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Abstract: Osteoarthritis (OA) is a major public health challenge that imposes a remarkable burden
on the affected individuals and the healthcare system. Based on the clinical observation, males
and females have different prevalence rates and severity levels of OA. Thus, sex-based differences
may play essential roles in OA’s prognosis and treatment outcomes. To date, the comprehensive
understanding of the relationship between sex and OA is still largely lacking. In the current study, we
analyzed a published transcriptome dataset of knee articular cartilage (GSE114007) from 18 healthy
(five females, 13 males) and 20 OA (11 females, nine males) donors to provide a slight insight into this
important but complex issue. First, comparing female healthy cartilage samples with those of males
revealed 36 differential expression genes (DEGs), indicating the fundamental sex-related differences
at the molecular level. Meanwhile, 923 DEGs were distinguished between OA and healthy female
cartilage, which can be enriched to 15 Reactome pathways. On the other hand, when comparing
OA and healthy male cartilage, there are only 419 DEGs were identified, and only six pathways
were enriched against the Reactome database. The different signaling response to OA in the male
and female cartilage was further enforced by recognizing 50 genes with significantly different OA-
responsive expression fold changes in males and females. Particularly, 14 Reactome pathways, such as
“Extracellular matrix organization”, “Collagen biosynthesis and modifying enzymes”, “Dissolution of
fibrin clot”, and “Platelet Aggregation (Plug formation)”, can be noted from these 50 sex-dependent
OA-responsive genes. Overall, the current study explores the Sex as a Biological Variable (SABV) at
the transcriptomic level in the knee articular cartilage in both healthy status and OA event, which
could help predict the differential OA prognosis and treatment outcome of males and female patients.

Keywords: sex as a biological variable; osteoarthritis; cartilage; whole transcriptome sequenc-
ing; molecules

1. Introduction

As the most common form of arthritis, osteoarthritis (OA) is a series of pathology that
causes persistent pain, swelling, and reduced motion in the affected joints. For years, OA
was identified as an age-related pathology; thus, it has been called “wear and tear” arthritis.
During the past few years, OA is increasingly recognized as a highly heterogeneous group
of diseases characterized by variable clinical phenotypes, which may contribute to the
inconsistency of clinical prognosis and treatment response [1].

With the growing recognition of Sex as a Biological Variable (SABV) in the pathophys-
iology of a diversity of diseases [2], the impact the sex on OA has also attracted more and
more attention. To date, it is well known that OA has a higher prevalence in women than
men, as 62% of OA patients are women [3]. Indeed, women have a consistently higher
OA prevalence rate than men in all age groups between the 30s to 95 plus [4]. Worldwide

Int. J. Mol. Sci. 2021, 22, 7876. https://doi.org/10.3390/ijms22157876 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0001-6331-6983
https://orcid.org/0000-0002-4905-3563
https://doi.org/10.3390/ijms22157876
https://doi.org/10.3390/ijms22157876
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms22157876
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms22157876?type=check_update&version=2


Int. J. Mol. Sci. 2021, 22, 7876 2 of 17

estimates are that 9.6% of men and 18% of women aged over 60 have symptomatic OA [5].
Moreover, disability and loss of function associated with OA are higher in women [6,7].
Besides, the US Medical Expenditure Panel Survey data for the years 1996 to 2005 found
that OA-related out-of-pocket (OOP) costs incurred by women were greater than those by
men [8], and more women than men were hospitalized for OA [9]. In the US, OA increased
annual per capita absenteeism costs of $5.5 billion for female workers verse $4.8 billion for
male workers [8].

Clinically, the incidence of OA increases dramatically in women around the time of
menopause [10]; therefore, the modulating role of sex hormones on OA was proposed [11].
For example, estrogen is one of the most deeply investigated sex hormones in OA [12].
Although estrogen is considered to have protective potency against OA, the effects of estro-
gen replacement therapy and selective estrogen receptor modulators in preserving and/or
restoring joint tissue in OA are controversial among currently published reports [13,14].
Besides estrogen, sex hormone-binding globulin [15], follicle-stimulating hormone [16],
dehydroepiandrosterone [17], progesterone [18], and testosterone [19] may all influence OA
progression. However, none of these sex hormones can completely explain all differences
observed between male and female OA patients [20]. For instance, at a macro level, males
and females have different thicknesses of cartilage [21], subchondral bone density [22],
and muscle strength [23]; while at a micro level, tissue and cells from females have dif-
ferent, or even distinct, responses in comparison with those from males [20]. Recently,
Kim et al. [24] found that OA-related studies were largely performed in male subjects and
animals, although females face more OA risk and more server symptoms [4–7]. Undoubt-
edly, fully considering SABV will set the fundamental to understanding the distinguished
clinical complaints between males and females and is an essential step for effective therapy
development, which, unfortunately, is still largely lacking.

Although synovium and subchondral bone are known to involve in OA recently,
articular cartilage is still the major target of OA-related investigations. Articular cartilage
is hyaline cartilage that does not have blood vessels, nerves, or lymphatics [25]. It is com-
posed of a dense extracellular matrix (ECM) with a sparse distribution of chondrocytes. The
major components of the ECM are water, collagen, and proteoglycans, which are critical to
maintaining the mechanical property of the cartilage [25]. In a healthy microenvironment,
the balance between cartilage synthesis and degradation is strictly regulated [26]. In the
OA scenario, chondrocytes express more catabolic molecules, such as matrix metallopep-
tidase 13 (MMP-13), and less anabolic matrix, such as type II collagen [27,28], and thus
matrix remodeling, inappropriate hypertrophy-like maturation, and cartilage calcification
appear [29]. A net loss of proteoglycan content is also one of the hallmarks of all stages
of OA cartilage degeneration [26]. In addition to the well-known anabolic and catabolic
components, increasingly more biological factors have been noted to participate in OA’s
molecular events. For instance, nerve growth factor (NGF), which was primarily discov-
ered for its roles in sensory neuron proliferation and sensitization, is recently reported to
regulate articular chondrocytes’ calcification [30]. Another example is C1q and TNF related
1 (C1QTNF1), whose modulating effects on chondrocyte proliferation and maturation is
revealed recently, belongs to a newly discovered family of highly conserved adiponectin
paralog proteins [31]. Therefore, a more detailed dissection of the molecular events in the
OA cartilage is needed to assist the understanding of SABV in OA pathophysiology.

2. Results
2.1. Male and Female Cartilage Are Not Molecularly Identical in the Healthy Status

We first compare the mRNA sequencing data from the male and female healthy
cartilage to investigate if the transcriptomic profiles are the same for both genders. Within
the 23,714 identified genes, the expression of the commonly used cartilage anabolic markers,
such as Collagen Type II Alpha 1 Chain (COL2A1), Aggrecan (ACAN), cartilage oligomeric
matrix protein (COMP), and SRY-box 9 (SOX9), and catabolic markers, such as Runt-related
transcription factor2 (Runx2), MMP13, ADAM metallopeptidase with thrombospondin type 1
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motif 4 (ADAMTS4), and ADAMTS5, are not significantly different between the healthy
male and female cartilage (Supplemental Table S1).

On the other hand, we identify 10 DEGs with a p-value less than 0.05 that are highly
expressed in healthy female cartilage than their male counterparts, and 26 DEGs with a
p-value less than 0.05 whose expression level is lower in females (Figure 1). For all these
36 DEGs, only TSIX transcript, XIST antisense RNA (TSIX) has an adjusted p-value less
than 0.05 (Figure 1C and Supplemental Table S1, highlighted in red). Among the latter 26
genes whose expression levels are lower in females, 15 genes are Y-chromosome linked
(Figure 1C), demonstrating the reliability of the current study. Thus, the different expression
levels of non-Y-chromosome-linked genes between males and females may present the
SABV at a molecular level (Figure 1).

Pathway enrichment was used to uncover the potential functional interaction among
these 36 DEGs, while only 14 genes could be recognized by the Reactome knowledgebase.
DEGs that were not recognized by the current Reactome database are summarized in
Supplemental Table S2. The Reactome recognized genes were clustered into “chromatin
organization”, “hemostasis”, “disease”, “metabolism”, “transport of small molecules”,
“metabolism of proteins”, and “extracellular matrix organization.” Among them, nine
identified pathways have a p-value less than 0.05, but none of them qualified as a significant
enrichment that should have an FDR smaller than 0.05 (Table 1 and Supplemental Table S3).

Table 1. The pathway enrichment result of the significant male-vs.-female DEGs in healthy cartilage against the Reactome
knowledgebase (p < 0.05). Note: no pathways have an FDR value less than 0.05.

Pathway
Identifier Pathway Name #Entities

Found
#Entities
Total

Entities
Ratio

Entities
p-Value

Entities
FDR

Submitted
Entities
Found

R-HSA-3214842 HDMs demethylate histones 2 31 2.11 × 10−3 2.96 × 10−3 2.46 × 10−1 KDM5D;
UTY

R-HSA-76009 Platelet Aggregation (Plug Formation) 2 53 3.60 × 10−3 8.36 × 10−3 2.46 × 10−1 APBB1IP;
COL1A2

R-HSA-9673163 Oleoyl-phe metabolism 1 5 3.40 × 10−4 1.28 × 10−2 2.46 × 10−1 PM20D1
R-HSA-430116 GP1b-IX-V activation signaling 1 12 8.15 × 10−4 3.05 × 10−2 2.46 × 10−1 COL1A2

R-HSA-2214320 Anchoring fibril formation 1 15 1.02 × 10−3 3.80 × 10−2 2.46 × 10−1 COL1A2
R-HSA-75892 Platelet Adhesion to exposed collagen 1 16 1.09 × 10−3 4.05 × 10−2 2.46 × 10−1 COL1A2

R-HSA-1247673 Erythrocytes take up oxygen and release
carbon dioxide 1 16 1.09 × 10−3 4.05 × 10−2 2.46 × 10−1 AQP1

R-HSA-381426

Regulation of Insulin-like Growth
Factor (IGF) transport and uptake by
Insulin-like Growth Factor Binding

Proteins (IGFBPs)

2 127 8.63 × 10−3 4.26 × 10−2 2.46 × 10−1 IGFBP4;
IGFALS

R-HSA-166187 Mitochondrial Uncoupling 1 18 1.22 × 10−3 4.54 × 10−2 2.46 × 10−1 PM20D1

2.2. ECM Organization Is the Major Event in OA Cartilage of Females, But Not That of Males

We then analyzed the cartilage gene expression changes during OA of males and
females separately. First, in the female cartilage, there were 923 DEGs in total, among which
382 were downregulated and 541 were upregulated during OA (Figure 2 and Supplemental
Table S4). Among these genes, 30 significantly downregulated DEGs and 45 upregu-
lated ones were identified with an adjusted p-value less than 0.05 (Supplemental Table S4,
highlighted in red). Ranking based on the p-values, the top 15 significantly downregu-
lated genes were summarized in Figure 2C, while the top 15 significantly upregulated in
Figure 2D.
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Figure 1. The differential expressed genes (DEGs) detected between male and female healthy knee cartilage samples. (A)
Heatmap and (B) volcano diagrams for DEG visualization. DEGs with a p-value less than 0.05 are highlighted in red. (C)
The list of genes that are significantly differentially expressed in healthy male and female cartilage. DEGs with a statistically
significant higher level in females have a negative log2FC value, while those highly expressed in males have a positive
log2FC value. The gene with an adjusted p-value less than 0.05 is highlighted in red. The Y-chromosome linked genes are
highlighted in blue font.
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Figure 2. The DEGs detected between female healthy and OA cartilage. (A) Heatmap and (B) volcano diagrams for DEG
visualization. DEGs with a p-value less than 0.05 are highlighted in red. (C) Top 15 genes significantly downregulated in
female cartilage in response to OA. (D) Top 15 genes significantly upregulated in female cartilage in response to OA. DEGs
with an adjusted p-value less than 0.05 are highlighted in red.
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In the Reactome knowledgebase, 424 of the 923 DEGs could not be matched (Supple-
mental Table S5); thus, the pathways were enriched based on the other 499 DEGs. Overall,
there were 68 pathways with a p < 0.05, among which 15 pathways with an FDR less than
0.05 (Table 2 and Supplemental Table S6). Nine of the 15 pathways are related to ECM
organization (Table 2). For the other six pathways, “FOXO-mediated transcription of cell
cycle genes”, “FOXO-mediated transcription”, and “RUNX3 regulated immune response
and cell migration” belong to the event “gene expression (transcription)”, “Response of
EIF2AK1 (HRI) to heme deficiency” belongs to the event “cellular responses to external
stimuli”, “Interleukin-4 and Interleukin-13 signaling” belongs to the event “immune sys-
tem”, and “Gap junction assembly” belongs to the event “vesicle-mediated transport”
(Table 2). In particular, 55 of 499 identified DEGs were enriched in “extracellular matrix
organization”, which is the most significant event in the female cartilage in response to OA.

Table 2. The top 15 pathways enriched from the OA-responsive DEGs in female cartilage. Note: all pathways in the list
have an FDR value less than 0.05.

Pathway
Identifier Pathway Name #Entities

Found
#Entities

Total
Entities

Ratio
Entities
p-Value Entities FDR Submitted Entities Found

R-HSA-1474244 Extracellular matrix
organization 55 330 2.24 × 10−2 7.42 × 10−8 1.06 × 10−4

COL18A1; SPARC; ITGAM; ELN;
SERPINE1; ITGB2; TNC; HAPLN1;
ADAMTS5; ADAMTS2; EFEMP1;
TNN; CTSK; TNR; ITGB8; MME;

ITGA4; COL25A1; PCOLCE; ASPN;
VCAN; COL2A1; MMP13; OPTC;

COL6A1; ADAM12; PECAM1;
COL8A1; MMP19; LAMA5;

COL15A1; COL13A1; HTRA1; FBLN1;
LTBP2; FBLN5; ADAMTS14; SPP1;
NCAM1; COL26A1; LAMB3; LUM;

FN1; GDF5; COL1A1; COL3A1;
CAPN12; BMP1; COL1A2; COL5A1;

P4HA3; COL5A2; TLL1

R-HSA-9617828
FOXO-mediated

transcription of cell
cycle genes

12 27 1.83 × 10−3 1.50 × 10−6 8.48 × 10−4 NOTCH3; CDKN1A; CDKN1B;
GADD45A; CCNG2; FOXO3; KLF4

R-HSA-9614085 FOXO-mediated
transcription 25 110 7.47 × 10−3 1.79 × 10−6 8.48 × 10−4

IGFBP1; NOTCH3; CDKN1A;
CDKN1B; GADD45A; CITED2;

FOXO6; FOXO3; KLF4; FBXO32;
BCL6; CCNG2; DDIT3; TXNIP;

PLXNA4

R-HSA-3000178 ECM proteoglycans 20 79 5.37 × 10−3 4.01 × 10−6 1.42 × 10−3

LAMA5; ITGAM; SPARC; LUM;
SERPINE1; FN1; TNC; HAPLN1;

ASPN; COL1A1; VCAN; COL3A1;
COL2A1; COL1A2; COL5A1; TNN;
COL6A1; COL5A2; TNR; NCAM1

R-HSA-1650814
Collagen biosynthesis

and modifying
enzymes

19 76 5.16 × 10−3 8.23 × 10−6 2.34 × 10−3

COL18A1; COL26A1; COL15A1;
COL13A1; COL25A1; PCOLCE;

COL1A1; ADAMTS2; ADAMTS14;
COL3A1; COL2A1; BMP1; COL1A2;

COL5A1; P4HA3; COL6A1; COL5A2;
COL8A1; TLL1

R-HSA-1474228 Degradation of the
extracellular matrix 28 148 1.01 × 10−3 1.32 × 10−5 3.08 × 10−3

COL18A1; LAMA5; COL15A1;
COL13A1; ELN; HTRA1; ADAMTS5;

CTSK; SPP1; COL26A1; LAMB3;
MME; COL25A1; FN1; COL1A1;

COL3A1; MMP13; COL2A1; COL1A2;
CAPN12; BMP1; COL5A1; OPTC;

COL6A1; COL5A2; COL8A1; MMP19;
TLL1

R-HSA-216083 Integrin cell surface
interactions 20 87 5.91 × 10−3 1.59 × 10−5 3.08 × 10−3

COL18A1; ITGAM; COL13A1; ITGA4;
LUM; ITGB2; FN1; TNC; COL1A1;

COL3A1; COL2A1; COL1A2;
COL5A1; COL6A1; COL5A2; SPP1;

PECAM1; COL8A1; ITGB8

R-HSA-9648895
Response of EIF2AK1

(HRI) to heme
deficiency

11 29 1.97 × 10−3 1.74 × 10−5 3.08 × 10−3 PPP1R15A; DDIT3; CEBPG; TNR;
TRIB3; ATF3
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Table 2. Cont.

Pathway
Identifier Pathway Name #Entities

Found
#Entities

Total
Entities

Ratio
Entities
p-Value Entities FDR Submitted Entities Found

R-HSA-1442490 Collagen degradation 17 69 4.69 × 10−3 2.88 × 10−5 4.22 × 10−3

COL18A1; COL26A1; COL15A1;
COL13A1; MME; COL25A1; COL1A1;
COL3A1; MMP13; COL2A1; COL1A2;
COL5A1; CTSK; COL6A1; COL5A2;

MMP19; COL8A1

R-HSA-6785807
Interleukin-4 and

Interleukin-13
signaling

35 216 1.47 × 10−2 2.97 × 10−5 4.22 × 10−3

NOTCH3; LAMA5; CDKN1A;
ITGAM; ITGB2; FN1; RORC; TWIST1;

FOXO3; VEGFA; COL1A2; SOCS1;
CCND1; BCL6; IRF4; BIRC5; IL6R;

FAN1

R-HSA-8948216 Collagen chain
trimerization 13 44 2.99 × 10−3 4.11 × 10−5 5.30 × 10−3

COL18A1; COL26A1; COL15A1;
COL13A1; COL25A1; COL1A1;
COL3A1; COL2A1; COL1A2;
COL5A1; COL6A1; COL5A2;

COL8A1

R-HSA-1474290 Collagen formation 21 104 7.06 × 10−3 6.24 × 10−5 7.36 × 10−3

COL18A1; COL26A1; COL15A1;
COL13A1; LAMB3; COL25A1;

PCOLCE; COL1A1; ADAMTS2;
ADAMTS14; COL3A1; MMP13;

COL2A1; BMP1; COL1A2; COL5A1;
P4HA3; COL6A1; COL5A2; COL8A1;

TLL1

R-HSA-8949275
RUNX3 Regulates
Immune Response
and Cell Migration

6 10 6.79 × 10−4 1.30 × 10−4 1.41 × 10−2 ITGA4; SPP1; RORC

R-HSA-2022090
Assembly of collagen

fibrils and other
multimeric structures

15 67 4.55 × 10−3 2.30 × 10−4 2.33 × 10−2

COL18A1; COL15A1; LAMB3;
PCOLCE; COL1A1; COL3A1; MMP13;
COL2A1; BMP1; COL1A2; COL5A1;
COL6A1; COL5A2; COL8A1; TLL1

R-HSA-190861 Gap junction
assembly 11 41 2.79 × 10−3 3.52 × 10−4 3.31 × 10−2 GJC1; PLK4; GJB2; TUBB3; TUBB4B;

TUBA4A; TUBA8

Second, we analyzed the male cartilage in the same way. Male samples have much
less OA-responsive DEGs compared with female samples. There were 419 DEGs in total,
186 upregulated and 233 downregulated, among which 18 downregulated and four upreg-
ulated DEGs have an adjusted p-value less than 0.05 (Figure 3 and Supplemental Table S7,
highlighted in red). In addition, the top 15 significant upregulated and downregulated
genes based on p-value in male cartilage during OA were not as same as those in female
cartilage. The top 15 significantly downregulated genes in male cartilage were listed in
Figure 3C, while the top 15 significantly upregulated genes in Figure 3D.

In the Reactome knowledgebase, 202 of the 419 DEGs could not be matched (Sup-
plemental Table S8). Thus, the pathways enrichment based on the other 217 DEGs dis-
persed the molecular events including “immune system”, “signal transduction”, “neuronal
system”, “hemostasis”, “gene expression (transcription)”, “metabolism”, “DNA replica-
tion”, “transport of small molecules”, “disease”, “metabolism of proteins”, “cell cycle”,
“autophagy”, “vesicle-mediated transport”, “cellular responses to external stimuli”, and
“extracellular matrix organization”. There are 79 pathways that have a p-value less than
0.05, among which six have an FDR less than 0.05 (Table 3 and Supplemental Table S9).
Here, “Response of EIF2AK1 (HRI) to heme deficiency” belongs to the event “cellular
responses to external stimuli”, “ATF4 activates genes in response to endoplasmic reticu-
lum stress” and “PERK regulates gene expression” belong to the event “metabolism of
proteins”, “NGF-stimulated transcription” and “Nuclear Events (kinase and transcription
factor activation)” belong to the event “signal transduction”, and “MECP2 regulates neu-
ronal receptors and channels” belongs to the event “gene expression (transcription)”. None
of these six pathways are categorized in the event of “extracellular matrix organization”.
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Figure 3. The DEGs detected between male healthy and OA cartilage. (A) Heatmap and (B) volcano diagrams for DEG
visualization. DEGs with a p-value less than 0.05 are highlighted in red. (C) Top 15 genes significantly downregulated in
male cartilage in response to OA. (D) Top 15 genes significantly upregulated in male cartilage in response to OA. DEGs
with an adjusted p-value less than 0.05 are highlighted in red.

2.3. Male and Female Cartilage Have Significant Different Alteration Genes during OA

To confirm the differences between male and female cartilage in response to OA as
observed above, we also compared the gene expression fold change in both sexes and
identified 63 DEGs with a p < 0.05 (Supplemental Table S10). By referencing the single-sex
OA—healthy cartilage comparison results, genes that do not have OA-responsive alter-
ation(s) in either gender were excluded to eliminate the false positive result and lead to
the identification of 50 DEGs (Table 4). Note that none of these genes were detected with
an adjusted p-value less than 0.05, while 23 of these 50 DEGs could not be recognized
by Reactome (Supplemental Table S11). Based on the 27 Reactome-recognized genes, 60
pathways were enriched (p < 0.05; Supplemental Table S12). Among them, 14 pathways
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have an FDR less than 0.05, which could be clustered in the events of “Extracellular matrix
organization” (including “Extracellular matrix organization”, “Collagen biosynthesis and
modifying enzymes”, “Collagen chain trimerization”, “Collagen formation”, “Assembly of
collagen fibrils and other multimeric structures”, “Collagen degradation”, “ECM proteogly-
cans”, “Integrin cell surface interactions”, and “Anchoring fibril formation”), “Hemostasis”
(including “Dissolution of Fibrin Clot”, “GP1b-IX-V activation signaling”, “Platelet Aggre-
gation (Plug Formation)”, and “Platelet Adhesion to exposed collagen”), and “Disease”
(including “Diseases of glycosylation”) (Table 5). These results further validate male and
female cartilage differences at the molecular event level in response to OA.

Table 3. The top 15 pathways enriched from the OA-responsive DEGs in male cartilage. Pathways with an FDR less than
0.05 are highlighted in red.

Pathway
Identifier Pathway Name #Entities

Found
#Entities

Total Entities Ratio Entities
p-Value Entities FDR Submitted Entities Found

R-HSA-9648895 Response of EIF2AK1 (HRI)
to heme deficiency 10 29 1.97 × 10−3 1.32 × 10−7 1.43 × 10−4 PPP1R15A; DDIT3; CEBPG;

TNR; CHAC1; ATF3

R-HSA-380994
ATF4 activates genes in

response to endoplasmic
reticulum stress

9 34 2.31 × 10−3 4.71 × 10−6 2.56 × 10−3 IGFBP1; DDIT3; CEBPG; ATF3;
HERPUD1

R-HSA-9031628 NGF-stimulated
transcription 11 56 3.80 × 10−3 7.12 × 10−6 2.58 × 10−3 FOSL1; EGR1; ARC; EGR3;

FOSB; FOS; TRIB1; JUNB

R-HSA-9022699 MECP2 regulates neuronal
receptors and channels 8 32 2.17 × 10−3 2.37 × 10−5 5.35 × 10−3 GRIA2; GRIN2A; OPRK1;

SLC2A3

R-HSA-381042 PERK regulates gene
expression 9 42 2.85 × 10−3 2.46 × 10−5 5.35 × 10−3 IGFBP1; DDIT3; CEBPG; ATF3;

HERPUD1

R-HSA-198725
Nuclear Events (kinase and

transcription factor
activation)

11 80 5.43 × 10−3 1.70 × 10−4 3.07 × 10−2 FOSL1; EGR1; ARC; EGR3;
FOSB; FOS; TRIB1; JUNB

R-HSA-6791312
TP53 Regulates

Transcription of Cell Cycle
Genes

9 65 4.42 × 10−3 6.18 × 10−4 9.58 × 10−2 CCNA2; NOTCH3; BTG2;
CDKN1A; PLK2; CDK1

R-HSA-6785807 Interleukin-4 and
Interleukin-13 signaling 18 216 1.47 × 10−2 8.82 × 10−4 1.19 × 10−1

NOTCH3; CDKN1A; COL1A2;
IRF4; ITGB2; LIF; FOS;

TNFRSF1B; JUNB; VEGFA

R-HSA-6804757 Regulation of TP53
Degradation 7 43 2.92 × 10−3 9.81 × 10−4 1.19 × 10−1 CCNA2; USP2; UBC; CDK1;

PDK1

R-HSA-69895 Transcriptional activation of
cell cycle inhibitor p21 3 6 4.08 × 10−4 1.36 × 10−3 1.29 × 10−1 NOTCH3; CDKN1A

R-HSA-69560 Transcriptional activation of
p53 responsive genes 3 6 4.08 × 10−4 1.36 × 10−3 1.29 × 10−1 NOTCH3; CDKN1A

R-HSA-6806003 Regulation of TP53
Expression and Degradation 7 46 3.12 × 10−3 1.44 × 10−3 1.29 × 10−1 CCNA2; USP2; UBC; CDK1;

PDK1
R-HSA-1538133 G0 and Early G1 6 38 2.58 × 10−3 2.59 × 10−3 2.07 × 10−1 TOP2A; CCNA2; CDK1

R-HSA-9617828
FOXO-mediated

transcription of cell cycle
genes

5 27 1.83 × 10−3 2.99 × 10−3 2.07 × 10−1 NOTCH3; CDKN1A; KLF4

R-HSA-194313 VEGF ligand-receptor
interactions 3 8 5.43 × 10−4 3.05 × 10−3 2.07 × 10−1 PGF; VEGFA

Table 4. OA-responsive DEGs that have significantly different expression fold changes between
males and females, and significantly (p < 0.05) altered in at least one gender. DEGs significantly
upregulated in response to OA are highlighted in red, and those significantly downregulated in blue.

SYMBOL
OM-HM OF-HF OM-HM vs. OF-HF

log2FC p-Value log2FC p-Value log2FC p-Value

ADAMTS2 1.036311 4.73 × 10−1 4.245269 1.24 × 10−4 −3.208959 1.37 × 10−2

AKR1C2 0.716720 7.69 × 10−1 2.893709 2.96 × 10−4 −2.176989 3.56 × 10−2

APBB1IP 1.029711 4.80 × 10−1 4.594870 1.20 × 10−4 −3.565158 9.94 × 10−3

AQP1 0.781688 6.57 × 10−1 3.956589 2.86 × 10−4 −3.174901 1.43 × 10−2

ARMS2 −0.356654 9.08 × 10−1 2.345976 1.51 × 10−2 −2.702631 1.64 × 10−2

BAALC 0.980694 5.17 × 10−1 3.404522 5.70 × 10−4 −2.423828 4.66 × 10−2

C1QTNF1 0.619342 8.09 × 10−1 2.996843 2.75 × 10−3 −2.377501 4.77 × 10−2

CAVIN4 0.237081 9.28 × 10−1 2.976823 3.48 × 10−3 −2.739743 2.87 × 10−2

CCDC163 0.768465 7.15 × 10−1 −2.087867 1.36 × 10−2 2.856332 2.44 × 10−3

CDCA2 0.439866 8.37 × 10−1 3.382528 1.19 × 10−3 −2.942662 2.26 × 10−2

CDKL2 0.651973 7.13 × 10−1 −2.454556 1.72 × 10−2 3.106529 1.36 × 10−2

COL15A1 0.397324 9.18 × 10−1 2.601580 2.23 × 10−3 −2.204256 4.27 × 10−2

COL18A1 0.108196 9.90 × 10−1 2.571811 5.21 × 10−3 −2.463615 2.16 × 10−2

COL1A1 3.791243 3.33 × 10−4 7.250090 8.76 × 10−7 −3.458847 3.88 × 10−2

COL1A2 2.206448 2.20 × 10−2 5.722798 2.93 × 10−8 −3.516351 4.58 × 10−3

CYBB 1.286525 3.93 × 10−1 5.141565 9.37 × 10−4 −3.855040 3.95 × 10−2
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Table 4. Cont.

SYMBOL
OM-HM OF-HF OM-HM vs. OF-HF

log2FC p-Value log2FC p-Value log2FC p-Value

DKK3 0.654166 7.59 × 10−1 3.287993 5.43 × 10−4 −2.633827 2.58 × 10−2

DPT 0.826854 6.55 × 10−1 3.052945 3.79 × 10−4 −2.226091 4.61 × 10−2

EMB 0.540007 7.61 × 10−1 3.865787 9.00 × 10−4 −3.325780 2.08 × 10−2

EMX2OS −0.745100 6.41 × 10−1 3.025770 3.24 × 10−2 −3.770870 2.35 × 10−2

EPYC 0.082818 9.87 × 10−1 2.941842 4.25 × 10−3 −2.859024 1.52 × 10−2

FAN1 0.487189 7.97 × 10−1 −2.529764 4.07 × 10−2 3.016953 3.39 × 10−2

FBLN5 0.820198 6.62 × 10−1 3.185592 1.17 × 10−3 −2.365394 4.72 × 10−2

GAP43 1.465410 2.56 × 10−1 4.712171 6.43 × 10−5 −3.246761 2.64 × 10−2

HMGB4 0.067476 9.82 × 10−1 2.557579 1.19 × 10−2 −2.490102 4.46 × 10−2

HPDL −0.057707 9.88 × 10−1 2.475639 1.40 × 10−2 −2.533346 3.20 × 10−2

IFI44L 0.012213 9.96 × 10−1 3.090819 1.51 × 10−2 −3.078605 3.65 × 10−2

IGFBP4 0.764578 6.78 × 10−1 3.556192 8.62 × 10−4 −2.791614 2.86 × 10−2

LINC02447 0.377013 8.91 × 10−1 −2.237060 2.63 × 10−2 2.614072 2.53 × 10−2

LOC100507250 0.452652 8.45 × 10−1 −2.527564 1.12 × 10−2 2.980216 1.19 × 10−2

LOC101929122 0.056037 9.84 × 10−1 2.846396 5.90 × 10−3 −2.790359 2.55 × 10−2

MIR4435-
2HG 0.335817 9.45 × 10−1 3.246292 3.10 × 10−4 −2.910474 6.24 × 10−3

MXRA5 2.179711 4.13 × 10−2 5.721745 4.35 × 10−6 −3.542034 1.59 × 10−2

NEURL1B −0.431259 8.20 × 10−1 2.888588 1.59 × 10−2 −3.319847 1.87 × 10−2

NGF 1.338201 3.52 × 10−1 5.880944 5.41 × 10−5 −4.542743 8.71 × 10−3

OGN 1.571206 1.44 × 10−1 3.988797 1.87 × 10−5 −2.417591 4.88 × 10−2

PALM2 0.305307 9.84 × 10−1 2.300331 4.37 × 10−3 −1.995024 4.34 × 10−2

PDLIM1 0.824352 6.02 × 10−1 5.213650 1.57 × 10−4 −4.389298 6.60 × 10−3

PECAM1 −0.523163 7.50 × 10−1 3.413773 3.56 × 10−2 −3.936936 3.52 × 10−2

PLAU 1.131386 4.51 × 10−1 4.754242 1.15 × 10−3 −3.622856 4.01 × 10−2

PLK4 0.921031 5.52 × 10−1 3.702119 5.00 × 10−4 −2.781088 3.84 × 10−2

RCAN1 0.462142 8.79 × 10−1 2.998940 8.88 × 10−4 −2.536799 2.38 × 10−2

S100A4 1.739908 8.02 × 10−2 4.787812 2.72 × 10−5 −3.047904 2.23 × 10−2

SERPINE1 −0.128314 9.57 × 10−1 3.610779 1.52 × 10−3 −3.739093 5.28 × 10−3

SERPINE2 1.067892 4.41 × 10−1 3.350974 1.14 × 10−4 −2.283082 4.46 × 10−2

SGIP1 −0.199640 9.58 × 10−1 2.341629 3.22 × 10−2 −2.541269 3.86 × 10−2

THY1 3.064184 3.65 × 10−4 7.253767 9.26 × 10−7 −4.189584 7.67 × 10−3

TNFAIP6 3.028402 1.71 × 10−3 7.264821 8.86 × 10−6 −4.236418 1.56 × 10−2

TSIX 1.327472 4.64 × 10−1 −3.508086 3.20 × 10−3 4.835558 1.38 × 10−2

VCAN −0.392235 8.76 × 10−1 2.248223 3.39 × 10−2 −2.640458 3.07 × 10−2

Table 5. The top 15 pathways enriched from the DEGs that differently altered in response to OA in male and female cartilage.
Pathways with an FDR less than 0.05 are highlighted in red.

Pathway
Identifier Pathway Name #Entities

Found
#Entities

Total
Entities

Ratio
Entities
p-Value

Entities
FDR Submitted Entities Found

R-HSA-1474244 Extracellular matrix
organization 10 330 2.24 × 10−2 8.68 × 10−7 2.38 × 10−4

COL1A1; COL18A1; VCAN;
COL15A1; ADAMTS2;
COL1A2; SERPINE1;

PECAM1; FBLN5

R-HSA-1650814 Collagen biosynthesis and
modifying enzymes 5 76 5.16 × 10−3 1.58 × 10−5 2.17 × 10−3

COL1A1; COL18A1;
COL15A1; ADAMTS2;

COL1A2

R-HSA-75205 Dissolution of Fibrin Clot 3 14 9.51 × 10−4 2.83 × 10−5 2.32 × 10−3 SERPINE2; PLAU;
SERPINE1

R-HSA-8948216 Collagen chain trimerization 4 44 2.99 × 10−3 3.41 × 10−5 2.32 × 10−3 COL1A1; COL18A1;
COL15A1; COL1A2

R-HSA-1474290 Collagen formation 5 104 7.07 × 10−3 6.96 × 10−5 3.76 × 10−3
COL1A1; COL18A1;

COL15A1; ADAMTS2;
COL1A2

R-HSA-2022090
Assembly of collagen fibrils

and other multimeric
structures

4 67 4.55 × 10−3 1.71 × 10−4 7.45 × 10−3 COL1A1; COL18A1;
COL15A1; COL1A2

R-HSA-1442490 Collagen degradation 4 69 4.69 × 10−3 1.91 × 10−4 7.45 × 10−3 COL1A1; COL18A1;
COL15A1; COL1A2

R-HSA-3000178 ECM proteoglycans 4 79 5.37 × 10−3 3.18 × 10−4 1.08 × 10−2 COL1A1; VCAN; COL1A2;
SERPINE1

R-HSA-216083 Integrin cell surface
interactions 4 87 5.91 × 10−3 4.57 × 10−4 1.37 × 10−2 COL1A1; COL18A1;

COL1A2; PECAM1

R-HSA-430116 GP1b-IX-V activation
signaling 2 12 8.15 × 10−4 1.14 × 10−3 3.08 × 10−2 COL1A1; COL1A2

R-HSA-76009 Platelet Aggregation (Plug
Formation) 3 53 3.60 × 10−3 1.37 × 10−3 3.13 × 10−2 COL1A1; APBB1IP; COL1A2
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Table 5. Cont.

Pathway
Identifier Pathway Name #Entities

Found
#Entities

Total
Entities

Ratio
Entities
p-Value

Entities
FDR Submitted Entities Found

R-HSA-3781865 Diseases of glycosylation 5 202 1.37 × 10−2 1.42 × 10−3 3.13 × 10−2 VCAN; ADAMTS2;
SERPINE2; OGN; BAALC

R-HSA-2214320 Anchoring fibril formation 2 15 1.02 × 10−3 1.77 × 10−3 3.71 × 10−2 COL1A1; COL1A2

R-HSA-75892 Platelet Adhesion to
exposed collagen 2 16 1.09 × 10−3 2.01 × 10−3 3.81 × 10−2 COL1A1; COL1A2

R-HSA-1474228 Degradation of the
extracellular matrix 4 148 1.01 × 10−2 3.18 × 10−3 5.73 × 10−2 COL1A1; COL18A1;

COL15A1; COL1A2

3. Discussion

It is broadly accepted that exploring the OA-responsive biomarkers shared by both
genders will pave the path for developing the therapeutics that benefit both male and
female OA patients [32]. On the other hand, the distinguished clinical appearance between
male and female patients warrants the mechanistic investigation at the molecule level. In
the current study, the global gene expression profiles of knee joint articular cartilage from
male and female donors of a well-accepted dataset [33–42], GSE114007, were comprehen-
sively compared to gain insight into the understanding of the SABV not only in the healthy
status, but also in the response of OA stimulation.

Firstly, the 36 identified male-vs.-female DEGs in healthy cartilage confirmed the
hypothesis that the SABV is not limited to the thickness and articular surface areas [21,43]
but extended to the static transcriptomic level. In particular, besides the 15 Y-chromosome-
linked genes, several genes among the 36 male-vs.-female DEGs in healthy cartilage have
been correlated with OA development and progression. For example, as an intensively
investigated long non-coding RNA (lncRNA), XIST is highly expressed in OA cartilage
tissue and IL-1β-treated chondrocytes [44] and has anti-apoptosis and chondroprotective
effects [45]. On the other hand, another lncRNA, MIR4435-2HG, is downregulated in
OA [46] and may have inhibition effects on the progression of OA [47]. Regarding the ECM
components, a small leucine-rich proteoglycan (SLRP), epiphycan, plays an important role
in maintaining joint integrity, and epiphycan-deficient mice spontaneously develop OA with
age [48]; Col1A2 is one of the typical markers for fibrocartilage [49] and MXRA5 is highly
expressed in the synovial fluid of OA patients [50]. Some other DEGs identified in our
current studies have also been associated with OA in previous investigations. For instance,
PDLIM1 is downregulated in IL-1β-treated chondrocytes [51], THY1 is highly expressed in
OA cartilage and could be induced by IL-1β [52], and EIF1AY has been identified as one
of the 9 OA diagnostic biomarkers [53]. In addition, AQP1 promotes caspase-3 activation
and thereby contributes to chondrocyte apoptosis [54], and thus the activation of AQP1
induced by OA process can be used to control the tissue degeneration [55].

In addition, IGFBP4 has been identified as the late response gene of parathyroid
hormone-related protein (PTHrP) in chondrocytes [56]. It functions as an IGF-1 inhibitor
and participates in the inflammatory response [57]. Meanwhile, IGFALS encodes a serum
protein that binds IGFs to increase their half-life and vascular distribution [58]. As the male
healthy articular cartilage has a lower expression level of IGFALS and higher expression
level of IGFBP4 than female cartilage, we infer that IGF-1 signaling is less activated in male
cartilage than their female counterpart.

Note that among these 36 DEGs, only TSIX has an adjusted p-value less than 0.05, indi-
cating the significance of TSIX for gender-dependent biological differences in the articular
cartilage. However, the detailed function of TSIX in cartilage remains blank. In addition,
the limited available sample could lead to only one DEG identified with an adjusted p-value
less than 0.05 identified, while more DEGs with a p-value less than 0.05 (36 DEGs) were rec-
ognized. Thus, further studies are undoubtedly encouraged to fully understand the SABV
in healthy knee articular cartilage at the molecular level, which warrants a worldwide
collaboration for more database collection in a diverse of populations.
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Interestingly, when we profile OA-responsive transcriptional changes in male and
female cartilage separately, the amount of OA-responsive DEGs with an adjusted p-value
less than 0.05 in female cartilage is triple that in male cartilage, indicating more intense
OA-induced molecular changes in female cartilage than that in male counterparts. This
transcriptomic difference could be correlated with the clinical observation that women
experience more severe OA symptoms than men [59,60]. Considering the different total
amounts of OA-responsive DEGs, it is no surprise to find that the top 15 OA-responsive
upregulated and downregulated DEGs are not identical in male and female cartilage. In fact,
male and female cartilage do share some top OA-responsive DEGs with an adjusted p-value
less than 0.05, such as CISH, ADM, HLPDA, DDIT3, DDIT4, CFI, ST6GALNAC5, SPOCK1,
and TNFSF15. Regarding the Reactome-enriched pathways, “response of EIF2AK1 (HRI) to
heme deficiency” is the common significant pathway with adjusted p-value less than 0.05
in response to OA stimulation shared by male and female cartilage. These shared genes
and pathways could be considered as potential targets for OA diagnosis and treatment,
which can benefit both genders.

The OA-responsive molecular events in female cartilage are tightly clustered in the
“extracellular matrix organization”, which could explain the reason that female patients
have more severe OA-related cartilage defects than males [60,61]. Meanwhile, “FOXO-
mediated transcription”, “RUNX3-regulated immune response and cell migration”, and
“Interleukin-4 and Interleukin-13 signaling”, the pathways with FDR less than 0.05, might
be additional key pathways to regulate OA in females. In fact, recent studies demonstrate
that FOXO transcription factors modulate autophagy and proteoglycan 4 in cartilage, and
conditional knockout FOXOs could induce OA-like changes in the mice [62,63]. On the
other hand, ECM degradation does not present as the leading OA-responsive event in the
male cartilage. Instead, “ATF4 activates genes in response to endoplasmic reticulum stress”,
“NGF-stimulated transcription”, “MECP2 regulates neuronal receptors and channels”,
“PERK regulates gene expression”, and “Nuclear Events (kinase and transcription factor
activation)” were enriched from the OA-responsive DEGs in male cartilage with FDR
less than 0.05, indicating a distinct molecular response to OA between male and female
cartilage. The activation of the PERK-ATF4-CHOP axis is especially known to mediate
impaired cartilage function [64]; however, the effects of these male-specific OA-responsive
pathways in arthritis are still unknown.

SABV of cartilage in response to OA was further evaluated by comparing the OA-
response DEGs from both genders directly, by which 50 genes with significantly different
expression fold changes were identified, but none of the genes has an adjusted p-value
less than 0.05. As expected, “Extracellular matrix organization” is the major sex-relative
differential event harboring 9 of the 14 enriched pathways. There are also differences in
“Hemostasis” and “Diseases of glycosylation” events. Note that several genes clustered
in the event “Hemostasis” (including pathways “Dissolution of Fibrin Clot”, “GP1b-IX-V
activation signaling”, “Platelet Aggregation (Plug Formation)”, and “Platelet Adhesion
to exposed collagen”) have also been investigated in OA-related area. For example, SER-
PINE1 has been identified as one of the OA-specific genes in human joint fibroblast-like
synoviocytes [65]. While SERPINE2, a contributor for both “Hemostasis” and “Diseases
of glycosylation” events, upregulated by IL-1α stimulation in human chondrocytes, and
recombinant SERPINE2 may protect chondrocytes by inhibiting MMP-13 expression [66].
Besides, high platelet counts within the normal range are significantly associated with knee
and hip OA in women aged above 50 [67].

Considering aging may be an important indicator of OA, it is not a surprise that the
donors of the OA groups are older than the healthy group when the dataset was built [33].
Interestingly, specifically grouping the samples in the same dataset GSE114007 by donor
age, Chen et al. concluded that age is not a dependent variable for differentially expressed
gene identification [41]. Here, as demonstrated in Table 6, no difference regarding donor
age between males and females was found in healthy cartilages nor OA samples. Thus,
the age contribution on OA-responsive differentially expressed genes, if any, has already
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been considered in parallel for both genders. Note that comparing healthy cartilage of
different age stages for each gender would be an interesting and important topic for gaining
more insight on the molecular events in senescence, particularly in a gender-dependent
manner. Besides, an inter-cohort validation should be conducted in the future to verify
the genes and pathways discovered in the current study. Last but not least, it is the first
time that multiple genes and pathways mentioned above are associated with chondrogenic
differentiation, maintenance, and pathology. The underlying mechanistic and functional
details are largely unknown. No doubt, a huge amount of effort should be devoted on a
global base to transferring the discovery here to the real world.

Table 6. The sample size and age information for each group.

Group Sample Size Age Range (years) Mean
Age

OA Score
Range

Mean
OA Score

Healthy Female 5 27–57 42 yrs 1–1 1
Healthy Male 13 18–61 34.5 yrs 1–1 1

OA Female 11 52–82 66.3 yrs 4–4 4
OA Male 9 51–71 64.9 yrs 4–4 4

4. Materials and Methods

By using the keywords “osteoarthritis” and “cartilage” in the NCBI GEO DataSets
website [68] with the selection of “Homo sapiens” under the column of “Top Organisms”
and “Expression profiling by high throughput sequencing” under the column of “study
type”, 31 series were identified. After reviewing all these datasets to check if they provided
the sex information of the donors, one series (GSE114007) containing transcriptome data
of human knee cartilage samples was included in the current study [33]. In this dataset,
there were samples from 5 healthy female donors (age 27–57, mean 42), 13 healthy male
donors (age 18–61, mean 34.5), 11 OA female donors (age 52–82, mean 66.3), and 9 OA
male donors (age 51–71, mean 64.9) (Table 6 and Supplemental Table S13). According to
the original study of this dataset, there is no significant difference between healthy and
OA samples in other factors, such as the health condition of the donors, tissue sampling
location, and body mass index [33,41]. SRA data of all the samples were downloaded from
NCBI SRA website [69]. Following comparisons were conducted: (1) male healthy (HM)
cartilage with female healthy (HF) cartilage to explore the baseline molecular differences
in the articular cartilage between genders, (2) male OA (OM) cartilage with HM cartilage
to detect the molecular changes in response to OA in males, (3) female OA (OF) cartilage
with HF cartilage to detect the molecular changes in response to OA in females, and (4)
OA-responsive DEGs in males (OM-HM) with that in females (OF-HF) to find the genes
altered significantly different between genders during OA (OM-HM vs. OF-HF). Data
analyses were performed on the Galaxy platform (UseGalaxy.org; [70]) with an established,
broadly validated protocol [71–73]. Briefly, the FASTQC RNA-seq reads were aligned to
the human genome (GRCh38) using HISAT2 aligner (Galaxy Version 2.1.0+galaxy 5) with
default parameters [74]. Raw counts of sequencing read for the feature of genes were
extracted by featureCounts (Galaxy Version 1.6.4+galaxy1) [75]. Then, the limma package
(Galaxy version 3.38.3 + galaxy3) was used to identify DEGs with its voom method [76,77].
Expressed genes were selected as their counts per million (CPM), value not less than 1 in at
least two samples across the entire experiment, while lowly expressed genes were removed
for the flowing analyses. The parameters were set as 1 for minimum log2 Fold change and
0.05 for p-value adjustment threshold. As our current investigation is an explorative study,
Benjamini–Hochberg correction was employed in the limma-voom analysis for p value
adjustment [78], which is highly recommandated by the limma user guide [79]. To provide
FDR control, the limma Test significance relative to a fold-change threshold (TREAT)
function was applied to select genes that are more likely to be biologically significant [80],
accompanied by the Robust Setting to protect against outlier genes [81]. A trimmed mean
of M values (TMM) method was used for normalization among RNA samples. Quasi-
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likelihood F-tests (ANOVA-like analysis) were achieved to identify DEGs [82]. Genes with
fold change (FC) more than 2 and p value less than 0.05 were assigned as DEGs. Heatmap
diagrams were conducted in R (version 3.6.3) [83] with packages pheatmap (version 1.0.12),
while volcano plots were generated by GraphPad Prism (version 8.2.1; GraphPad Software,
Inc., San Diego, CA, USA). Pathway enrichment of identified DEGs was performed against
the Reactome knowledgebase [84]. The enriched pathways with a false discovery rate
(FDR) less than 0.05 were considered significantly meaningful.

5. Conclusions

In summary, our current study confirmed SABV in the knee cartilage at the tran-
scriptomic level in both healthy and OA statuses. This study, at least partially, explains
the clinical observed sex-relative differences of OA outcomes. Due to the lack of knowl-
edge about some of the identified DEGs, further worldwide collaboration is necessary
to comprehensively uncover the sex-relative differences of knee articular cartilage health
and disease.
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