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Glutathione (GSH) plays a critical role in many cellular processes, including the
metabolism and detoxification of oxidants, metals, and other reactive elec-
trophilic compounds of both endogenous and exogenous origin. Because the
liver is a major site of GSH and glutathione S-conjugate biosynthesis and
export, significant effort has been devoted to characterizing liver cell sinusoidal
and canalicular membrane transporters for these compounds. Glutathione S-
conjugates synthesized in the liver are secreted preferentially into bile, and
recent studies in isolated canalicular membrane vesicles indicate that there are
multiple transport mechanisms for these conjugates, including those that are
energized by ATP hydrolysis and those that may be driven by the electrochem-
ical gradient. Glutathione S-conjugates that are relatively hydrophobic or have
a bulky S-substituent are good substrates for the canalicular ATP-dependent
transporter mrp2 (multidrug resistance-associated protein 2, also called
cMOAT, the canalicular multispecific organic anion transporter, or cMrp, the
canalicular isoform of mrp). In contrast with the glutathione S-conjugates,
hepatic GSH is released into both blood and bile. GSH transport across both of
these membrane domains is of low affinity and is energized by the electro-
chemical potential. Recent reports describe two candidate GSH transport pro-
teins for the canalicular and sinusoidal membranes (RcGshT and RsGshT,
respectively); however, some concerns have been raised regarding these studies.
Additional work is needed to characterize GSH transporters at the functional
and molecular level.

HEPATIC GLUTATHIONE HOMEOSTASIS

Glutathione (GSH)” is a tripeptide (L-y-glutamyl-L-cysteinylglycine) that performs a
number of important physiological functions in all cells, including the maintenance and
regulation of the thiol redox status of the cell, protection against oxidative damage, detox-
ification of endogenous and exogenous reactive metals and electrophiles, and storage and
transport of cysteine. In addition, GSH is involved in protein and DNA synthesis, cell
cycle regulation, thermotolerance and bile formation [1-8].

Glutathione synthesis is accomplished by two ATP-dependent cytosolic enzymes: y-
glutamylcysteine synthetase and glutathione synthetase (Figure 1). y-Glutamylcysteine
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Figure 1. Schematic representation of the synthetic and degradative pathways for glutathione
(GSH). y-Glutamylcysteine synthetase catalyses the formation of a peptide bond between the amino
group of cysteine and the y-carboxy! group of glutamate. GSH synthetase then catalyzes the reac-
tion between glycine and the cysteine carboxyl group of y-glutamylcysteine to produce GSH. Both
enzymes in the synthetic pathway are ATP-dependent. GSH is transported to the extracellular space,
where it is degraded to its amino acid constituents by the ectoproteins y-glutamyltransferase and
dipeptidase. y-Glutamyltransferase cleaves the y-glutamyl moiety leaving cysteinylglycine. A dipep-
tidase then acts on the cysteinylglycine moiety releasing glycine and cysteine. The individual amino
acids in the extracellular space can then be transported back into the cell. ([1] y-Glutamylcysteine
synthetase; [2] Glutathione synthetase; [3] GSH transporter).

synthetase is the first and rate limiting enzyme in GSH biosynthesis, catalyzing the for-
mation of the peptide bond between the y-carboxyl group of L-glutamate and the amino
group of L-cysteine. The K for the two substrates are 2 mM and 0.35 mM, respectively.
This enzyme is non-allosterically inhibited by GSH, thereby providing feedback inhibi-
tion of GSH biosynthesis [9]. The second enzyme, glutathione synthetase, catalyzes the
formation of the peptide bond between glycine and the cysteinyl carboxyl group of y-glu-
tamylcysteine (Figure 1).

GSH is present in relatively high concentrations in cells, from 0.5-10 mM. More than
99 percent of intracellular glutathione is normally present in the reduced thiol form
(GSH), and the rest may be present in the oxidized disulfide form (GSSG), mixed disul-
fides (GS-SR), thioethers (glutathione S-conjugates), or mercaptides (GS-metal complex-
es). This high proportion of reduced glutathione is maintained by the NADPH-dependent
glutathione reductase, which reduces 1 molecule of GSSG to 2 GSH molecules. When the
cell’s capacity to reduce GSSG is overwhelmed or impaired, GSSG can also be actively
transported out of the cell. GSH is found mainly in the cytosol, but 10 to 15 percent of
total intracellular GSH is found in mitochondria {10, 11]. GSH concentration in mito-
chondria is similar to that in the cytosol [10-12].

Although GSH is synthesized in every cell of the body, the liver is quantitatively the
major site of its synthesis [4, 13]. Hepatic GSH turnover is accomplished largely by trans-
port of the tripeptide across the sinusoidal and canalicular membranes [13, 14]. The only
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enzyme that can initiate catabolism of GSH-containing compounds is y-glutamyltrans-
ferase, a plasma membrane-bound enzyme with its active site on the extracellular surface
of the membrane. Thus, transport of both GSH and its conjugates into the extracellular
space is a key, and presumably regulated step in their turnover in all cells. GSH release
into the blood stream is a major determinant of interorgan GSH homeostasis [1, 5], where-
as GSH transport into bile is a driving force for bile secretion [7, 8] and plays an impor-
tant role in hepatic detoxification [15, 16]. The characteristics of the transport systems
involved in sinusoidal and canalicular GSH efflux are discussed below.

Once released from the cell, GSH is then degraded by the sequential action of two
enzymes, Y-glutamyltransferase and dipeptidase (Figure 1), which are found on the exter-
nal surface of certain cell types, particularly in the liver and kidneys. y-Glutamyl-
transferase releases glutamate from GSH, and dipeptidase hydrolyzes the peptide bond
between cysteine and glycine. In the liver, the amino acids that are released during GSH
hydrolysis are partially reabsorbed back into the hepatocytes [14, 17]. The unique y-car-
boxyl linkage between glutamate and cysteine restricts its hydrolysis to y-glutamyltrans-
ferase. Moreover, the C-terminal glycine protects GSH against hydrolysis by intracellular
Y-glutamylcyclotransferase and limits its hydrolysis to ecto-dipeptidases, thereby prevent-
ing intracellular degradation of GSH and glutathione S-conjugates.

GLUTATHIONE S-CONJUGATE SYNTHESIS AND DEGRADATION

An important function of GSH involves the conjugation of reactive electrophilic com-
pounds and metals [15, 18]. Binding with GSH normally prevents the chemicals from
interacting with nucleophilic sites on cellular constituents, and is the initial step in mer-
capturic acid biosynthesis, a major mechanism by which chemicals are eliminated from
the body [18].

Most conjugation reactions are catalyzed by the glutathione S-transferases, although
metals and some highly reactive electrophiles react spontaneously with GSH [19].
Glutathione S-transferases are primarily cytosolic enzymes existing as dimers of identical
or heterologous subunits and are found in a wide variety of tissues and species [20-24]. In
addition to cytosolic glutathione S-transferases, microsomal and mitochondrial transferase
activity has been identified [10, 25-27]. Mammalian cytosolic enzymes have been divid-
ed in three classes: alpha, mu, and pi; based on their structural and functional similarities.
In addition to their catalytic activity, these transferases may also serve as intracellular stor-
age or transport proteins [18, 21, 28-30].

The liver has high glutathione S-transferase activity and is perhaps the major site of
glutathione S-conjugate formation [21-23]. Glutathione S-conjugates formed within hepa-
tocytes are rapidly extruded from the cell and are transported largely if not exclusively
across the canalicular membrane into bile (Figure 2). However, glutathione conjugates
formed in other tissues such as the skin, lung or gut may be released into the blood and
transported to the liver for uptake. The specific transporters involved in either biliary
secretion or sinusoidal uptake of glutathione S-conjugates are discussed below.

Within the biliary tree, glutathione S-conjugates are substrates for the same enzymes
that degrade GSH, namely y-glutamyltransferase and dipeptidase (Figure 2). Hydrolysis
of glutathione S-conjugates releases glutamate, glycine, and the corresponding cysteine S-
conjugates [16, 31]. The cysteine S-conjugates can then be reabsorbed back into the hepa-
tocyte and acetylated by N-acetyltransferase to form N-acetylcysteine derivatives, which
are also called mercapturic acids [31, 32]. The mercapturic acids are then transported back
across the canalicular membrane into the biliary tree [31] or across the sinusoidal mem-
brane into the blood stream [33, 34] (Figure 2). The transport systems that facilitate mer-
capturic acid efflux have not been characterized.
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Figure 2. Schematic representation of the mercapturic acid biosynthetic pathway. Transport of
electrophile (E) across the basolateral (sinusoidal) membrane and intracellular conjugation with
GSH catalyzed by glutathione S-transferase (1). The glutathione S-conjugate is transported across
the canalicular membrane into the bile canaliculus. Biliary y-glutamyltransferase (y-GT) removes
the y-glutamyl moiety to form a cysteinylglycine S-conjugate. Dipeptidase (DP) then removes the
glycine moiety resulting in a cysteine S-conjugate, which is transported back into the hepatocyte.
The cysteine S-conjugate is then acetylated by N-acetyltransferase (2) to produce the mercapturic
acid, which is released from the cell either across the basolateral or canalicular membranes. [(1)
Glutathione S-transferase; (2) N-acetyltransferase; (AcCoA) Acetyl coenzyme A; (yv-GT) y-
Glutamyltransferase; (DP) Dipeptidase].

GLUTATHIONE TRANSPORT ACROSS
CANALICULAR AND SINUSOIDAL MEMBRANES

GSH transport mechanisms have been studied most intensively in mammalian hepa-
tocytes [8, 35-39], enterocytes [40] and renal cortical cells [41], with the use of isolated
plasma membrane vesicles derived from each of these tissues. In the liver, three GSH
efflux mechanisms have been described: a low-affinity system on the sinusoidal mem-
brane [39, 42] and two systems on the canalicular membrane [36]: one of low affinity and
high capacity (K, ~16 mM) and one of high affinity and low capacity (K, = 0.2 mM).
The low-affinity canalicular transporter appears relatively selective for GSH, whereas the
high-affinity system may function to transport glutathione S-conjugates and perhaps other
anions into bile [36, 43, 44]. Bidirectional transport of GSH is observed, but under phys-
iological conditions unidirectional transport down its concentration gradient is favored;
i.e., efflux of GSH from hepatocytes [39]. Both sinusoidal and canalicular GSH trans-
porters are ATP-independent electrogenic carriers [36, 43-46].

Specific differences are observed between the low-affinity canalicular and sinusoidal
GSH transporters regarding induction and inhibition of transport. Phenobarbital treatment
leads to an increase in canalicular efflux of GSH without affecting sinusoidal transport



Lee et al.: GSH and glutathione S-conjugate transport mechanisms 291

anions,
cations, bile
cations uncharged ~ acids N+

GS-conjugates

organic cations —__

ATP GSH ?

GS-conjugates
organic anions

phospholipids
ATP ~\
P>

organic anions

Figure 3. Transporters in the apical (canalicular) and basolateral (sinusoidal) membranes of
hepatocytes. Transport systems that have not yet cloned are shown with question marks. Substrates
for mrp2 (multidrug resistance-associated protein-2) include organic anions and glutathione S-con-
jugates. Bile acids are transported into bile by the ATP-dependent canalicular bile acid transporter
(cBAT), which has not yet been cloned. Organic cations and phospholipids are secreted by mdrl and
mdr2 (multidrug-resistance proteins), respectively, located in the apical membrane. The physiolog-
ical role of mrpl in the lateral membrane is not known. Uptake proteins located in the basolateral
membrane (oatp1, the organic anion transporting protein; OCT', the organic cation transporter; and
Ntcp, the Na*-taurocholate cotransporting protein) are important for removing various compounds
from the blood and for providing substrates for excretion into bile by the canalicular transporters.

[47, 48]. Sinusoidal transport is selectively trans-inhibited by thioethers such as methion-
ine and cystathionine [49-52], and cis-inhibited by the glutathione conjugate of sulfobro-
mophthalein (BSP-SG) [37, 48, 53]; however, these inhibitors are not themselves sub-
strates for the transporter [52]. In addition, ATP-independent electrogenic organic anion
transport is cis-inhibited and trans-stimulated by GSH in the canalicular liver plasma
membranes, suggesting that organic anions such as sulfobromophthalein (BSP) and GSH
share a common multispecific electrogenic transporter [37].

Putative low-affinity canalicular (RcGshT) and sinusoidal (RsGshT) GSH trans-
porters were recently cloned [42, 54]. Expression of these GSH transporters in Xenopus
laevis oocytes showed increased bidirectional GSH transport for both proteins (sinusoidal
and canalicular). Furthermore, GSH transport by RsGshT was inhibited by BSP-SG and
cystathionine, whereas phenobarbital treatment resulted in the induction of RcGshT alone
[42, 54, 55]. RcGshT and RsGshT are proteins of 96 kD and 40 kD, respectively, with no
significant sequence homology between the two transporters [42, 54, 55].

However, studies in our laboratory using these clones were unable to confirm the
functional role of RcGshT and RsGshT [56]. Xenopus laevis oocytes injected with either
rat liver mRNA, the cRNA for RcGshT, or the cRNA for RsGshT did not transport GSH
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at a higher rate than water-injected oocytes, when measured either as 3H-GSH uptake or
efflux, at low or high GSH concentrations, or in the presence or absence of acivicin to
inhibit y-glutamyltransferase activity [56]. Results from partial sequencing of RcGshT
indicated that it is almost identical to a sequence found in the E. coli K-12 genome, hence,
suggesting that RcGshT may be a cloning artifact [56]. Similarly, the published RsGshT
cDNA sequence also has high sequence homology with E. coli K-12, although with a dif-
ferent region of its genome [56]. Additional work is need to characterize GSH transport
proteins at the functional and molecular level.

CANALICULAR GLUTATHIONE S-CONJUGATE TRANSPORTERS

A large number of structurally distinct compounds are conjugated to glutathione
within hepatocytes, and the resulting glutathione S-conjugates are selectively transported
across the canalicular membrane into bile [28, 31, 57-59]. Glutathione S-conjugates vary
considerably in molecular size, charge, and water solubility [18, 28]. Our recent studies
demonstrate that the physicochemical properties of the S-moiety are key determinants of
transport across the canalicular membrane [43]. These studies indicate that in addition to
the ATP-dependent transport system(s), glutathione S-conjugates are substrates for at least
two ATP-independent mechanisms [43]. Although there is considerable overlap in sub-
strate specificity between the ATP-dependent and -independent systems, there are also dis-
tinct substrate requirements [43]. Relatively low molecular weight hydrophilic conjugates
are substrates for electrogenic carriers, but not for ATP-dependent transporters, whereas
larger and more hydrophobic conjugates are substrates for both. Charge also appears to be
important: S-carboxymethyl glutathione (GS-CH,-COOH) decreased ATP-dependent
uptake of S-dinitrophenyl glutathione (DNP-SG), whereas S-carbamidomethyl glu-
tathione (GS-CH,-CO-NH,) had no effect [43]. Both of these glutathione S-conjugates
inhibited ATP-independent transport of DNP-SG and ethyl-SG to a similar extent,
although the dianionic compound was a somewhat more effective inhibitor. The molecu-
lar nature of these ATP-independent transporters has not been elucidated.

In contrast, the gene for a key ATP-dependent canalicular glutathione S-conjugate
transporter has recently been cloned (Figure 3). Relatively hydrophobic glutathione S-
conjugates appear to be excellent substrates for the multidrug resistance-associated pro-
tein-2 (mrp2), [60-62]. This transporter, which is also referred to as cMOAT, the canalic-
ular multispecific organic anion transporter [63], cMrp, the canalicular isoform of the
multidrug resistance-associated protein [61], or the GS-X pump (glutathione S-conjugate
export pump) [64], is selectively localized to the canalicular membrane of the hepatocyte.

Early work characterized functional aspects mrp2/cMOAT using TR/GY/EHBR
mutant rat strains which display chronic conjugated hyperbilirubinemia [reviewed in Ref.
65]. These mutant rats secrete very low amounts of glutathione-, glucuronide- and sulfate-
conjugates into bile. Oude Elferink and his colleagues [60] cloned mrp2 based on its
homology with mrpl and demonstrated that the defective excretion of organic anions in
TR~ rat livers is caused by the functional absence of mrp2 due to a deletion of one
nucleotide in the mrp2 gene. A comparable defect may explain the mutation in the EHBR
rats [66]. In addition, it has been recently demonstrated that a mutation in the human
MRP2 is responsible for the Dubin-Johnson Syndrome [67].

Interestingly, mrpl also transports glutathione S-conjugates [68-72]; however, it is
present in only low amounts in the liver, and only on the lateral membrane of hepatocytes
(Figure 3) [73, 74]. This cellular distribution precludes a direct role in canalicular trans-
port, although it may play a role in sinusoidal release of anions under conditions where
canalicular transport or bile secretion is impaired. Indeed, the observation that glutathione
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S-conjugates are secreted into the blood stream in mutant rats is suggestive of mrp1 activ-
ity [75].

MRP1 was first cloned from a lung cancer cell line resistant to doxorubicin [73] and
was found to be expressed in many cancer cell lines [73-76]. Substrates for MRP1 are
hydrophobic conjugates of glutathione, glucuronides, sulfates, and other organic anions
such as calcein and various drugs products [60-62, 68-72, 77, 78]. MRP1 belongs to the
ATP-binding cassette (ABC) superfamily of transport proteins, which includes the P-gly-
coprotein transporters mdrl and mdr2 (multidrug-resistance proteins; Figure 3).

A low affinity ATP-independent pathway for canalicular secretion of certain organic
anions appears to be preserved in TR/EHBR/GY mutant rats, indicating the presence of
additional transport mechanisms [79, 80]. However, because these animals accumulate
high levels of potentially toxic compounds, the observed secretion may not be physiolog-
ically relevant. Compounds that accumulate in the livers of mutant rats may also indirect-
ly effect other transport systems. For example, the absence of GSH in bile of mutant rats
is thought to be due to the cis-inhibition of the canalicular GSH transporter by the accu-
mulated compounds [37].

Of relevance to the mechanism of GSH transport, GSH itself has been suggested to
be a potential modulator or possibly even a low-affinity substrate of mrpl/mrp2 [81].
Depletion of GSH by buthionine sulfoximine in MRP1 overexpressing cell lines led to
increased accumulation of drugs like daunorubicin, vincristine, rhodamine and others [72,
77, 81-85], whereas the transport of calcein, an organic anion was insensitive to changes
in GSH levels [77]. Paul and coworkers [86] demonstrated that daunorubicin transport by
MRP1 was competitively inhibited by GSH; however, no such effect was observed for vin-
cristine transport [82]. Current possibilities are that GSH can be cotransported along with
natural drug products, although no increased GSH efflux was observed during daunoru-
bicin transport, or that GSH facilitates transport by inducing either a conformational
change in MRP1 [85], or possibly a change in redox status of the protein. A GSH binding
site may exist in MRP1 [87]. In many cases it is not clear whether the substrates for MRP1
are transported in a conjugated or unconjugated form, although a recent report indicates
that MRP can transport drugs in their native form [86].

SINUSOIDAL GLUTATHIONE S-CONJUGATE UPTAKE AND
EFFLUX MECHANISMS

Although much attention has focused on the efflux of glutathione S-conjugates into
bile, sinusoidal uptake and efflux of glutathione S-conjugates has also been reported.

Glutathione S-conjugates formed in other tissues are released into the blood stream
and may be transported to the liver where they may undergo uptake. Previous studies in
our laboratory demonstrated that the rat liver is capable of transporting DNP-SG from
blood plasma into hepatocytes [88]. DNP-SG uptake was inhibited by organic anions such
as DBSP (dibromosulfophthalein; a nonmetabolizable analogue of BSP), bilirubin, BSP-
SG, and 4,4’-diisothiocyanostilbene-2,2’-disulfonic acid (DIDS), an inhibitor of anion
transport [88]. In addition, uptake was decreased by 22 percent following omission of Na+
from the perfusate; however, determination of whether Na* omission had direct effects on
transport is complicated by the possible indirect effects Na* depletion may have on hepa-
tocyte function.

Hepatic uptake of other glutathione S-conjugates has been observed, but the mecha-
nisms remain unclear. BSP and its glutathione conjugate (BSP-SG) are taken up by the liver,
most likely by a common carrier [89]. The transport system apparently recognizes the par-
ent compound rather than the GSH moiety [89-91]. Thus, certain glutathione S-conjugates
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may serve as substrates for the multispecific organic anion transporter(s). The glutathione
conjugate of hexachlorobutadiene is also removed from the circulation by the liver [92];
however, uptake of this lipophilic compound may occur by simple diffusion across the sinu-
soidal membrane. Leukotriene C, (LTC,), an endogenous glutathione conjugate, is readily
removed by the liver; approximately 80 percent in a single-pass [91]. Its uptake is inhibited
by BSP and other organic dyes [93] and has been reported to be temperature and ATP
dependent [94, 95].

Preliminary studies in our laboratory indicate that LTC, and DNP-SG are substrates
for the Na*-independent sinusoidal multispecific organic anion transport protein, oatpl
(Figure 3) [96]. Uptake of LTC, and DNP-SG was ~4- and ~10-fold higher, respectively,
in Xenopus laevis oocytes injected with cRNA for oatpl when compared to water inject-
ed oocytes [96]. Uptake of these glutathione conjugates was saturable and inhibited by
BSP, taurocholate, BSP-SG and bilirubin [96]. Further characterization of this transport
mechanism is in progress in our laboratory.

The mechanism involved in glutathione S-conjugate efflux across the sinusoidal
membrane, along with its physiological significance is unclear. As mentioned earlier, dur-
ing impaired canalicular transport of organic anions in mutant rat strains, there is a sig-
nificant efflux of glutathione S-conjugates into blood plasma [75]. This efflux may be
mediated by mrp1, a homologue of mrp2, present in low amounts on the lateral membrane
of hepatocytes [73, 74]. Excessive accumulation of glutathione S-conjugates is potential-
ly toxic, therefore, mrp1 may serve as an overflow system to secrete these compounds into
the circulation, and thereby lower the intracellular concentration of these and other com-
pounds. However, the physiological importance of mrp1 remains to be determined.

OTHER HEPATIC TRANSPORT SYSTEMS

Other important canalicular transporters include the bile salt transporter (cBAT) [97-
100] and the P-glycoproteins mdr1l and mdr2 (Figure 3). P-Glycoproteins are members of
the ABC superfamily of transport protein and are associated with multidrug resistance
(mdr) [101]; however, there is less than 15 percent amino acid homology with MRP pro-
teins [72]. The substrates for mdr]l and mdr2 are cationic compounds and phospholipids,
respectively [101-103].

Transport proteins located in the basolateral membrane are important in providing the
substrates for these canalicular membrane transporters. Currently known basolateral
uptake transporters include the organic anion transport protein (oatpl), the Na*-tauro-
cholate cotransporting polypeptide (Ntcp) and the organic cation transporter (OCT1)
(Figure 3). The oatp1 protein is involved in the uptake of various organic solutes into the
hepatocytes from the blood, which may or may not be modified before elimination into
bile [for reviews see 105, 106]. In addition, there is evidence for another oatp-like trans-
porter involved in the uptake of bumetanide, a weak organic acid, which is transported nei-
ther by oatp1 nor by Ntcp [107-109]. Various bile acids are taken up by Ntcp [106, 110]
and subsequently eliminated via cBAT and mrp2 in the native and conjugated form,
respectively. Some organic cations are taken up by OCT1 [111-113], although oatpl may
also transport certain cations [114].

In summary, although considerable progress has been made in identifying organic
solute transporters, including those involved in glutathione S-conjugate transport, it is
clear that much exciting work remains to be done in terms of characterizing these trans-
porters, in identifying others that may be present, and in defining the regulatory features
involved. The coordinated action of the various hepatic transporters is critical for cellular
homeostasis and for the elimination of potentially toxic compounds.
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