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Abstract: The modern linear agricultural production system allows the production of large quantities
of food for an ever-growing population. However, it leads to large quantities of agricultural waste
either being disposed of or treated for the purpose of reintroduction into the production chain with a
new use. Various approaches in food waste management were explored to achieve social benefits and
applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through
innovative technologies represents a means of obtaining value-added products and an excellent
measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries
can use natural bioactive molecules as supplements and the food industry as feed and food additives.
The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and
analytical procedures that allow their recovery are summarized in this study. Our results showed
that although the recovery of bioactive molecules represents a sustainable means of achieving both
waste reduction and resource utilization, further research is needed to optimize the valuable process
for industrial-scale recovery.
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1. Introduction

Bio-waste residues include food waste and agricultural, forestry, marine, and animal-
derived residues. Within the context of a more circular economy, these wastes are recat-
egorized as raw materials, feedstock, or energy. These wastes are not explicitly covered
within European legislation, except for food waste, regarding targets for separation and
reduction. However, Europe provides Research and Development funding for the EU bio-
economy sector. Horizon 2020 resources assigned to this initiative amounted to €3.7 billion
in 2014–2020, of which €90 million was used for proposals related to bio-waste [1]. The
Member States are urged to reduce biodegradable waste entering landfills, as required by
the Landfill Directive. Food industries, hospitality, and households produce food waste
(FW). Food is biological material that is subject to degradation.

Half of all food grown (close to 1.3 billion t) [2] is lost or wasted before and after
reaching the customer [3]. Food loss occurs when production exceeds demand, farmers
harvest crops prematurely, and as a result of inadequate sales and storage conditions (e.g.,
imperfections in packaging), safety issues, and contamination [4]. FW is expected to rise
over the next 25 years due to economic and demographic growth, mainly in Asian countries.
The annual volume of FW in Asian countries may increase from 278 to 416 million t from
2005 to 2025 [5]. In recent decades, the magnitude of global “waste” has been correlated to
malnutrition and pollution. The carbon footprint of food waste contributes to greenhouse
gases (it causes the release of 3.3 billion t of CO2 into the atmosphere annually) [6] and
dioxins [7], which may lead to several environmental problems. Therefore, it is a moral and
economic challenge to recycle waste to meet human or livestock needs and minimize the
environmental problems related to its disposal. A significant reason for the low recycling
rate is the low disposal cost compared to the recycling/conversion cost. The European
Parliament and Council started the Circular Economy Package in 2018 to obtain efficient
food supply chains [1]. The objective is a world without waste, with a responsible attitude
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towards products, materials, resources, and the environment. Such actions require that food
waste management strategies are urgently considered, and social and behavioral solutions
for enhancement are discussed. Several technological solutions have been proposed, such
as developing collection systems for mixed biodegradable waste anaerobic digestion,
composting, and incineration [1]. An Expert Working Group has been created on Food
Losses and Food Waste to make policy initiatives and enhance EU legislation, programs,
and policies on food waste prevention with the aim of halving food waste by 2050.

To achieve this goal, the Member States must establish food waste prevention measures
and uniform measurement methodologies. An effective means of managing food waste
is to produce biochar or bioenergy (e.g., biogas, biodiesel), or to extract primary and
secondary metabolites to use in cosmetics, pharmaceuticals, and food supplements [8–13].
The technological developments in the chemical, physical, and biological treatments of food
waste and their potential applications within a sustainable bioeconomy are summarized in
this work. The articles published in recent years in the peer-reviewed journals in Scopus,
Web of Science, and Google scholar were investigated to achieve this goal. The areas of
focus of the published reviews and scientific articles are identified and cited accordingly.
The results of the published data are compared, and suggestions are given.

2. Biochar

Biochar (char, charcoal, or agrichar) is a stable nonfossil-based carbonaceous product
made from the thermochemical (torrefaction (dry or wet), pyrolysis, gasification, or hy-
drothermal processing) conversion of biomass [14], which helps to improve soil fertility in
an environmentally friendly way through the development of biocomposite [15–17], as well
as being used in green concrete production [18]. Biochar has variable performance in terms
of the functioning of its biosource and the process used to make it. Pyrolysis is a facile and
low-cost process that allows solid (biochar), liquid (bio-oil), and gas (syngas, e.g., hydrogen
carbon dioxide and nitric oxide) products to be made [19]. It is performed at variable
temperature (300 to 900 ◦C) for several seconds (fast pyrolysis) or hours (slow pyrolysis)
without oxygen. Slow pyrolysis produces more yields of biochar than rapid pyrolysis [20].
The gasification produces solid, liquid, and mainly gas products, partially oxidizing the
feedstock with oxygen, air, steam, etc., at a temperature higher than 700 ◦C. The pyrolysis
and gasification usually proceed without water. The hydrothermal carbonization is per-
formed in a reactor at a temperature below 250 ◦C [21]. The flash carbonization converts
the feedstock into solid and gas products in around 30 min with a controlled pressure
(1–2 Mpa) and variable temperature (300 to 600 ◦C) [22]. The torrefaction converts feed-
stock into hydrophobic solid products, removing oxygen and moisture at 200 to 300 ◦C [23].
Temperature, retention time, heating rate, and air conditions affect biochar’s physiochemi-
cal properties [24]. Chemical (acidification, alkalinization, oxidation, and carbonaceous
materials modification) and physical modifications (gas and steam purging) can improve
biochar’s environmental performance [25]. The surface area is improved by alkaline, stem,
gas, and carbon material modifications. The ratio of carbon, nitrogen, and oxygen affects
biochar’s properties. The basic nature of biochar is subject to the ratio of nitrogen to carbon.
The hydrophilic properties depend on the ratio of oxygen to carbon [25]. Biochar has
been employed to remediate organic pollutants by means of hydrogen binding, surface
complexation, electrostatic attractions, and pi–pi and acid–base interactions [26], and the
heavy metals in soil by precipitation and surface complexation chemical reduction, cation
exchange, and electrostatic attraction [26]. Moreover, biochar can improve cation exchange
capacity, neutralize acidic soil, and enhance soil fertility [27,28]. Recent studies have shown
biochar’s great potential to improve the decomposition of organic solid waste by offer-
ing habitats and favorable growing conditions for microorganisms [29] and removing
pollutants (i.e., antibacterial drug) from water and wastewater [30,31].
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3. Bioenergy (Biogas, Bioalcohol, Biodiesel, and Bioelectricity)

The global market value of bioenergy is approximately US $25.32 billion and is
expected to increase by US $40 billion by 2023. Waste is transformed into bioenergy by
biological (e.g., anaerobic digestion, fermentation, esterification, and electro fuel cells) and
physicochemical methods (e.g., pyrolysis, incineration, gasification, and landfills) [32–35].

Microbial communities produce biogas by anaerobic digestion [36,37]. Reactions of the
triacylglycerols’ esterification/transesterification with alcohols and enzymes or chemical
catalysts allow biodiesel’s production [38–41]. Microbial fuel cells and fermentation provide
bioelectricity and bioalcohol [42]. The productivity of the biological process used to convert
biowaste into energy is affected by regional climatic conditions and the elevated cost of the
solvent used to extract triacylglycerol for the production of biodiesel and alcohol in order
to make bioalcohol [43,44].

Various strategies were used to pretreat the biowaste, according to their origin (e.g.,
agro-industry, municipal waste, and animal waste), before conversion into bioenergy.
Biowastes composed of hemicellulose, cellulose, and lignin need physical, chemical, physic-
ochemical, or biological pretreatment to make carbohydrate polymers available to hydro-
lases [41]. Animal waste must be ground uniformly and exposed to high temperatures
(115–145 ◦C) to release fat [45]. Cooking oil must be filtrated, distillated (to eliminate
water), and adsorbed to remove free fatty acids produced during the frying process [46].
Waste enriched with salt and heavy metals must be subjected to electrodialysis [47] or acti-
vated carbon adsorption [48]. Regarding technological solutions used to convert biowaste
into bioenergy, various biological methods (e.g., transesterification, anaerobic digestion,
microbial fuel cells, and fermentation) and physicochemical methods (e.g., incineration,
landfill, gasification, and pyrolysis) have been used [38,49,50]. Biogas is produced via
the anaerobic (without oxygen) digestion of microorganisms under controlled pH and
temperature conditions. Four steps are performed to obtain gas: hydrolysis (hydrolases
convert biomass into amino acids, sugars, and fatty acids), acidogenesis (acidogenic bacte-
ria convert these molecules into fatty acids, CO2, and H2), acetogenesis (acetogenic bacteria
convert the latter into acetic acid), and methanation (methanogenic bacteria convert all the
intermediate products into methane, water, and CO2) [51,52]. The biodiesel is produced by
transesterifying animal fat, vegetable oil, or microbial oil (using basic, acidic, and enzymatic
catalysts) in alcohols [32,53] before extracting them with chemical, mechanical, supercritical
fluid, enzymatic, microwave-assisted, or accelerated solvent extraction processes [54,55].
Alcohol is produced via the fermentation of biowaste, which is mainly obtained from food
crops for security reasons [56]. Bioelectricity is produced through the use of microbial fuel
cells under anaerobic conditions [57,58]. Saccharomyces, Aeromonas, Escherichia, Candida,
Clostridium, Shewanella, and Klebsiella are microbes that are able to produce electricity in
a microbial fuel cell [59–62]. An exogenous mediator can enhance a microbial fuel cell’s
performance and decrease microbial growth, but it is toxic.

4. Recovery of Bioactive from Food Waste

Biowastes, especially food wastes, contain bioactive compounds that are suitable for
producing functional foods, supplements, and nutricosmetics [63–67]. Vegetables and fruits
have primary metabolites (e.g., amino acids, lipids, dietary fibers, cellulose, hemicellulose,
lignin, and fatty acids) [68–70], and secondary metabolites (e.g., flavonoids, phenols,
alkaloids, glucosinolates, carotenoids, and terpenes) [71]. The extraction of bioactive
compounds from biowastes depends on the source, functionality, chemical properties,
and end-use. Various temperatures, pH values, electromagnetic waves, and extraction
techniques are used (e.g., supercritical fluid, subcritical water, ultrasonic wave, microwave,
and pulsed electric field) [72]. One of the oldest approaches used to obtain bioactive
molecules from biowaste at research and industrial levels is solid-state fermentation [73].
Solid-state fermentation (SSF) uses micro-organisms grown on solid substrates without an
open liquid [74]. It employs fungi or bacteria (specific strains or mixed culture) to obtain the
maximum nutrient attention from the substrate for fermentation. In the SSF, the substrates
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(e.g., byproducts of cassava, grains, potato, sugar beet pulp, beans, etc.) used as a nutrient
source [75] are solid or soaked (sugars, lipids, organic acids, etc.) with a liquid medium [76].
The SSF contributes to high volumetric productivity by increasing product concentrations
and reducing effluent production (e.g., N2O, CH4, and NH3) [76]. It improves the functional
properties of the solid substrates that originated from agro-industrial wastes that affect
proteins’ physicochemical properties (e.g., solubility) and structures [77,78]. The fungi
used in SSF transform proteins with many amino acids into proteins with few units,
improving the substrate’s solubility in the water system [78]. Solid-state fermentation
improves the water and oil binding properties affecting the hydrophobic and hydrophilic
domains of the solid substrates’ components [79,80] and entrapping water and oil against
gravity after opening the protein structures. Moreover, SSF enhances the cohesive nature
of the proteins by forming large air cells [81] and influences the emulsion stabilizing
and forming properties that alter the solid substrate’s solubility, molecular flexibility,
and surface hydrophobicity [82]. SSF was used to extract protein from pumpkin, potato,
cabbage, cauliflower, and brinjal [83], protease from vegetable waste [84], lycopene from
tomato waste [85], and phenolics from rice bran [86]. Liquid fermentation (or submerged
fermentation (SmF)) is mainly used in industrial processes since it has low cost, high
yield, and little contamination. Water or energy requirements and physical space are some
disadvantages of this technology [86]. SmF was used to obtain the enzyme pectinase from
fungi [87] and agro-wastes [88–91], and exo-polygalacturonase from orange peel [92].

4.1. Innovative Processes Used to Extract Bioactive from Food Waste
4.1.1. Supercritical Fluids Extraction

Supercritical fluids have a higher solute capacity, diffusivity, and lower viscosity
than other solvents since they, similarly to gases, quickly diffuse into a solid matrix and,
in a comparable manner to liquids, dissolve compounds. Therefore, extraction with
supercritical fluids produces better yields in shorter extraction times than extraction with
other solvents [93]. In the separators, the solid (e.g., bioactive, etc.) is stored at the bottom,
and fluid is discharged into the environment or recycled [94]. Supercritical CO2 is mainly
employed to extract nonpolar or partially polar bioactive molecules from food byproducts
under temperature, and pressure-controlled conditions (usually T = 31 ◦C and P = 74 bar) as
CO2 is non-toxic, non-explosive, and it is easily removed from the finished product [95,96].
CO2 is used with a co-solvent or a modifier to improve the solvation power of biomolecules
in the solid matrix [97]. This method employs large volumes of organic solvents. Therefore,
supercritical antisolvent extraction methodology was proposed to reduce the consumption
of organic solvents. The solvent is completely miscible in the supercritical antisolvent,
the solute precipitates as a powder, and the liquid is extracted. Unfortunately, molecules
that are soluble or partly soluble in CO2 are discharged [98]. The influence of temperature
and pressure on extraction performance varies according to the material type, origin,
and target compound. The mixture’s critical point indicates the temperature, pressure,
and composition at which the mix (CO2–organic solvent) is supercritical. Supercritical
antisolvent extraction methodology has been used to fractionate amino acids extracted
with ethanol from tobacco leaves [99] and phospholipids from soybean oil [100]. Slow
extraction kinetics limit the use of supercritical antisolvent extraction methodologies [101].
The combined use of ultrasound or enzyme enhances the extraction efficiency [72].

4.1.2. Supercritical Water Extraction

Subcritical water extraction involves the heating of water (T= 100–320 ◦C) at a con-
trolled pressure (~20–150 bar) to enhance the dissolution of nonpolar molecules. At these
conditions, the dielectric constant of water decreases (~27 at 250 ◦C), becoming comparable
to that of methanol and ethanol (33 and 24, respectively, at 25 ◦C), together with the viscos-
ity, polarity, and surface tension and improves the nonpolar molecules dissolution [102].
This technology was employed to extract phenolics from onion [103] and kiwi [104], and
lipids [105] and phenolics [106] from red wine grape pomace. Pretreatments with ultra-
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sonication, microwaves [107], and gas hydrolysis (N2 or CO2) accelerate the extraction
time [72]. The water’s high reactivity and corrosiveness (at a subcritical state) limit this
technology’s use [108].

4.1.3. Pressurized Liquid Extraction

Pressurized liquid extraction uses elevated temperature and pressure to improve
the performance of traditional liquid extraction techniques [109]. The high temperatures
disrupt the analyte–sample matrix interactions (due to hydrogen bonding, van der Waals
forces, and dipole attraction) [110], and improve the solvent wetting of the sample (reduc-
ing the surface tension of the solutes, matrix, and solvent) [111] and the diffusion of the
molecules into the solvent. High temperatures’ disadvantages include poor extraction selec-
tivity, disintegration, and hydrolytic degradation of the thermo-labile compounds [112,113].
The high pressures facilitate the analyte extraction, thereby facilitating contact between
the solvent and the analytes, controlling the air bubbles within the matrix, disrupting the
matrix, and forcing the solvent into the matrix pore [114]. Water is used to pressurize hot
water extraction (PHWE) or extract subcritical water (SWE). SWE was previously used to
extract phenolics from biowaste [115].

4.1.4. Ultrasound-Assisted Extraction

Ultrasound-assisted extraction employs the frequencies of the ultrasonic region (20 kHz
to 100 kHz) to extract biomolecules from biomaterials. Humans cannot detect the frequencies
that determine vibration, acoustic cavitation, and mixing effects in liquid media. The
physical forces of the ultrasonic waves determine shockwaves, microjets, and turbulence,
which destroy cell walls, facilitating the extraction of biomolecules [116,117]. Acoustic
cavitation enhances the coalescence of multiple bubbles and mass accumulation in the
bubble. The bubbles initially grow and successively collapse when they reach a critical size
(resonance). The resonance is inversely related to the applied frequency and directly related
to temperature [118]. The cavitation intensifies the movement of the solvent (e.g., water,
methanol, ethanol, and hexane) into the cell-matrix and the extraction of the biomolecules.
The ultrasound-assisted extraction uses shorter times, enhances the extraction rate, and
provides a higher yield than conventional techniques [72]. Longer extraction times can
cause undesirable changes in the extract [72]. Phenolics from the pomegranate peel [119]
and grape pomace [120] were extracted by ultrasound-assisted extraction.

4.1.5. Microwave-Assisted Extraction

Microwave-assisted extraction is used in combination with solvent extraction to
improve yields, and to reduce the solvent volumes and extraction times [121–123]. The
polar materials absorb the microwave energy and turn it into heat by dipole rotation and
ionic conduction. The ranges of the electromagnetic field vary from 300 MHz to 300 GHz.
Solvents with a high dielectric constant are used to improve the extraction efficiency of
this technique [124]. Each microwave system consists of a source, waveguide (magnetron),
and applicator. The magnetron contains a vacuum tube with an electron-emitting cathode
and anode coupled by the fringing fields. The magnetic field strength and tube current
control the magnetron’s power output. The transmission lines and waveguides regulate
the electromagnetic wave. The waveguide can be used for microwave heating when wall
slots introduce the material, and a matched load terminates the waveguide (traveling
wave devices).

Alternatively, the microwaves can be irradiated by slot arrays or horn antennas of
waveguides (standing wave devices) [125]. The solvent type, irradiation time, microwave
power, and extraction temperature affect the performance of MW extraction [126]. The
solvent must be able to solubilize the bioactive molecules (with a Hildebrand solubility
parameter similar to those of the extracting compounds) [127] and absorb microwave
energy (polar solvents with a high dielectric constant such as water and ethanol have a
better capacity to absorb electromagnetic energy and sell it as heat) [128]. The industrial
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scale-up process is realized in apparatuses that are capable of withstanding high pressures,
which constitute appropriate reaction vessels [129]. Alkaloids from Macleaya cordata [130],
polyphenols from rice [131] and roselle [132], oligosaccharides from food waste [133], and
pectins from citrus [134] were extracted using this technology.

4.1.6. Microwave-Assisted Enzymatic Extraction

Microwave-assisted enzymatic extraction involves microwaves and a mixture of en-
zymes (e.g., pectinase, celucast, and viscozyme) to disintegrate fruit and vegetable matrices
and improve the extraction of biomolecules. The synergetic effect of microwaves and more
than one enzyme decreases the enzyme cost and improves yields [135]. This technology
was used to extract fish protein hydrolysates from rainbow trout [136], phenolics and
anthocyanins from soybean [137], and oligosaccharides from American Cranberry [138].

4.1.7. Pulsed Electric Field Extraction

Pulsed electric field extraction is a nonthermal method that applies moderate elec-
tric field strength for some milli- or nanoseconds to destroy wall cells [139]. The matrix
exposed to electric fields collects charges on any side of the membrane surface, making
transmembrane potential and pores when the transmembrane potential reaches the critical
limit into the weaker sections of the membrane (cell electroporation) [140]. The cell electro-
poration improves the intracellular compounds’ release and, consequently, their extraction
yields [141,142]. Elective field intensity, pulse number, specific energy input, and treatment
temperature affect the pulsed electric field extraction. Electric field intensity influences
the cell membranes’ electroporation [143]. Pulsed electric field extraction is completed
when the strength and electric field’s applied voltage are above the critical transmembrane
potential. The electroporator is an electrical system used for the extraction process. It com-
prises a pulsed power modulator (which offers the high-voltage pulses to the treatment
chamber) [144], a treatment chamber, and a control unit [145]. Power switches transfer
the stored energy reasonably economically [146]. Problems related to using this technique
are solvent electrolysis and electrode corrosion, which can occur when the electric field
strength is high enough. The electrochemical reactions can produce metallic ions and reac-
tive oxygen species. Metallic ions can catalyze the decomposition of hydrogen peroxide
into hydroxyl radicals via the Fenton reaction [147,148]. It is possible to produce a pretreat-
ment or use a continuous-flow treatment chamber to achieve a solid–liquid extraction. This
technology, which is helpful in the extraction of heat-sensitive compounds [149], is used to
extract bioactive molecules from eggshells [150], tomato juice [151], fishbone [152] wastes
produced in the cooking oil industry [153], and pectin from the sugar-beet [154]. The main
limitations of this technology are its deficiency of reliable and more practical electrical
systems, the fouling and corrosion of the electrodes in the treatment chamber [145], the
lack of knowledge of different foods’ specific internal energy (J/kg) efficiencies, and its
high electricity consumption levels (which promotes CO2 emissions) [155].

4.1.8. High Voltage Electrical Discharges

The high voltage electrical discharges (HVED) technique is a nonthermal technology
based on the electrical breakdown in liquids, which produces shock waves and free radicals.
During the treatment, a gas pumped into the reactor ionizing forms cold plasma, and an
electric field enhances the cell membrane’s permeability and improves the release of
metabolites [156]. The high intensity (~10 kA) and voltage (30–40 kV) obtained by short
pulses (µs–ms) between two electrodes are helpful to maximize the extraction [149]. This
technology was employed to extract bioactive compounds from pomegranate peel [157],
peanut shells [158], sesame cake [159], orange peel [160], and grapefruit peels [161].

4.1.9. Liquid Biphasic Flotation

The solvent sublation and aqueous two-phase extraction system are involved in liq-
uid biphasic flotation [162]. The biphasic flotation equipment comprises a glass column,
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a sintered disk, and a compressed air system [163]. Bubbles produced with air that is
compressed into the glass column are used to adsorb the active compounds. The sur-
face hydrophilicity and hydrophobicity of biomolecules affect the adsorption level [164].
The top and bottom layers of the column contain lower and higher polarity molecules,
respectively [163].

4.2. Primary Metabolites Recovered from Agri-Food
4.2.1. Proteins

Proteins are macronutrients with a central role in human nutrition. They are formed
by amino acid units. Proteins from food waste sources are used as value-added ingredients
and/or products, including human foods and animal feed. The high-value products are
used as foaming, thickeners, and gel stabilizers [165], and the low-value products are used
as fish and animal feed [166]. Food waste protein sources can be classified into animal
and plant sources. Plant byproducts used as protein sources include oat, rice, wheat bran
protein [167–169], and defatted meals from the oil industry. Wheat bran contains between
13% to 18% of proteins [167], the defatted meals obtained from the oil industry (e.g., canola,
sunflower, palm, rapeseed, and peanuts) have between 15% to 50%, and soybean curd
residue contain 27% protein [170]. Sugar beet and mushroom flakes are used as a feed
ingredient source since they contain 40% essential amino acids [171]. Finally, food waste
proteins obtained by animals (e.g., meat, fishmeal, bone meal, yogurt, and cheese) are
considered good-quality protein sources that are of high biological value [172]. Some
extraction methods were used to isolate protein, including enzyme-assisted, cavitation-
assisted, ultrasound-assisted, hydrodynamic cavitation, microwave-assisted, supercritical,
liquid biphasic flotation, and hybrid extractions [173]. In enzyme-assisted extraction, the
protein recovery depends on the enzyme ratio, substrate characteristics, extraction time,
and pH [174]. Protein isolates were generally obtained by defatted pressed legume cakes
and animal sources via precipitation at the isoelectric point [175]. Hydrolysate from protein
isolates is also used [176–178] since it produces higher solubility products and smaller
peptides [178,179]. Cavitation-assisted extraction is used in large-scale protein extraction.
Low frequency (20 to 100 kHz), temperature, sonication power, and treatment time affect
the protein yield [180]. Ultrasound-assisted extraction is coupled with enzyme-assisted or
microwave-assisted extraction technologies to improve protein extraction efficiency [176].
Microwave-assisted extraction of proteins can depend on nonuniform temperature dis-
tribution and closed- or open-type vessel systems [181,182]. It enhances the proteins’
functional properties (e.g., water absorption, emulsifying, foam activity, and foam sta-
bility indexes) [176]. Supercritical extraction of proteins depends on temperature [183]
and solvent concentration [184]. Chemical dehydration and/or evaporation are required
to remove moisture. These procedures can affect protein purity [176]. Liquid biphasic
flotation has high separation efficiency and determines the minimal protein loss [163,185].
Cell receptors, drug residues in food, and wastewater treatments were extracted using this
technology [186].

Possible Uses of the Recovered Proteins

The food waste proteins can be utilized in feed supplements to enhance the food
products’ functional properties [187]. Milk protein and whey protein are used to enrich ice
cream [188], improve the mixture’s viscosity, and decelerate the melting time [189]. The
animal proteins can be used as a foaming agent with recycled PET aggregates to produce
cementitious concrete composites [190]. Whey protein can be employed to produce plastic
films for food packaging materials [191].

4.2.2. Pectins

Pectins are polysaccharides that are formed by d-galacturonic acid, d-galactose, or
l-arabinose units, and are found in the cell walls of plant tissue [192]. The degree of
pectin esterification affects the pectins’ functional properties as a thickening and gelling
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agent. Conventional (e.g., extraction with the mineral acids) and innovative techniques
(e.g., ultrasound- or enzyme-assisted microwave- extraction) were used to extract them
from biowaste. Traditionally, pectin is extracted via continuous stirring with water that
is acidified (e.g., in nitric, 0.05–2 M sulfuric, phosphoric, hydrochloric, or acetic acid) for
1 h under controlled temperature (80 and 100 ◦C) [193]. The maximum pectin yield is
obtained using hydrochloric acid at pH 2.0 [194]. Innovative extraction methods help in the
extraction of pectins, disrupting the cell membrane’s structure by electromagnetic or sound
waves and facilitating the contact between solvent and bioactive molecules. Among the
most innovative approaches, ultrasound-assisted technology improves (+20%) the pectins’
molecular weight and extraction yield compared to the traditional method under the same
temperature, pH, and time conditions [195]. The microwave-assisted extraction of pectins
is affected by the weight of the biomaterial, the power of the wave, the time of extraction,
and the pH. For example, the optimum processing conditions to extract pectins from lime
bagasse are a sample weight of 6 g, a wave power of 400 W, a time of extraction of 500 s,
and a pH of 1 [196]. Finally, enzymes can enhance the extraction process by hydrolyzing
the plant cell wall matrix (enzyme-assisted extraction). The enzymes used to extract pectins
are protease, cellulase, alcalase, hemicellulase, xylase, α-amylase, polygalacturonase, b-
glucosidase, endopolygalacturonase, neutrase, and pectinesterase [197].

Possible Uses of the Recovered Pectins

The food industry employs pectins as emulsifiers, stabilizers, thickeners, and gelling agents.
The pharmaceutical industry uses them as drug-controlled release matrices and prebi-

otic, hypoglycemic, hypocholesterolemic, and metal-binding agents [198].
Finally, the functionalization of pectins with nanomaterials and phenolics can produce

active packaging films with antimicrobial properties [199].

4.2.3. Omega-3 from Fish Waste

Omega-3 fatty acids (e.g., eicosapentaenoic acid (EPA) and docosahexaenoic acid
(DHA)) have the first double bond on carbon 3, counting from the terminal carbon. Fish are
a good source of omega-3. They accumulate them from plankton, algae, and prey fish [200].
The omega-3 fatty acids regulate cell membranes’ architecture and permeability, produce
energy and eicosanoids, and modulate the human body’s pulmonary, cardiovascular, im-
mune, reproductive, and endocrine systems [200]. Their potential health benefits include
the prevention of cancer, cardiovascular disease (CVD), Alzheimer’s disease, depression,
rheumatoid arthritis, attention deficit hyperactivity disorder (ADHD), dry eyes, and macu-
lar degeneration [201]. Numerous apparatuses and techniques were proposed to extract
omega-3 fatty acids from fishes. Traditional extraction techniques use organic solvents (e.g.,
hexane, methanol, petroleum ether, and chloroform), which cannot be employed on an
industry scale [202,203]. Soxhlet extractor, ultrasounds, or microwave-assisted extractions
decrease the time and use of solvents [204]. On an industrial scale, fish oil extraction is
achieved through a wet-reduction or wet-rendering process [205]. Supercritical fluid extrac-
tion (SFC) [206] solves the problem of n-hexane use for extraction in traditional extraction
methods, uses low temperature to reduce the oxidation of polyunsaturated fatty acids,
decreases residual solvent contaminants (polychlorinated biphenyls and heavy metals),
does not modify the biomass, and allows other bioactive molecules to recover. The ethanol
used as a co-solvent is much more food-compatible than hexane [207]. The disadvantage
of this method is the extract’s smell due to volatile compounds. Encapsulation decreases
this effect and improves the extracts’ palatability [208].

Possible Uses of the Recovered Omega-3

Omega-3 fatty acids are employed in supplements and fortified food and feed [209].
Moreover, they can be used to ameliorate cutaneous abnormalities and maintain skin
homeostasis in cosmetics [210].



Foods 2021, 10, 2652 9 of 26

4.3. Secondary Metabolites Recovered from Agri-Food
4.3.1. Phenolic Compounds from Biowaste

Phenolic compounds (PC) are secondary metabolites characterized by an aromatic
ring with more hydroxyl substituents. Plants produce them in response to environmen-
tal stimuli. They vary greatly by type and level based on target species and biotic and
abiotic factors. Biocontrol agents, such as Trichoderma strains, can interfere with phenolic
production in plants [11,13,65,211,212]. Phenolic compounds have antioxidant and an-
timicrobial properties [8] and beneficial potential for human health, such as antitumor,
anti-obesity, anti-inflammatory, and ultraviolet (UV) radiation protective activities. Iso-
lated and dosed phenolic compounds [213] were used to prepare food supplements [9,67],
nutricosmetic formulations [10,64,71], and nutraceutical food [66,214]. The process used
to recover PC from biowaste consists of a pre-treatment (thermal treatment of the sample
followed by electro-osmotic dewatering, foam mat, pulverization, or micro-filtration) [215],
extraction (obtained by maceration, or assisted by microwave, ultrasound, supercriti-
cal fluid, pressurized liquid, pulsed electric field, high voltage electrical discharges, or
multi-technique) [216], concentration (obtained by distillation, or steam distillation), and
purification (obtained by microfiltrations, ultrafiltration, resins, or chromatography) [216].

Anthocyanins from Agri-Food Waste

Anthocyanins are water-soluble antioxidants pigments that belong to the flavonoid
family. They have a C6-C3-C6 skeleton [217]. The flavylium cation gives the red color to the
anthocyanins [218]. Temperature, enzymes, pH, light, metallic ions, oxygen, sulfites, and
interaction with flavonoids, phenolics, ascorbic acid, and sugars can affect anthocyanins’
integrity according to their chemical structure and food concentration. Anthocyanins
subjected to high temperatures and prolonged heating oxidize. Moreover, the deglycosy-
lation process, nucleophilic attack of water, cleavage, and polymerization determine the
structure breakdown. These structural changes decrease anthocyanin content in the final
product [217]. Sulfite adds colorless adducts interrupting the conjugated π-electron sys-
tem [218]. Anthocyanin association reactions (e.g., self-association between anthocyanins
via hydrophobic interactions, co-pigmentation between anthocyanins and other phenols
through van der Waals interactions between the planar polarizable nuclei or binding the
sugar and the flavylium nucleus covalently, and metal complexing between anthocyanins
and with metals, via their o-hydroxy groups) defend the flavylium chromophore from the
water’s nucleophilic bond, enhancing their stability and color [219]. The anthocyanins can
manage and/or prevent chronic degenerative diseases, including cancers, cardiovascular
diseases, type 2 diabetes mellitus, dyslipidemias, and neurodegenerative diseases [220].
Several biochemical parameters involved in the inflammatory responses (e.g., interleukins
(ILs), tumor necrosis factor-alpha (TNF-α), nuclear factor-kappa B (NF-kB), and cyclooxy-
genase 2), which are able to improve malonaldehyde and reactive oxygen species, and
to reduce the activity/expression of antioxidant enzymes (e.g., catalase and superoxide
dismutase), have been related to the prevention or development of these diseases [221–223].
The anthocyanins improve the sensitivity, secretion, and lipid profile of insulin by inhibit-
ing the limiting enzyme of cholesterol synthesis (3-hydroxy-3-methylglutaryl-coenzyme A)
or adipose triglyceride lipase engaged in triglyceride breakdown in diabetics and predi-
abetic subjects [224,225]. Moreover, anthocyanins regulate the expression of adipokines,
thereby enabling the avoidance of insulin resistance and the progression of type 2 diabetes
mellitus [226]. Anthocyanins can reduce triglycerides, cholesterol, LDL-cholesterol, and
inflammatory biomarkers regulating the expression/activity of pro-inflammatory cytokines
(e.g., IL-6, TNF-α, and IL-1A), pro-inflammatory enzymes (e.g., COX-2), and NF-κB signal-
ing pathways, decreasing the production of pro-inflammatory molecules (e.g., C-reactive
protein), and improving SOD and proliferator-activated receptor-γ expression [227,228].
Finally, anthocyanin supplementation can enhance cardiovascular function [229,230], regu-
late gut microbiota composition [231,232], improve exercise recovery effectiveness [233],
decrease ulcerative colitis symptoms [234], reduce ocular fatigue [235], and promote healthy
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facial skin conditions [233]. Some innovative processes are proposed for the extraction of
anthocyanin from biowastes, such as the extractions assisted by a pulsed electric field, mi-
crowave, and ultrasound technologies. The enhancement of the extraction of anthocyanin,
helped by pulsed electric field technology, is related to permanent (irreversible) or tempo-
rary (reversible) pores in the cell membranes, which facilitate the anthocyanins release into
the medium [217]. The target compounds’ extraction does not constantly improve with the
increasing of the electric field strength, specific energy input, treatment time, temperature,
and pulse number [236,237]. For example, studies on blueberry extraction showed an
improvement (+75%) in the extraction of anthocyanin when the specific energy input was
increased [238]. Instead, studies showed that improving electric field intensity and specific
energy input does not increase the anthocyanins content extracted from the sweet cherry
byproduct [239]. The application of high intensity can lead to anthocyanin degradation.
instead, the application of low/moderate-intensity enhanced anthocyanin recovery with-
out anthocyanin’s degradation/modification. The pulsed electric field technology allows
the selective extraction of the single anthocyanin classes [240]. The pulsed electric field
technology improves the monoglucoside anthocyanin extraction compared to acylated
glucoside anthocyanins from grape pomace [241] and the extraction of cyanidin, delphini-
din, and petunidin glycosides from blueberry byproducts [242]. The anthocyanin recovery
from grape pomace enhances when the microwave and irradiation time improve [243], and
longer irradiation times enhance anthocyanin recovery from wine lees [243], sour cherry
pomace [244], and saffron floral bio-residues [245]. Nevertheless, the excessive intensifi-
cation of MW extraction process parameters can decrease the extraction of anthocyanin
from biowaste due to their degradation (anthocyanins are thermolabile compounds) [149].
Thus, it is recommended to use extraction temperatures below 60 ◦C to minimize the an-
thocyanin’s losses. The extraction time also impacts MW extraction. The excess time causes
the degradation of anthocyanin due to higher exposure to microwave powers and high
temperatures [246]. The high microwave power determines internal overheating, leading
to carbonization and isomerization, and/or degradation of molecules [129]. According to
some authors, anthocyanins’ thermal degradation determines the loss of sugar moieties,
the formation of a carbinol pseudo base, and chalcone by hydrolysis of the remaining sugar
moiety and cut between C2 and C3 [237]. According to others, the degradation of antho-
cyanin is due to decomposition reactions of water molecules and the production of reactive
oxygen species [247]. Studies on anthocyanin recovery from eggplant peel and fig peel
showed that the recovery of anthocyanin decreased when the microwave powers and irra-
diation times improved [248]. Studies on grape pomace [240], blackcurrant bagasse [249],
blueberry peel [250], black rice bran [251], and corn husk [252] showed that the extraction
of anthocyanin decreased when the irradiation times were long. Finally, anthocyanins’
structures impact their recovery from bio matrices. For example, anthocyanin analogs
that are unsubstituted at C3 of the C-ring are more stable to MW treatment than other
anthocyanins [253], as well as acylated anthocyanins than non-acylated ones [254]. Another
technique used to improve the extraction of anthocyanin is ultrasound. Acoustic cavitation
can determine the thermal and chemical degradations of the anthocyanins since the acous-
tic cavitation phenomenon can determine thermal stress and free radical formation [255].
Long processing times can cause severe degradations in anthocyanins [256]. For example,
the anthocyanin extracted from black chokeberry wastes degrades when an ultrasound
water bath (30.8 kHz) for 60 min at 70 ◦C, with a nominal ultrasound power of 100 W, and
50% ethanol in water are used [257]. Using enzymes (pectinase compound and pectinase)
combined with ultrasound can improve the extraction technique’s performance [256].

Possible Uses of the Recovered Phenolics

Phenolics are used as functional food additives. Their antimicrobial and antioxidant
activities enhance the shelf-life of foodstuffs [258]. Anthocyanins can be employed as a
coloring additive (EFSA code E163).
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Phenolic compounds can be employed as supplement ingredients [259], pharmaceuti-
cal [258], and cosmeceutical agents [71].

Caffeic and gallic acids can be used in chitosan-based biofilms to inhibit the growth
of Bacillus subtilis and Staphylococcus aureus and enhance the film’s oxygen and vapor
permeability [260].

Tannins could develop protein-based biofilms since they can interact with proteins
through non-covalent bonds and hydrogen bonding [261].

Finally, the phenolics might be helpful to the textile industry as natural dyes with
antimicrobial properties [261].

4.3.2. Carotenoids from Agri-Food Waste

Carotenoids are fat-soluble pigments with excellent antioxidant activity (e.g., sin-
glet oxygen-quenching capacity and free radical activity) [262,263]. The two main classes
of carotenoids are xanthophylls (yellow color) that contain oxygen and carotenes (or-
ange color) that consist of linear hydrocarbons, which can cyclize at both ends of the
molecule [71]. Carotene supplementation is related to the inhibition of atherosclerosis-
related multiple sclerosis [264], cardiovascular diseases [265], macular degeneration [266],
and degenerative diseases [267]. Carotenes are most bioavailable in their natural trans-
form [268,269]. Light, metals, heat, and pro-oxidants can isomerize the trans-form into
cis-form [270]. The extraction of carotenoids is achieved using organic solvents (e.g.,
hexane, methanol, acetone, and ethanol or solvent combinations). The supercritical fluid
extraction with CO2 improves the extraction’s efficiency, as is also the case for the extraction
of carotenoids from carrot peels (+86.1% at 349 bar) [271]. In addition, the microwave [272]
and ultrasound increase the carotenoids’ recovery [273]. Finally, an extraction method of
lycopene and pectin from tomato pomace [274] and pink guava decanter [275], which relied
on a simple water-induced hydrocolloidal complexation, was tested. The pH, temperature,
solid loading, and stirring affected the complexation of carotenoids and pectin [276].

Possible Use of the Recovered Carotenoids

Carotenoids can be used as food and feed additives. Supplementation of the animal
diet with carotenoids improves the nutritional quality of animal products [277].

Moreover, they can be employed as a food colorant to improve food desirability and
acceptability [278].

4.3.3. Essential Oil from Agri-Food Waste

Essential oils are lipophilic substances, including terpenic hydrocarbons (e.g., monoter-
penes and sesquiterpenes) and oxygenated derivatives (e.g., aldehydes, phenols, esters,
and alcohols) [279]. The traditional methods used to extract the essential oils from plant ma-
trices are liquid–solvent extraction and steam- and hydro-distillation. High temperatures
(around 100 ◦C) can lead to the decomposition of essential oils, and the use of pentane and
hexane can determine toxic organic residues. Supercritical fluid extraction (using carbon
dioxide) is the most widely applied innovative technological process. Carbon dioxide is
suitable for the extraction of lipophilic compounds since it has a polarity similar to pentane
as well as other desirable characteristics such as being non-flammable, non-toxic, available
in high purity, and easily removed from the extract, as well as having low temperature
(32 ◦C) and critical pressure (74 bar). Favorable extraction conditions are related to the
solubility of essential oil compounds in supercritical CO2 [264], the plant’s pretreatment
(used to facilitate the extraction by improving solvent contact and breaking cells), and
online fractionation (used to achieve the separation of the essential oil from cuticular
waxes) [280]. Essential oils from Lamiaceae (e.g., oregano, thyme, rosemary, sage, basil,
and marjoram) and citrus (e.g., lemon, orange, etc.) family plants [280] were extracted
using this technology. The fractionization, which can be achieved in the mode of multi-step
fractionation (successive steps in which CO2 density improves) or online fractionation
(using a cascade decompression system consisting of two or three separators in series),
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can improve the selectivity of supercritical fluid extraction. This strategy can be employed
when molecules with different solubilities in supercritical CO2 are extracted from the same
matrix [280].

Possible Uses of the Recovered Essential Oils

Essential oils can be used as flavors, fragrances [281], and antimicrobial agents [282]
in food and cosmetic products.

Moreover, they can be incorporated into food packaging to improve the UV barrier
property and surface hydrophobicity to protect foods against oxidation and microbial
injuries [283].

Finally, they can be used as green pesticides in agriculture [284].

4.3.4. Organosulfur Compounds from Agri-Food Waste

Organosulfur compounds are thiols with sulfur in their structure. They include
glucosinolates (isothiocyanates), allyl sulfides, indoles, and sulforaphane [285]. Glucosi-
nolates are thioglucosides that are produced in cruciferous vegetables of the Brassica
family (e.g., broccoli, radish, cabbage, and cauliflower). They are responsible for the
plant’s defense against insects and pathogens. Moreover, they have some health-beneficial
properties, including antioxidant (e.g., scavenge free radicals) [286], anti-inflammatory
(e.g., activating detoxification enzymes, suppression of interferon regulatory factor 3, and
macrophage migration inhibitory factor) [287,288], cardioprotective (e.g., they reduce
low-density lipoproteins), neuroprotective, and anti-carcinogenic attributes (detoxifying
carcinogens and toxicants) [289,290]. The conventional technologies used to extract them
employ boiling water or aqueous organic solvent extraction [291] in a single extraction
process or repetitive cycles [292]. Among the non-conventional extraction technologies,
ultrasound techniques (20 kHz and 400 W) were used to improve the extraction’s yield
of the sinigrin from Indian mustard (+70.67% recovery than conventional techniques),
microwave techniques were sued to decrease the extraction time of sulforaphane from
cabbages (30 min for conventional extraction to 1.5–3 min for microwave-assisted tech-
nique) [293,294], and supercritical technology was used to extract allyl isothiocyanates
from wasabi (SC-CO2, 35 ◦C, and 25 Mpa) [295].

Allyl sulfides, produced by alliaceous vegetables (e.g., shallots, chives, leeks, and
scallions), originate from S-alk(en)yl-L-cysteine sulfoxides and γ-glutamyl-S-alk(en)yl-L-
cysteines. Among these, diallyl sulfides are responsible for the pungent aroma [296,297].
Organosulfur compounds have some health-beneficial properties, including anticancer
(e.g., they promote apoptosis, xenobiotic-metabolizing enzyme production, and carcinogen
detoxification, in addition to the production of the enzymes that are responsible for DNA
repair, are engaged in cell cycle arrest, and decrease the metabolism of nitrosamines and
hydrocarbons), antioxidant (e.g., they scavenge free radicals), and antimicrobial proper-
ties [298,299]. They are thermally unstable and are lost during sterilization, pasteurization,
drying, and cooking [300]. High-temperature processing decreases their bioavailabil-
ity [301,302], while high-pressure processing reduces their anticancer, antimicrobial, and
antioxidative properties, decreases their enzyme alliinase activity [303] and improves
their enzyme alliinase activity [304,305]. Moreover, freeze-drying and infrared-drying
technologies [306] and microwave-assisted and pressurized liquid extractions have nega-
tive thermal effects. Therefore, only supercritical fluid extraction is suitable for efficient
extraction among the new technologies used to replace conventional ones [307].

Possible Uses of the Recovered Organosulfur Compounds

Organosulfur compounds can be used as supplements, food additives (because of
their aromatic taste and smell) [308], and biopesticides [309].
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5. The Circular Economy and Biowaste Recycling Strategies

Several studies were performed to evaluate the potential of biowaste and byproducts
for circular use. Coherently with the European Waste Framework Directive [1], the primary
and critical principle for identifying the hierarchy of actions is reducing the loss of high-
value resources and promoting the growth of bio-materials, which are reusable for other
purposes. Some elements may limit the applicability of the valorization route, such as
environmental impact, technical innovation, economical productivity, and legislation
compliance (Figure 1).
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Figure 1. Methodological approach to finding the environmentally preferable option for
bio-waste management.

Robust assessment tools are necessary to make the right choices during the design of
recycling processes in order to reduce their environmental impacts [310] (Figure 2).
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The extraction of bioactive compounds (phytochemicals) is workable when a homoge-
neous material stream is available (e.g., fruit and vegetable are considered a rich source of
antioxidants, phenols, carotenoids, polyphenols, and fibers) [311].

In contrast, the phytochemicals are scarcely obtainable in the case of heterogeneous
streams, as is the case in food waste produced at the consumption stage [310]. Technologies
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that imply less dissipative use of the bio-based resources must be preferred. For example,
anaerobic digestion is considered better than composting to produce methane [312]. More-
over, not all the solutions proposed by the scientific community to allow the circularity of
organic waste are applicable on an industrial scale.

Measuring the environmental impact of different economic value chains is essential
for the simplification of evidence-based policymaking. The Life Cycle Assessment (LCA)
methodology is considered a suitable approach for comparing different biowaste manage-
ment options. LCA considers all processes from the extraction of the bioactive compounds
to the end-of-life [313]. One of the most important benefits of this approach is that it
considers the burden-shifting (transfer of environmental influences between supply chain
phases or environmental sections) that may occur when pushing for resource efficiency. It is
worth noting that the hierarchy could be modified according to the sustainability priorities.

Nevertheless, the impact assessment and product system modeling limit the quantita-
tive estimation of the environmental aspects. Only a few data points are known regarding
innovative recovery processes, and thus, the setting of the system limits may not be facile,
and the allocation of impacts may be variable [313]. Therefore, the robustness and compre-
hensiveness of LCA must be improved before applying it to bio-based and circular systems.

6. Conclusions

A world without waste is the main objective of the Circular Economy Package pro-
posed by the European Parliament and Council in 2018. Some proposals have been made
to manage biowaste, including making biochar and bioenergy (e.g., biogas, biodiesel) or re-
covering bioactive molecules for cosmetic, pharmaceutical, and food supplements. The low
disposal cost compared to the recycling/conversion cost proved to be the main problem to
be addressed. This work highlights the importance of looking for new technologies with
competitive costs, low environmental impact, and usability in the industrial process. Even
if much has been achieved, significantly more still needs to be studied to achieve the goal.
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250. Grillo, G.; Gunjević, V.; Radošević, K.; Redovniković, I.R.; Cravotto, G. Deep Eutectic Solvents and Nonconventional Technologies
for Blueberry-Peel Extraction: Kinetics, Anthocyanin Stability, and Antiproliferative Activity. Antioxidants 2020, 9, 1069. [CrossRef]

251. Halee, A.; Supavititpatana, P.; Ruttarattanamongkol, K.; Jittrepotch, N.; Rojsuntornkitti, K.; Kongbangkerd, T. Optimisation of the
microwave-assisted extraction of natural antioxidants from defatted black rice bran of Oryza sativa L. cv. Homnin. J. Microbiol.
Biotechnol. Food Sci. 2020, 9, 1134–1140. [CrossRef]

252. Fernandez-Aulis, F.; Hernandez-Vazquez, L.; Aguilar-Osorio, G.; Arrieta-Baez, D.; Navarro-Ocana, A. Extraction and Identifica-
tion of Anthocyanins in Corn Cob and Corn Husk from Cacahuacintle Maize. J. Food Sci. 2019, 84, 954–962. [CrossRef]

253. Herrman, D.A.; Brantsen, J.F.; Ravisankar, S.; Lee, K.M.; Awika, J.M. Stability of 3-deoxyanthocyanin pigment structure relative to
anthocyanins from grains under microwave assisted extraction. Food Chem. 2020, 333, 127494. [CrossRef]

254. Tiwari, B.K.; Patras, A.; Brunton, N.; Cullen, P.J.; O’Donnell, C.P. Effect of ultrasound processing on anthocyanins and color of red
grape juice. Ultrason. Sonochem. 2010, 17, 598–604. [CrossRef]

255. Xue, H.; Tan, J.; Li, Q.; Tang, J.; Cai, X. Ultrasound-Assisted Enzymatic Extraction of Anthocyanins from Raspberry Wine Residues:
Process Optimization, Isolation, Purification, and Bioactivity Determination. Food Anal. Methods 2021, 10, 279.

256. Galván D’Alessandro, L.; Dimitrov, K.; Vauchel, P.; Nikov, I. Kinetics of ultrasound assisted extraction of anthocyanins from
Aronia melanocarpa (black chokeberry) wastes. Chem. Eng. Res. Des. 2014, 92, 1818–1826. [CrossRef]

257. Mark, R.; Lyu, X.; Lee, J.J.L.; Parra-Saldívar, R.; Chen, W.N. Sustainable production of natural phenolics for functional food
applications. J. Funct. Foods 2019, 57, 233–254. [CrossRef]

258. Wang, Y.; Du, H.; Xie, M.; Ma, G.; Yang, W.; Hu, Q.; Pei, F. Characterization of the physical properties and biological activity of
chitosan films grafted with gallic acid and caffeic acid: A comparison study. Food Packag. Shelf Life 2019, 22, 100401. [CrossRef]

259. Albuquerque, B.R.; Heleno, S.A.; Oliveira, M.B.P.; Barros, L.; Ferreira, I.C. Phenolic compounds: Current industrial applications,
limitations and future challenges. Food Funct. 2021, 12, 14–29. [CrossRef]

260. Cano, A.; Andres, M.; Chiralt, A.; González-Martinez, C. Use of tannins to enhance the functional properties of protein based
films. Food Hydrocoll. 2020, 100, 105443. [CrossRef]

261. Jia, Y.; Liu, B.; Cheng, D.; Li, J.; Huang, F.; Lu, Y. Dyeing characteristics and functionability of tussah silk fabric with oak bark
extract. Text. Res. J. 2017, 87, 1806–1817. [CrossRef]

262. Merhan, O. Biochemistry and antioxidant properties of carotenoids. Carotenoids 2017, 5, 51.
263. Nguyen, V.T.; Scarlett, C.J. Mass proportion, bioactive compounds and antioxidant capacity of carrot peel as affected by various

solvents. Technologies 2016, 4, 36. [CrossRef]
264. Cerna, J.; Athari, N.; Robbs, C.; Walk, A.; Edwards, C.; Adamson, B.; Khan, N. Macular Carotenoids, Retinal Morphometry, and

Cognitive Function in Multiple Sclerosis (OR05–07–19). Curr. Dev. Nutr. 2019, 3 (Suppl. S1), nzz029-OR05. [CrossRef]
265. Wang, Y.; Chung, S.J.; McCullough, M.L.; Song, W.O.; Fernandez, M.L.; Koo, S.I.; Chun, O.K. Dietary carotenoids are associated

with cardiovascular disease risk biomarkers mediated by serum carotenoid concentrations. J. Nutr. 2014, 144, 1067–1074.
[CrossRef] [PubMed]

266. Wu, J.; Cho, E.; Willett, W.C.; Sastry, S.M.; Schaumberg, D.A. Intakes of Lutein, Zeaxanthin, and Other Carotenoids and Age-
Related Macular Degeneration during 2 Decades of Prospective Follow-up. JAMA Ophthalmol. 2015, 133, 1415–1424. [CrossRef]
[PubMed]

267. Hwang, S.; Lim, J.W.; Kim, H. Inhibitory effect of lycopene on amyloid-β-induced apoptosis in neuronal cells. Nutrients 2017,
9, 883. [CrossRef]

268. Gul, K.; Tak, A.; Singh, A.K.; Singh, P.; Yousuf, B.; Wani, A.A. Chemistry, encapsulation, and health benefits of β-carotene-A
review. Cogent Food Agric. 2015, 1, 1018696. [CrossRef]

269. Khoo, H.E.; Prasad, K.N.; Kong, K.W.; Jiang, Y.; Ismail, A. Carotenoids and their isomers: Color pigments in fruits and vegetables.
Molecules 2011, 16, 1710. [CrossRef]

270. Pénicaud, C.; Achir, N.; Dhuique-Mayer, C.; Dornier, M.; Bohuon, P. Degradation of β-carotene during fruit and vegetable
processing or storage: Reaction mechanisms and kinetic aspects: A review. Fruits 2011, 66, 417–440. [CrossRef]

http://doi.org/10.1007/s12649-019-00771-1
http://doi.org/10.1016/j.foodchem.2018.03.059
http://doi.org/10.1016/j.foodchem.2013.05.147
http://doi.org/10.1111/jfpp.14853
http://doi.org/10.1111/jfpe.12486
http://doi.org/10.1016/j.indcrop.2016.09.063
http://doi.org/10.3390/antiox9111069
http://doi.org/10.15414/jmbfs.2020.9.6.1134-1140
http://doi.org/10.1111/1750-3841.14589
http://doi.org/10.1016/j.foodchem.2020.127494
http://doi.org/10.1016/j.ultsonch.2009.10.009
http://doi.org/10.1016/j.cherd.2013.11.020
http://doi.org/10.1016/j.jff.2019.04.008
http://doi.org/10.1016/j.fpsl.2019.100401
http://doi.org/10.1039/D0FO02324H
http://doi.org/10.1016/j.foodhyd.2019.105443
http://doi.org/10.1177/0040517516659378
http://doi.org/10.3390/technologies4040036
http://doi.org/10.1093/cdn/nzz029.OR05-07-19
http://doi.org/10.3945/jn.113.184317
http://www.ncbi.nlm.nih.gov/pubmed/24744306
http://doi.org/10.1001/jamaophthalmol.2015.3590
http://www.ncbi.nlm.nih.gov/pubmed/26447482
http://doi.org/10.3390/nu9080883
http://doi.org/10.1080/23311932.2015.1018696
http://doi.org/10.3390/molecules16021710
http://doi.org/10.1051/fruits/2011058


Foods 2021, 10, 2652 25 of 26

271. De Andrade Lima, M.; Charalampopoulos, D.; Chatzifragkou, A. Optimisation and modelling of supercritical CO2 extraction
process of carotenoids from carrot peels. J. Supercrit. Fluids 2018, 133, 94–102. [CrossRef]

272. Hiranvarachat, B.; Devahastin, S. Enhancement of microwave-assisted extraction via intermittent radiation: Extraction of
carotenoids from carrot peels. J. Food Eng. 2014, 126, 17–26. [CrossRef]

273. Saini, R.K.; Keum, Y.-S. Carotenoid extraction methods: A review of recent developments. Food Chem. 2018, 240, 90–103.
[CrossRef]

274. Nagarajan, J.; Pui Kay, H.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Aldawoud, T.M.S.; Galanakis, C.M.; Ooi, C.W. Extraction of
carotenoids from tomato pomace via water-induced hydrocolloidal complexation. Biomolecules 2020, 10, 1019. [CrossRef]

275. Nagarajan, J.; Krishnamurthy, N.P.; Nagasundara Ramanan, R.; Raghunandan, M.E.; Galanakis, C.M.; Ooi, C.W. A facile water-
induced complexation of lycopene and pectin from pink guava byproduct: Extraction, characterization and kinetic studies. Food
Chem. 2019, 296, 47–55. [CrossRef]

276. Nagarajan, J.; Kay, H.P.; Arumugam, P.; Krishnamurthy, N.P.; Ramakrishnan, N.R.; Aldawoud, T.M.; Galanakis, C.M.; Wei,
O.C. Valorisation of carrot peel waste by water-induced hydrocolloidal complexation for extraction of carotenoid and pectin.
Chemosphere 2021, 272, 129919.

277. Moreno, J.A.; Díaz-Gómez, J.; Nogareda, C.; Angulo, E.; Sandmann, G.; Portero-Otin, M.; Serrano, J.C.; Twyman, R.M.; Capell, T.;
Zhu, C.; et al. The distribution of carotenoids in hens fed on biofortified maize is influenced by feed composition, absorption,
resource allocation and storage. Sci. Rep. 2016, 6, 35346. [CrossRef]

278. Cataldo, V.F.; López, J.; Cárcamo, M.; Agosin, E. Chemical vs. biotechnological synthesis of C 13-apocarotenoids: Current
methods, applications and perspectives. Appl. Microb. Biotechnol. 2016, 100, 5703–5718. [CrossRef]

279. Arce, A.; Marchiaro, A.; Martínez-Ageitos, J.M.; Soto, A. Citrus essential oil deterpenation by liquid-liquid extraction. Can. J.
Chem. Eng. 2005, 83, 366–370. [CrossRef]

280. Fornari, T.; Vicente, G.; Vázquez, E.; García-Risco, M.R.; Reglero, G. Isolation of essential oil from different plants and herbs by
supercritical fluid extraction. J. Chromatogr. A 2012, 1250, 34–48. [CrossRef]

281. Diniz do Nascimento, L.; Moraes, A.A.B.d.; Costa, K.S.d.; Pereira Galúcio, J.M.; Taube, P.S.; Costa, C.M.L.; Neves Cruz, J.; de
Aguiar Andrade, E.H.; Faria, L.J.G.d. Bioactive Natural Compounds and Antioxidant Activity of Essential Oils from Spice Plants:
New Findings and Potential Applications. Biomolecules 2020, 10, 988. [CrossRef]

282. Khorshidian, N.; Yousefi, M.; Khanniri, E.; Mortazavian, A.M. Potential application of essential oils as antimicrobial preservatives
in cheese. Innov. Food Sci. Emerg. Technol. 2018, 45, 62–72. [CrossRef]

283. Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2020,
343, 128403. [CrossRef]

284. Abdelatti, Z.A.S.; Hartbauer, M. Plant oil mixtures as a novel botanical pesticide to control gregarious locusts. J. Pest Sci. 2020, 93,
341–353. [CrossRef]

285. Ruhee, R.T.; Roberts, L.A.; Ma, S.; Suzuki, K. Organosulfur Compounds: A Review of Their Anti-inflammatory Effects in Human
Health. Front Nutr. 2020, 7, 64. [CrossRef]

286. Kim, S.; Kim, D.B.; Jin, W.; Park, J.; Yoon, W.; Lee, Y.; Kim, S.; Lee, S.; Kim, S.; Lee, O.H.; et al. Comparative studies of bioactive
organosulphur compounds and antioxidant activities in garlic (Allium sativum L.), elephant garlic (Allium ampeloprasum L.) and
onion (Allium cepa L.). Nat Prod Res. 2018, 32, 1193–1197. [CrossRef]

287. Putnik, P.; Gabric, D.; Roohinejad, S.; Barba, F.J.; Granato, D.; Mallikarjunan, K.; Lorenzo, J.M.; Bursać Kovačević, D. An
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