
exciting therapeutic/preventative approach for acute lung injury 
(7). In vitro stimulation of human and murine neutrophils (with 
platelet-activating factor or LPS) induced TRPV4-dependent cal-
cium influx, reactive oxygen species (ROS) production, adhesion 
chemotaxis, and Rac activation (14). Taken together, these data 
suggest that neutrophils possess the capacity to mediate acute 
lung injury in a TRPV4-dependent manner. Whether the in vivo 
lung injury response to HCl is solely dependent on neutrophil 
TRPV4, as opposed to TRPV4 in other cell types, remains to 
be determined. In addition to TRPV4’s effect on the cytokine/
inflammatory changes in ARDS, TRPV4 actions can induce lung 
endothelial barrier dysfunction in  vitro and in  vivo, as well as 
cause disruption of alveolar type I epithelial cells leading to lung 
vascular leak and alveolar edema (9, 29). These findings are the 
rationale for a clinical trial of TRPV4 antagonists in high venous 
pressure-induced pulmonary edema (https://clinicaltrials.gov).

TRPv4 AnD MACROPHAGe FUnCTiOn  
in LUnG inJURY

A similar TRPV4-dependent lung injury response has been 
demonstrated in macrophages in high volume ventilator-induced 
lung injury (6, 47). Mice lacking TRPV4 (TRPV4 KO) had less 
vascular leak, pulmonary edema (wet/dry ratio, filtration coef-
ficient), and NO production in response to high volumes (peak 
inflation pressure 35 cm H2O) when compared to WT controls. 
TRPV4 also seemed to partially mediate the increase in injury due 
to the combined effects of high volume ventilation and induced 
hyperthermia (40°C). Analysis of alveolar macrophages after high 
volume ventilation revealed that TRPV4 KO macrophages had 
less production of NO and ROS than those from WT mice. As in 
the HCl model, pretreatment with a non-selective TRP inhibitor 

(ruthenium red) prevented the increase in vascular permeability 
from combined high volume ventilation/hyperthermia in WT 
mice (48). Adoptive transfer of WT macrophages to TRPV4 KO 
mice reestablished the lung injury seen in WT mice. These data 
suggest that macrophage-specific TRPV4 acts as a mechanical 
and temperature sensor to initiate/mediate the acute lung injury 
induced by high volume ventilation (47).

Our laboratory is studying the role of TRPV4 in macrophage 
function during infection-associated lung injury. Alveolar 
macrophages are known to be effector cells in bacterial and 
particle clearance, and in the injury/repair process (49). We 
chose to explore the role of the calcium ion channel, TRPV4, in 
macrophage phagocytosis, as intracellular calcium is known to be 
required for the phagocytic process, and because TRPV4 plays a 
role in force-dependent cytoskeletal changes in other systems/
cell types (7–9, 29, 47, 50, 51). Studies show that the process of 
phagocytosis in macrophages requires integration of the signals 
from macrophage surface receptors, pathogens, and the extracel-
lular matrix (52–54). However, the effects of matrix stiffness on 
the macrophage phenotypic response or its signal transduction 
pathways have yet to be fully elucidated.

We recently published the novel observation that TRPV4 inte-
grates the LPS and matrix stiffness signals to control macrophage 
function, which promotes host defense and resolution from lung 
injury (4). After demonstrating that TRPV4 is expressed and func-
tionally active in murine bone marrow-derived macrophages, we 
studied the macrophage response to LPS on matrices of varying 
physiological-range stiffnesses. We demonstrated that TRPV4 
mediates LPS-stimulated macrophage phagocytosis of both 
opsonized particles (IgG-coated latex beads) and non-opsonized 
particles (Escherichia coli) in vitro. Matrix stiffness in the range 
seen in inflamed or fibrotic lung (>25 kPa) augmented the LPS 
phagocytic response by 151 ± 3% (4). Inhibition of TRPV4 by 
siRNA or pharmacologic inhibitors completely abrogated both 
the LPS effect, as well as the matrix stiffness effect, on phagocy-
tosis. These data indicate that both the LPS and stiffness effect on 
macrophage phagocytosis are TRPV4 dependent (4).

As TRPV4 is required for macrophage phagocytosis in  vitro 
in a stiffness-dependent manner, we next sought to examine the 
role of TRPV4 on macrophage phagocytosis after intratracheally 
(IT) administered LPS in vivo. Despite the influx of neutrophils, 
alveolar macrophages were the predominant cell type that phago-
cytosed IT administered IgG-coated beads following IT LPS (24 h) 
in WT mice (4). As seen in vitro, the in vivo enhancement effect of 
IT LPS on alveolar macrophage phagocytosis was lost upon dele-
tion of TRPV4 (TRPV4 KO mice) (Figure 1) (4). This effect is not 
explained by a difference in macrophage recruitment. Concordant 
with the in  vitro data, our in  vivo data demonstrate that LPS-
induced alveolar macrophage phagocytosis is TRPV4 dependent.

Studies suggest that macrophage-released cytokines modulate 
bacterial clearance and the lung injury/repair process, in the 
context of injury-related stiffened matrix (52–55). Recognizing 
the complexity of tissue responses to individual cytokines/
chemokines, we chose to focus initially on IL-1β and IL-10, as 
they are well-known key mediators of lung injury/resolution 
(56–58). TRPV4 also modulates the LPS signal for cytokine 
production. Specifically, IL-1β secretion was decreased by half, 
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FiGURe 1 | working model illustrating that lipopolysaccharide (LPS) 
and transient receptor potential vanilloid 4 (TRPv4) signal cooperate 
to alter macrophage phenotypic change leading to enhanced 
clearance of bacteria and resolution of lung injury. Our data suggest 
that TRPV4 is sensitized by extracellular matrix stiffness in the range of 
inflamed/fibrotic lung. Interaction between the LPS signal and the matrix 
stiffness signal through TRPV4 promote increased TRPV4 channel activity 
and macrophage phenotypic change leading to increased clearance of 
bacteria and resolution of infection-associated lung injury (4). Copyright 2016, 
The American Association of Immunologists, Inc.

4

Scheraga et al. TRPV4 Mediates Pulmonary Inflammation

Frontiers in Immunology | www.frontiersin.org May 2017 | Volume 8 | Article 503

and IL-10 secretion increased approximately twofold in WT 
alveolar macrophages compared with TRPV4 KO macrophages 
in response to LPS. Such a profile would predict that TRPV4 
mediates a net inflammation-suppressive response to LPS. 
Interestingly, this TRPV4 modulation of the LPS signal required a 
matrix stiffness in the range of injured or fibrotic lung (≥25 kPa). 
As illustrated in the schematic model, macrophage TRPV4 is 
sensitized by a stiff matrix (as seen in ARDS) to modulate the 
infectious (LPS—experimental surrogate for Gram-negative 
bacterial lung infection) signal toward an anti-inflammatory 
macrophage phenotype (Figure 1).

Collectively, our data demonstrate that TRPV4 responds to 
extracellular matrix stiffness, thereby altering the LPS signal to 
mediate macrophage phagocytosis and cytokine production (4). 
Despite the limitations in extrapolating our simplified experi-
mental system to in vivo lung injury, the data point to TRPV4 
as an important mechanosensor that mediates macrophage 
func tion differently in lung homeostasis, and in the context 
of pulmonary infection-induced inflammation. We speculate 
that under basal conditions, the resident lung macrophage 
response to LPS is modified (less phagocytic, more IL-1β) 
as a consequence of low lung tissue stiffness (i.e., 1–3  kPa) 
thereby enhancing recruitment of professional bactericidal cells 
(neutrophils) (55). After an acute inflammatory or infectious 
insult, a separate population of monocytes is recruited from 
the bone marrow to populate both interstitial and injured 
alveolar compartment in the context of denuded, exposed 

interstitial matrix (40). There are two overlapping phases of 
ARDS. During the initial injury phase (days 1–10), lung tissue 
is predominantly edematous and exudative, while during the 
fibroproliferative phase (days 7–28), there is increased deposi-
tion of interstitial and alveolar type I and III collagen (40). 
Both phases of ARDS (fibroproliferative  >  acute) exhibit clear 
evidence of increased stiffness at the whole organ level (40, 46, 59),  
but, limited mechanical data are available at the cellular level of 
resolution. A recent study shows that lung alveolar vessel wall 
stiffness is increased >10-fold (3 versus 43  kPa) after IT LPS 
(48  h) in mice compared to controls, as measured by atomic 
force microscopy, well within the range examined in our study 
(>8–25 kPa) (45, 46). We further speculate that, after injury, the 
macrophage phagocytic response to LPS is upregulated along 
with a cytokine profile that promotes resolution in a TRPV4-
dependent manner as a consequence of tissue stiffening. Such a 
scenario would support tissue stiffness, TRPV4-dependent shift 
in the macrophage phenotype that is commensurate with the 
appropriate phase of the injury/repair process.

Thus, our findings suggest that TRPV4 regulates a feed-forward 
mechanism of phagocytosis in activated lung tissue macrophages 
when they interact with stiffened infection/injury-associated lung 
matrix. This concept is further supported by the observation that 
surfactant protein B-deficient mice have altered alveolar mac-
rophage shape and function in association with increased alveolar 
surface tension (60). The macrophage activation phenotypes  
(M1/M2 classification) are well established in  vitro. The classi-
cally activated M1 macrophage phenotype, induced by INFγ, 
TNFα, and LPS, exhibits inflammatory/bactericidal proper-
ties. In contrast, the alternatively activated M2 macrophage 
phenotype, induced by IL-4 and IL-13, exhibits tissue repair/
fibrotic properties (49, 55). Data are emerging that the in  vivo 
macrophage phenotypes are more heterogeneous and plastic than 
the in vitro derived M1/M2 classification. Our published cytokine 
data (↑IL-1β, ↓IL-10) with inhibition of TRPV4 indeed suggests 
that TRPV4 mediates polarization toward M1-like phenotype  
(4, 61, 62). However, a complex array of cytokines contributes 
to the pathogenesis of ARDS, and targeting individual cytokines 
has not been shown to alter the disease process, indicating the net 
inflammatory balance is important (41–44, 63).

Our findings regarding the role of TRPV4 in downregulating 
the pro-inflammatory, bacterial clearance-inducing LPS signal 
are opposite to those in neutrophils in response to sterile inflam-
mation, or in macrophages upon stretch-induced tissue injury. 
Lung injury is dependent on cytokine production and inflamma-
tory cell influx in response to activation of pattern recognition 
receptors by damage-associated molecular patterns (DAMPs) 
and pathogen-associated molecular patterns (PAMPs). There are 
multiple known ligand–receptor interactions and intracellular 
signaling pathways that are both DAMP/PAMP-receptor specific 
and overlapping. We speculate that differences in the interaction 
of TRPV4 signals with infectious PAMP signals versus sterile tis-
sue injury DAMP signals might explain the differences between 
our infectious model and the sterile lung injury model. Defining 
the specific molecular pathways and interactions in individual 
injury models is a fruitful avenue of research that may lead to 
novel therapeutic targets.
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SUMMARY

In summary, ion channels are important in the pathogenesis of 
inflammatory lung diseases, and the ion channel TRPV4 plays a 
specific role in mediating lung diseases associated with paren-
chymal stretch and inflammation or infection. The data reviewed 
in this work on the role of TRPV4 in pulmonary inflammatory 
diseases are summarized in Table  1. TRPV4 activation and its 
downstream signaling pathways differ in response to varying 
stimuli, cell types, and contexts. In asthma, TRPV4 mediates 
hypotonicity-induced airway hyperresponsiveness, but not 
release of Th2 cytokines (12, 32). In CF, TRPV4 appears to play 
important, yet paradoxical, roles in CBF/mucociliary clearance 
and epithelial cell pro-inflammatory cytokine (IL-8/KC) secre-
tion (35, 36). TRPV4 may also play different roles in ARDS 
depending on the underlying etiology (4, 7, 14, 48). We, and oth-
ers, have shown that macrophage and neutrophil TRPV4 regulate 

pro-inflammatory cytokine secretion. Lastly, in pulmonary 
fibrosis, TRPV4 has been shown to mediate the mechanosensing 
that drives myofibroblast differentiation and experimental lung 
fibrosis in mice (5). Collectively, TRPV4 is shown to play a novel 
role in modulating cytokine secretion and pulmonary inflamma-
tion and therefore may be involved in the pathogenesis of many 
respiratory diseases.
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TABLe 1 | In vitro and in vivo studies of the role of transient receptor potential vanilloid 4 (TRPv4) in inflammatory pulmonary diseases.

Disease Cell type Key findings Reference

Asthma Fibroblasts Transforming growth factor-β-dependent airway remodeling (30)

Smooth muscle cells Hypotonicity-induced calcium and contractile response (12, 32)

Cystic fibrosis (CF) Epithelial cells  
(tracheal and airway)

Regulates ciliary beat frequency (10, 33–37)

Decreased ATP-induced calcium influx

Pro-inflammatory cytokine production (e.g., IL-8, cytosolic PLA2, 
prostaglandin E2, NF-κB, arachidonic acid, etc.)

Acute lung injury/acute respiratory 
distress syndrome (ARDS)

Epithelial cells Maintains epithelial barrier function (9, 29)

Endothelial cells Maintains endothelial septal barrier (11)

Neutrophils Calcium influx (7, 14)

Reactive oxygen species production

Adhesion chemotaxis

Rac activation

Macrophages Lipopolysaccharide-induced macrophage phagocytosis in vitro and in vivo (4, 6, 47, 48)

Anti-inflammatory cytokine production (IL-1β, IL-10)

Pulmonary fibrosis Fibroblasts Myofibroblast differentiation (5)
Experimental pulmonary fibrosis in mice

This table is only a partial representation of the literature, given the focused nature of the mini review. We apologize for any work omitted from this review. We summarize the cited 
literature on the role of TRPV4 in asthma, CF, acute lung injury/ARDS, and pulmonary fibrosis.
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