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Like other experimental techniques, X-ray photon correlation spectroscopy is subject to various 
kinds of noise. Random and correlated fluctuations and heterogeneities can be present in a two-
time correlation function and obscure the information about the intrinsic dynamics of a sample. 
Simultaneously addressing the disparate origins of noise in the experimental data is challenging. We 
propose a computational approach for improving the signal-to-noise ratio in two-time correlation 
functions that is based on convolutional neural network encoder–decoder (CNN-ED) models. Such 
models extract features from an image via convolutional layers, project them to a low dimensional 
space and then reconstruct a clean image from this reduced representation via transposed 
convolutional layers. Not only are ED models a general tool for random noise removal, but their 
application to low signal-to-noise data can enhance the data’s quantitative usage since they are 
able to learn the functional form of the signal. We demonstrate that the CNN-ED models trained on 
real-world experimental data help to effectively extract equilibrium dynamics’ parameters from two-
time correlation functions, containing statistical noise and dynamic heterogeneities. Strategies for 
optimizing the models’ performance and their applicability limits are discussed.

Noise reduction in experiments facilitates reliable extraction of useful information from a smaller amount of data. 
This allows for more efficient use of experimental and analytical resources as well as enables the study of systems 
with intrinsically limited measurement time, e.g. cases with sample damage or out-of-equilibrium dynamics. 
While instrumentation development and optimization of experimental protocols are crucial in noise reduction, 
there are situations where computational methods can advance the improvements even further.

X-ray photon correlation spectroscopy (XPCS)1–3 is a statistics-based technique that extracts information 
about a sample’s dynamics through spatial and temporal analysis of intensity correlations between sequential 
images (frames) of a speckled pattern collected from a coherent X-ray beam scattered from the sample. The 
two-time intensity-intensity correlation function4,5 (2TCF) is a matrix calculated as:

where I(qqq, t) is the intensity of a detector pixel corresponding to the wave vector qqq at time t  . The average is taken 
over pixels with equivalent qqq values. An example of a 2TCF is shown in Fig. 1. The dimensions of the matrix 
are N × N, where N is a number of frames in the experimental series. The dynamics can be traced along the 
lag times δt = |t1 − t2| . In the case of equilibrium dynamics, information from a 2TCF can be ‘condensed’ to a 
single dimension by integrating along the (1,1) diagonal producing a time-averaged one-time photon correla-
tion function (1TCF)6:

where f (qqq, δt) is the intermediate scattering function at lag time δt , β is the optical contrast and C∞ is the baseline 
that equals to 1 for ergodic samples. While 1TCF can be directly obtained from raw data7, calculating 2TCF as 

(1)C2(qqq, t1, t2) =
�I(qqq, t1)I(qqq, t2)�

�I(qqq, t1)��I(qqq, t2)�

(2)C1(qqq, δt) = C∞ + β|f (qqq, δt)|2
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an intermediate step is beneficial even for presumably equilibrium cases. 2TCF contains time-resolved informa-
tion about both samples’ intrinsic dynamics and fluctuations of the experimental conditions, which enables one 
to determine between stationary and non-stationary dynamics and whether or not the time-averaged 1TCF is 
a valid representation of the scattering series. Investigation of 2TCF helps to identify single-frame events, such 
as cosmic rays detection, and beam-induced dynamics, where timescales might vary with the accumulation of 
X-ray dose absorbed by the sample during the acquisition of the dataset.

XPCS experiments can suffer from various sources of noise and artifacts: probabilistic nature of photon 
scattering, detector shot noise, and instrumentational instabilities. Significant progress in reduction of the noise 
involved in photon detection and counting has been made by developing single-photon counting devices8,9 and 
employment of the ‘droplet’ algorithm10 or pixel binning11. Efforts have been dedicated to integrating feedback 
loops12,13 into instrumentational controls to reduce the impact of instabilities. Despite the current advances of 
experimental setup and methods for data analysis in reduction of noise and instability effects, achieving high 
signal-to-noise ratio is still a practical challenge in many XPCS experiments. The need to suppress the high-
frequency fluctuations leads to extended data collection times—an approach that itself can introduce additional 
errors, for instance due to slow changes in experimental conditions. Limited experimental resources may not 
allow for multiple repeated measurements for systems with very slow dynamics. Besides, a sample’s intrinsic 
properties can limit the time-range, within which the dynamics can be considered5 as equilibrium and thus 
quantitatively evaluated with Eq. (2). A tool that helps to accurately extract parameters of the system’s equilibrium 
dynamics from a limited amount of noisy data would be useful, but no generally applicable, out-of-the-box tool 
exists for XPCS results.

Solutions based on artificial neural networks are attractive candidates as they are broadly used for application-
specific noise removal. Among such solutions are extensions of autoencoder models14, which are unsupervised 
algorithms for learning a condensed representation of an input signal. The principle behind an autoencoder 
is based on a common fact that the information about significant non-random variations in data is contained 
in a much smaller number of variables than the dimensionality of the data. An autoencoder model consists of 
two modules: encoder and decoder. The encoder transforms the input signal to a set of unique variables called 
latent space. The decoder part then attempts to transform the encoded variables back to the original input. As 
the number of components in the latent space is generally much smaller than the number of components in the 
original input, the nonessential information, i.e. random noise, is lost during such transformations. Thus, an 
autoencoder model on its own can be used as an effective noise reduction tool. However, in the scope of this work 
we employ a broader idea of noise. We treat all dynamic heterogeneities due to changes in a sample configuration 
caused by stress or diffusive processes, as well as correlated noise in 2TCF, as an unwanted signal. Such point of 
view can be preferred when one wants to quantify the average dynamics parameters with Eq. (3) or to separate 
the underlying (envelope) dynamics from stochastic heterogeneities. An autoencoder model can be modified 
to address the removal of a deterministic, application-specific noise by replacing its targets with ‘noise-free’ 
versions of the input signals. In the case of an image-like input, such as an XPCS 2TCF, convolutional neural 
networks (CNN) are the obvious choice for the encoder and decoder modules. CNN-based encoder–decoder 
(CNN-ED) models have been successfully implemented for noise removal and restoration of impaired signals 
in audio applications15,16 and images17,18.

Here, we demonstrate an approach for noise reduction in 2TCFs by means of CNN-ED models. An ensemble 
of such models, trained on real experimental data, shows noticeable suppression of noise while preserving the 
functional form of system’s equilibrium dynamics and the temporal resolution of the signal. Addressing noise 

Figure 1.   Data for the model. (A) 2TCF for an experimental series consisting of 400 frames. Red squares show 
examples of regions selected for the model training. Yellow arrow shows the temporal direction δt of the system’s 
dynamics. Yellow solid line shows the 1TCF along δt, calculated from the 2TCF. (B) Example of 50 × 50 2TCF, 
passed as an input to the model. (C) Example of the target data for the model, obtained by averaging multiple 50 
× 50 diagonal sections of the 2TCF. All images have the same intensity scale.
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removal from 2TCF instead of the scattering signal at the detector makes the approach agnostic to the type of 
the registering device, the size of the selected area, the shape of the speckles, the intensity of the scattering signal 
and the exposure time, enabling the models’ application to a wide range of XPCS experiments.

Results
Data processing.  The models are trained using data from the measurements of equilibrium dynamics of 
nanoparticle filled polymer systems conducted at the Coherent Hard X-ray Scattering (CHX) beamline at NSLS-
II. For the nanoparticles’ dynamics Eq. (2) can be approximated by the form5:

where Ŵ is the rate of the dynamics and α is the compression constant. The baseline C∞ is nearly 1 in the con-
sidered cases. Each experiment contains a series of 200–1000 frames. To augment the training data, additional 
2TCFs are constructed using every second frame of the original series, which would be an equivalent to data 
collection with a twice longer lag period. Multiple regions of interest (ROI)—groups of pixels on the detector 
with equivalent wavevectors—are analyzed for each series and the 2TCFs are calculated for each ROI. For each 
model datum, or an “example”, the input image is obtained by cropping a 50 × 50 pixels part from a 2TCF with 
the center on the (1,1) diagonal, starting at the lower left corner, as shown in Fig. 1A. Each next datum is obtained 
by shifting the center of the cropped image along the diagonal by 25 frames. The target image for each example is 
the average of all the cropped inputs extracted from the same 2TCF. Thus, groups of 3 to 39 inputs have the same 
target. While the target images still contain noise, its level is significantly reduced with respect to the noise of 
the input images. Here, the size of 50 × 50 pixels is chosen as for the majority of the examples in the considered 
dataset the dynamics’ parameters can be inferred from the first 50 frames. However, any size can be selected to 
train a model with little to no modification to its architecture if enough data are available.

The diagonal (lag = 0) 2TCF values of the raw data reflect the normalized variance of the photon count. Such 
values are vastly different between experiments and detector ROIs. They can by far exceed the values of photon 
correlation between frames (typically on a scale between 1 and 1.5) and are usually excluded from the traditional 
XPCS analysis. To prevent the influence of the high diagonal 2TCF values on the model cost function, the pixels 
along the diagonal are replaced with the values randomly drawn from the distribution of 2TCF values at lag = 
1. In doing so, we avoid artificial discontinuities in the images.

For a proper model training process and to ensure its generalizability, we find that all the input data should 
be introduced to the model on the same scale. However, a commonly applied standard scaling is not suitable for 
the present case as the level of noise may affect the values of the essential parameters such as the baseline and the 
contrast. To bring all examples to a similar range, the estimated contrast for each series and each ROI is scaled 
to unity (see “Methods”). After processing, the data are split into the training and validation sets as shown in 
Table 1. The splitting is done in a way that no two inputs from different sets have the same target.

Model training.  The ED model architecture used in this work is shown in Fig. 2. The encoder part consists 
of two convolutional layers with the kernel size 1 × 1. Training the model with larger kernel sizes did not improve 
the performance of the model. While kernels of size 1 × 1 are used sometimes in CNN image applications19 for 
creating non-linear activations, generally, they are not exclusively incorporated across the entire network. The 
reason for this is that the convolutional kernels are intended to catch distinctive edges, which form characteristic 
features of an image. To identify an edge, the distribution of intensities among the neighboring pixels is needed. 
However, the 2TCFs used in this work do not have sharp edges, which can partially explain the lack of improved 
learning with larger kernels. Besides, an equilibrium 2TCF has a unique structure, with symmetry along the 
diagonals. An equilibrium 2TCF and its modified copy with pixel values randomly shuffled along the diagonals 
would produce exactly the same 1TCF. This property is picked up by the model during compression of convolu-
tional outputs to the latent space.

(3)C1(qqq, t) = C∞ + βe−2(Ŵt)α

Table 1.   Distribution of examples between the training and validation sets.

Training Validation

Unique inputs 12,236 5449

Unique targets 722 401

Figure 2.   Architecture of the CNN-ED model. The input and the output images have the same intensity scale.
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Both convolutional layers consist of 10 channels with rectified linear unit (ReLU) activation function applied 
to the output of each channel. We find that increasing the number of channels does not significantly change the 
performance of the model and the smaller number of channels gives poorer performance. No pooling layers20 
were introduced to prevent information loss21 at the encoding stage. The output of the convolutional layers con-
tains 25,000 features. A linear transformation is performed to convert them to the latent space of a much smaller 
dimension. While some ED image applications implement fully convolutional architectures16,18, we believe that 
the introduction of the linear layer for purpose of denoising equilibrium 2TCFs is beneficial. Not only does the 
bottleneck layer provide the regularization of the model, it also mixes the features derived by convolutional layers 
from different parts of the input image. The decoder part consists of two transposed convolutional layers, sym-
metrical to the encoder part, that convert the latent space back to a 50 × 50 image. The ReLU function is applied 
only to the output of the first decoder layer.

The mean squared error (MSE) between the denoised output and the target is a natural choice of cost func-
tion for many image denoising applications. The MSE is shown to be useful for image denoising even in cases of 
some noise being present in the target22. Moreover, presence of noise in the input data puts a regularization on 
model weights, enforcing contractive property23 on the reconstruction function of denoising EDs. The goal of 
the model presented here is to reduce the noise in 2TCF in such a way that the 1TCF, calculated from the model 
output, is as close to the target 1TCF as possible. Thus, the model’s learning objective is modified by including the 
MSE between respective 1TCFs into the cost function.

We find that the regularization, which is enforced by the noise in both inputs and targets, in conjunction 
with the early stopping based on the cost function for the validation set, is sufficient for the model to avoid 
over-fitting. Introducing additional weight regularization reduced the accuracy of the model, especially for the 
cases of fast dynamics.

However, the cost function calculated for the validation set is not the only parameter to consider when 
selecting the optimal parameters for the model. When examining models trained for different latent space 
dimensions, the validation cost function (Fig. 3) does not have a pronounced minimum in the range of dimen-
sions between 1 and 200. However, this metric may not reflect well the systematic errors in reconstructing the 
dynamics parameters, such as β , Ŵ , α and C∞ , which are essential to drawing scientific conclusions. An efficient 
model would precisely recover these parameters for a broad set of observations. Thus, the optimal dimension is 
selected based on how well the model output allows to recover those parameters for the validation data. Here, the 
rate of the dynamics, Ŵ , is the most important parameter to consider since the variation of β is taken care of by 
pre-processing normalization and the variations of α and C∞ are naturally very small in the considered examples.

To reduce the variance associated with the randomness of the initial weights initialization, ten models with 
different random initialization are trained for each latent space dimension. For each of the validation examples, 
the outputs of the ten models are converted to 1TCF, averaged and then fit to Eq. (3). The ground truth values, 
used for comparison, are obtained by fitting the 1TCF calculated from all (100–1000) frames in the same experi-
ment and the same ROI as the input example is taken from.

Since values of dynamics rate can be very close to zero, the mean absolute relative error (MRE) is considered 
for Ŵ . The MSE is calculated for other parameters. The accuracy of Ŵ keeps improving with increased number 
of hidden variables. But the rate of improvement slows down considerably above 5–8 variables. The same is 
observed for α and C∞ . This is in agreement with the MSE (1TCF) between the model output and the target, as 
shown in Fig. 3. The accuracy of β is relatively uniform across all the models. Based on the above, we select the 
models with eight latent variables for further consideration.

To address the variance of the selected CNN-ED, we train 100 such models with different random initializa-
tion and select among them the 10 best performing models based on the MSE (1TCF) for the validation set. 
Selecting only a limited number of the best performing models instead of combining all trained models also 
optimizes the use of storage memory and computational resources.

Model testing.  The performance of the ensemble of models is evaluated through several tests. Firstly, we 
estimate the model applicability range by applying it to experiments that are similar to the ones used for training. 
An example of noise removal from a test datum is shown in Fig. 4. Reduction of the noise is especially important 
for larger lag times, where fewer scattering frames are available for calculating the correlations.

As mentioned above, despite the cost function working well for determining the optimal weights for a model, 
it is not sufficient to assess the reliability of the model output for quantitative analysis of the materials’ dynamics. 
We assess the performance of the ensemble by comparing the fits with Eq. (3) for the 1TCFs calculated from 
the cropped 50 × 50 pixels raw data (inputs), the corresponding denoised model outputs and the full-range raw 
data (ground truth target) (see the Supplemental Materials). From the results of the test set, the noise removal 
from the raw cropped 2TCFs with the CNN-ED ensemble noticeably improves the precision for the dynamics 
parameters in a wide range of cases with 0.01 frames−1 < Ŵ < 0.15 frames−1 (i.e. the contrast drops by half 
within approximately the first 3–35 frames) in comparison with fitting the raw cropped 2TCFs. The application 
of the model enables reasonable estimates even in cases when the low signal-to-noise ratio of the raw cropped 
data prevents a convergent fit within the parameters’ boundaries. In the region Ŵ > 0.15 frames−1 , the results of 
the model are no longer more accurate than the raw data in general. Note that the precision of the model depends 
on the accuracy of identifying the optical contrast. Accurate measurements of optical contrast in XPCS experi-
ments with fast dynamics can be challenging as they can involve data collection with reduced exposure or relying 
on averaged speckle visibility. Furthermore, a poor accuracy in identifying dynamics parameters is observed for 
inputs with very high noise levels (Fig. S7) and/or the presence of well pronounced dynamical heterogeneities.

If 100 or more frames are available for analysis, 2TCFs with slow dynamics can be reduced by considering 
every 2nd, 3rd, etc. frame, as it is done for augmenting the training data. This will effectively increase the exposure 
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times and increase the Ŵ measured in frames−1 , making the model output more accurate. Alternatively, a model 
with a larger size of input 2TCF can be trained to handle cases of slow dynamics.

While it is clear from above how the model performs on average for individual independent 2TCFs, it is 
useful to see if application of the model can lead to reducing data collection in a typical XPCS experiment. We 
consider a single 700-frames series of scattering images among those used for creating the test set. The goal is 
to see if one can extract a sufficient information about the q-dependence of the dynamics rate Ŵ using only the 
first 50 frames with and without the model application. The target 2TCF for each of the concentric ROIs (shown 
in Fig. 5A) are calculated using all 700 frames. The first 50× 50 frames regions of the 2TCFs are considered and 
the ensemble CNN-ED model is applied to them. The visual comparison between the level of noise in the raw 
data and in the model output for an ROI with large q is shown in Fig. 5B. The 1TCFs, calculated from the raw 
cropped 2TCFs, from the model outputs and from the target 2TCFs for each ROI are fit to Eq. (3) with α = 1 . 
The results are shown in Fig. 5C–E. For the parameter Ŵ , at small q, where the signal-to-noise ratio is high, all 
three fits are close. However, as q grows and the noise level increases, the fit for the raw 50-frame 1TCFs starts 
to deviate from the target values more than the fit for the model outputs. In fact, the outcome of the model 
remains close to the actual values until the large q values (ROI# 16 and above). A similar tendency is observed 
for parameters β and C∞ . This example demonstrates that application of the model can help to obtain sufficient 
information about the equilibrium system’s dynamics from a smaller amount of data.

The applicability of the model to non-equilibrium data is also tested. Although the model is trained with 
the equilibrium examples, it still can be applied to quasi-equilibrium regions of a 2TCF with gradually varying 
dynamics parameters. Here, the model performance is demonstrated for a sample with ageing dynamics that 

Figure 3.   Selection of the latent space dimension for the model. From top to bottom, as the function of the 
latent space dimension: the MSE (1TCF) (blue circles) and the cost function (orange triangles) for the validation 
set; the MRE ( Ŵ ); the MSE of β , C∞ and α , extracted from the fit of the corresponding CNN-ED ensemble’s 
outputs for the examples in the validation set to Eq. (3). The vertical line marks the choice of the latent space 
dimension for the model.
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become slower with time. Since the target values cannot be obtained by averaging many frames for a such case, 
we calculate two 2TCFs with different noise levels, but carrying the same information, through sub-sampling 
pixels from the same ROI. The original ROI is a circle of small width with its center at q = 0. This ROI is used 
for calculating the target 2TCF. To calculate the test 2TCF with the reduced signal-to-noise ratio we randomly 
remove 74% of pixels from the original ROI. The model is applied along the (1,1) diagonal in a sliding window 
fashion (see “Methods”).

To compare the test 2TCF and the result of the model application, the cuts with width of 1 frame are taken 
perpendicular to the (1,1) diagonal and the resulting 1TCFs are fit to Eq. (3) in analogy to other XPCS analyses5,24. 
The target parameters are obtained by taking the cuts of 10 frames with the step of 10 frames from the target 
2TCF and fitting the 1TCF, averaged over each cut, to the Eq. (3). Averaging is done for improving the accu-
racy of the target values. The contrast β is estimated as the mean of the respective raw 2TCF(lag = 1) at frames 
250–300, where the dynamics are fairly slow, and is fixed during the fit. The results for Ŵ , C∞ and α are shown 
in Fig. 6C–E. While the general trend of Ŵ(t) could be visually estimated from the raw test data, the output of 
the model gives much fewer outliers. Moreover, the temporal region, where Ŵ can be reasonably estimated is 
wider for the model output. The fit to the raw test data does not allow to estimate Ŵ in the first 30–40 frames, 
while the fit to the denoised data is close to the target in that region. The fit of the denoised data only shows a 
high uncertainty at the corners of the 2TCF, where the corresponding 1TCFs consist of less than 20 points. The 
variance of parameter C∞ is also improved for the denoised data, but the most notable improvement in accuracy 
is observed for the parameter α . The fits to the raw noisy data have high variance, which hides the upward trend 
of α , in contrast to the fits to the denoised data.

In a typical experiment, cuts with width of more than 1 frame are used for estimating the dynamics parameters 
achieving a better accuracy for the raw data than shown in Fig. 6. However, the selection of regions with quasi-
equilibrium dynamics is not trivial. Since the fits to 1-frame-wide cuts from the denoised data have a low vari-
ance almost across the entire experiment, application of CNN-EDs makes the data more suitable for automated 
analysis and for visual inspection of the data when selecting the quasi-equilibrium regions.

Comparison to other techniques.  We compare the performance of our approach to several of-the-shelf 
solutions for noise reduction in images: linear principle components-based, Gaussian, median and total varia-
tion denoising (Chambolles’ projection)25 filters. The comparison of the application of these techniques to the 
same test example as in Fig. 4 is shown in Fig. 7. Principle components filters have the same idea as the ED 
model-preserving only the information from a few essential components of the original data. In fact, an autoen-
coder is a type of non-linear principle component generator. As one would expect, a filter based on linear princi-
ple components, trained on the same data as the CNN-EDs, under-performs comparing to the case of non-linear 
components due to a larger bias of the procedure for the components extraction. Gaussian and median filters 
are based on smoothing the intensity fluctuations between neighboring pixels and the total variation denois-
ing is a regularized minimization of the additive normally distributed noise. While these approaches help to 
reduce pixel-to-pixel intensity variations, unlike the demonstrated here CNN-ED models, they do not learn 
the functional form of the equilibrium 2TCF images and cannot be improved by having a larger training set. By 
only considering local surrounding of individual pixels in a single image, such algorithms cannot recognize, for 
example, that the correlation function decays at larger lag times. Consequently, when an isolated high-intensity 

Figure 4.   Example of 2TCF denoising with the CNN-ED models. (A) From left to right: the raw input 2TCF; 
the averaged target; the output of the ensemble of CNN-ED models. (B) 1TCF calculated from each 2TCF in 
(A). The dashed line corresponding to a baseline C∞ = 1 is shown for convenience.
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pixel (noise) is encountered in an image, an application of such filters leads to inflation of intensities in the sur-
rounding pixels, highlighting the noise instead of correcting it. Thus, noise removal with the above filters can 
introduce false trends in 1TCF, which makes them unsuitable for quantitative XPCS data analysis. On the other 
hand, a CNN-ED, which is a regression model, learns from numerous examples the characteristic trends in the 
data and is less likely to introduce artifacts.

Figure 5.   Model application for recovering the q-dependence of the dynamics parameters. (A) Scattering image 
of the sample with the ROI map on top of it. Dark blue corresponds to pixels excluded from the analysis. (B) A 
100-frame fragment of 2TCF from ROI #14. The first 50-frame part is denoised with the model. Variation of Ŵ 
(C), β (D) and C∞ (E) parameters among ROIs with different q.
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Figure 6.   Model application for the case of non-equilibrium dynamics. (A) 2TCF calculated from reduced ROI. 
(B) The same 2TCF after the model is applied along its diagonal. Temporal evolution of Ŵ (C), C∞ (D) and α (E) 
parameters extracted from the noisy raw data, denoised data and the target 2TCF.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:14756  | https://doi.org/10.1038/s41598-021-93747-y

www.nature.com/scientificreports/

Discussion
The CNN-ED approach to noise removal in XPCS shows a reasonable improvement in the quality of the signal, 
allowing for quantification of a sample’s dynamics from a limited amount of data, avoiding extensive data col-
lection, accessing finite regions of reciprocal space and quasi-equilibrium intervals of non-equilibrium dynam-
ics. The CNN-ED models go beyond and are superior to a simple smoothing of intensity between neighboring 
pixels since these models empirically learn the structural form of the 2TCF. The models are fast to train and 
do not require an extensive amount of training data. Their accuracy is pretty robust with respect to the choice 
of hyperparameters such as the number of channels in the hidden layers, the convolutional kernel size and the 
latent space dimension. The computational resources required for the application of the ensemble of 10 models 
are smaller than one needs to calculate 2TCFs for a typical number of frames required to achieve the same 
signal-to-noise ratio.

However, there are several limitations to keep in mind when applying CNN-ED models to a 2TCF. The testing 
results show that the models may not reliably remove the noise for the cases of very fast and very slow dynamics 
as well as from very noisy data (see the illustration in Supplementary Fig. S7). Some inaccuracy for the cases of 
fast dynamics comes from uncertainties in identifying the normalization factors (contrasts) for pre-processing 
of the inputs, which is also a challenge for traditional analysis. When the speckle visibility drops significantly 
within a single frame acquisition period, its estimation from the input data can have a high error. As it is seen 
from the model performance for the validation set and for the non-equilibrium test case in comparison to its 
performance for the equilibrium test set, a more accurate scaling of the inputs can improve the precision of the 
model for experiments with faster dynamics. Besides, one is advised to consider the context of extracted dynam-
ics for a given material before relying solely on the information extracted from only a single 2TCF regardless of 
whether a CNN-ED model is applied. One benefits from a series of experiments on a single system, such as a 
temperature dependence or the demonstrated here q-dependence, to lend credibility to extracted dynamics for 
one particular experiment.

In this work, only equilibrium dynamics described by stretched exponents with the baseline close to 1 are used 
for training. Thus, the model learns to approximate any input with this type of dynamics. This can result in a loss 
of fine details, such as heterogeneities, oscillations or fast divergence of dynamics parameters in non-equilibrium 
cases. However, the demonstrated approach to the noise removal can be expanded to other types of dynamics 
with sufficient amount of data for training. Even in the absence of proper denoised target data, the autoencoder 
version of the model can significantly reduce the random noise. Furthermore, a CNN-ED model can be trained 
to correct for specific types of artifacts, such as impact of instrumentational instabilities or outlier frames, lead-
ing to a more efficient use of experimental user facilities26. Similarly to other fields27,28, the autoencoder models 
can be used for identifying unusual observations in the stream of XPCS data. Additionally, the encoded low-
dimensional representation of the 2TCF can be used for classification, regression and clustering tasks, related to 
samples’ dynamics. In the broader scope, the presented here CNN-ED models and their modifications have the 

Figure 7.   Comparison of various noise removal techniques applied to an example from the test set. Top row: 
results of applying filters to the raw 2TCF, middle row: 1TCFs calculated from the 2TCFs for the raw input (blue 
dashed line), the results of the respective filters (orange solid line) and the target (green solid line), bottom row: 
residuals of the 1TFCs calculated from the example after denoising with the respective filters.
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potential for application in automated high-rates XPCS data collection29 and processing pipelines, reducing the 
reliance on the human-in-the-loop in decision making during experiments.

Methods
Training data.  The data for training and validation set contain experiments for 7 samples from 3 different 
material groups A (1 sample), B (2 samples) and C (4 samples). The experiments are taken at various exposures, 
acquisition rates and temperatures. Concentric ROIs with increasing q are used. Depending on the noise level 
and the dynamics duration, from 2 to 17 ROIs (median 10 ROIs) are considered for each experiment. The diver-
sity of experimental conditions and regions in the reciprocal space allows one to obtain a realistic distribution of 
dynamics parameters and noise levels. We have not included the cases with very slow dynamics, for which only 
a small portion is complete within the 50 frames. To cut off the high noise data, we excluded the cases, where the 
fit to Eq. (3) did not converge for the full-range 1TCF. The distributions of dynamics parameters for the train-
ing and the validation set are shown in Fig. S1. For the model training purposes, all input data (2TCFnoisy ) are 
scaled as:

where β∗ is the estimation of speckle visibility for the integration time of a single frame. It is obtained from 
fitting the equivalent pixels’ intensity fluctuations with a negative binomial distribution6. For this, the speckle 
visibility, is calculated for each frame and is averaged among all the frames in the series. The target data are 
reversely scaled accordingly.

Test data.  The test data are collected in a similar fashion to the training/validation data. Experiments for 
5 different samples from the same material group (C) are considered. Experiments are performed for different 
temperatures, exposure times and acquisition rates. Concentric ROIs with increasing q are used. 10 ROIs with 
the smallest q-s are considered. However, no visual inspection of the data is done prior to model application and 
the ROIs with slow dynamics are not rejected. ROIs, where the full-range 1TCF fit to Eq. (3) does not converge, 
are not considered. Overall, 12,060 inputs (679 distinct targets) are considered in the test set. The distribution of 
the parameters from Eq. (3) in shown in Fig. S2. Unlike training/validation data, the contrast for normalization 
of test inputs is estimated from the 1TCF derived from the 2TCF) at lag = 1 frame instead of the speckle visibility. 
This is done to reduce the computation time and to test the model performance for the cases when only the 50 
× 50 2TCFs, and not the scattered images, are available. No adjustment is done to the baseline as the input data 
does not provide a good estimate for it. Thus, for each of the noisy 2TCFnoisy , the model input is calculated as:

The denoised 2TCFdenoised is then obtained from the output as:

Non‑equilibrium test.  For the example of ageing dynamics considered in this work, the model is applied to 
each 50× 50 piece of the raw 2TCF along its (1,1) diagonal with the step size 5 frames, starting at the first frame. 
Prior the application of the model, each input is obtained from a raw 2TCFnoisy as:

where β∗(lag = 1) is the estimation of contrast at lag=1 as the mean of 2TCFnoisy(lag = 1) for frames 250–300 
and C∗

∞ is the estimation of the baseline as the mean of 2TCFnoisy at lags 270–300. The reverse transformation 
is applied to the model output. The overlapping model outputs between the current and the previous steps are 
averaged. The values outside of the 50× 50 diagonal sliding window remain unchanged. The same procedure 
is repeated with the model sliding window moving from the last frame towards the first frame. The two results 
are averaged to reduce the dominating influence of the later dynamics over the earlier dynamics and vice versa. 
The loss of the temporal resolution due to convolution between the model and the raw signal is not significant 
for the considered case of slowly-evolving sample dynamics.

Model training details.  The cost function used for training the models is the sum of the Mean Squared 
Error (MSE) between the target 2TCF and the models’ output and the MSE between the respective 1TCFs (with-
out lag = 0):

where xoutk  is the model output for the k-th training example and xtargetk  is the corresponding target’s pixel, m is 
the number of examples, || · ||2 stands for 2-norm.

At every training epoch, batches of size 8 are processed. Adam30 optimizer with initial learning rate from 
2.5e−6 to 4e−5 is used. Learning rate is reduced by a factor of 0.9995 at every epoch. Initial weights in the 

(4)input = (2TCFnoisy − 1)/β∗ + 1

(5)input = (2TCFnoisy − 1)/1TCFnoisy(lag = 1)+ 1

(6)2TCFdenoised = (output − 1) ∗ 1TCFnoisy(lag = 1)+ 1

(7)input = (2TCFnoisy − C∗
∞)/β∗(lag = 1)+ 1

(8)

cost =
1

2500 ·m

m∑

k=1

||xoutk − x
target
k ||2

+
1

49 ·m

m∑

k=1

||1TCF(xoutk )− 1TCF(x
target
k )||2
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convolutional and linear layers are assigned according to Xavier uniform initialization31. The models are trained 
with Nvidia GPU accelerator GeForce RTX 2070 Super. For the selected CNN-ED configuration, the average 
training time is 27 seconds per epoch with 9–82 epochs necessary to train a model. Each input or target takes 
30 kB of computer memory.

A model application does not require a GPU and, in fact, can be preformed faster without transferring the 
2TCF data to a GPU. When using a CUDA accelerator, loading the model from a file, converting the 2TCF from 
numpy arrays to a CUDA Pytorch tensor, application of the model and converting the result back to a numpy 
array takes 2.3 ms on average with pure model computation taking 0.48 ms. Without using a CUDA accelerator, 
the corresponding times are 1.4 ms and 0.57 ms, respectively.

Data availability
The code and the data used for the model training can be found at GitHub repository, https://​github.​com/​bnl/​
CNN-​Encod​er-​Decod​er at the time of publication. DOI: https://​doi.​org/​10.​11578/​dc.​20210​704.1.
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