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A B S T R A C T   

Background and purpose: User-adjustments after deep-learning (DL) contouring in radiotherapy were evaluated to 
get insight in real-world editing during clinical practice. This study assessed the amount, type and spatial regions 
of editing of auto-contouring for organs-at-risk (OARs) in routine clinical workflow for patients in the thorax 
region. 
Materials and methods: A total of 350 lung cancer and 362 breast cancer patients, contoured between March 2020 
and March 2021 using a commercial DL-contouring method followed by manual adjustments were retrospec-
tively analyzed. Subsampling was performed for some OARs, using an inter-slice gap of 1–3 slices. Commonly- 
used whole-organ contouring assessment measures were calculated, and all cases were registered to a com-
mon reference shape per OAR to identify regions of manual adjustment. Results were expressed as the median, 
10th-90th percentile of adjustment and visualized using 3D renderings. 
Results: Per OAR, the median amount of editing was below 1 mm. However, large adjustments were found in 
some locations for most OARs. In general, enlarging of the auto-contours was needed. Subsampling DL-contours 
showed less adjustments were made in the interpolated slices compared to simulated no-subsampling for these 
OARs. 
Conclusion: The real-world performance of automatic DL-contouring software was evaluated and proven useful in 
clinical practice. Specific regions-of-adjustment were identified per OAR in the thorax region, and separate 
models were found to be necessary for specific clinical indications different from training data. This analysis 
showed the need to perform routine clinical analysis especially when procedures or acquisition protocols change 
to have the best configuration of the workflow.   

1. Introduction 

Deep learning-based (DL) automatic contouring for radiotherapy has 
evolved over the past years leading to clinical implementation at many 
institutes and for many treatment sites. Significant time saving 
compared to both manual contouring and atlas-based contouring 
methods is achieved [1–10]. Even though the majority of current clinical 
tools still use atlas-based auto-contouring, DL-contouring is being 
offered more often recently [5,9]. However, clinical implementation of 
such an automatic contouring software requires thorough validation and 
quality assurance (QA) [9,11–14]. User-adjustments evaluated in 

routine clinical practice give insight into the real-world model perfor-
mance. The amount and type of user-adjustments could give more in-
formation into acceptance of certain structures by clinical experts, and 
whether there are regions of structures that need more editing than 
other regions. 

The quality of automatic contouring has been widely studied on the 
geometrical level by comparing automatic delineations and user- 
adjustments, but typically using whole-organ measures and performed 
mostly on a limited patient cohort. A more extended analysis was pre-
viously published for head & neck cancer patients by Brouwer et al. 
[15]. This current study aimed to evaluate the extent of manual 
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adjustments following auto-contouring of organs-at-risk (OARs) in the 
thorax region in clinical practice for a large patient group. User- 
adjustments following DLC using a commercial DLC system were 
assessed retrospectively following 12 months of clinical use. Manual 
adjustments made during clinical review of the automatically generated 
contours were assessed and quantified, and regions that required sub-
stantial editing per OARs were identified. 

2. Materials and methods 

2.1. Patient cohort 

Since March 2020 a Lung DL-model [4,16] and since June 2020 a 
Breast DL-model have been used in our clinical practice. Both models are 
based on convolutional neural networks with an architecture as 
described in [6]. CT-scans were acquired using Siemens SOMATOM 
Drive or Confidence CT-scanners (Siemens Healthineers, Forchheim, 
Germany) with varying slice-spacing depending on clinical protocol 
(range:1–3 mm). A total of 415 lung cancer (LC) and 364 breast cancer 
(BC) cases were included in this study. In our clinical workflow, CT- 
scans of these patients were exported to Mirada WorkflowBox 2.0–2.4 
(Mirada Medical Ltd., Oxford, United Kingdom). The appropriate DL- 
model (DLCExpert, Mirada Medical Ltd., Oxford, United Kingdom) 
was automatically selected based on CT-protocol name, and a corre-
sponding DICOM RT Structure Set (RTSS) was returned to the Treatment 
Planning System (TPS, Eclipse, version 14.0–16.0, Varian, Palo Alto, 
USA). A radiation therapy technologist (RTT) checked the OARs 
included in the DL RTSS and manually adjusted where necessary. In this 
study, all RTTs in our clinic trained to delineate lung and breast patients 
in clinical practice were included (approximately 40). Both the 
automatically-generated and the user-adjusted contours were collected 
for this study. The Institutional Review Board of Maastro approved this 
retrospective study with project number P0288. A representative 
example of the DL- and edited contours for a LC and BC patient is shown 
in Fig. S1 in the Supplementary Material. 

For the LC group, left lung, right lung, heart, esophagus, spinal cord, 
and mediastinum envelop were contoured using the Lung DL-model. 
Training data as well as clinical data included the 50%-expiration 
phase of a 4DCT-scan of LC patients [4]. Additionally, a 3DCT-scan with 
intravenous (IV)-contrast was available for fusion with the 4DCT-scan 
for delineation of the target volume. Heart, esophagus and medias-
tinum were returned using an inter-slice gap of three slices (i.e. sub-
sampling), editing was allowed and followed by inter-slice contour 
interpolation of the edited contour. Fewer edits were expected using 
subsampling followed by interpolation. Automatic post-processing of 
the DL-contours included removing slices for the heart (superior: 24 
mm, inferior:9mm), mediastinum (superior: 21 mm, inferior: 21 mm), 
and esophagus (superior: 24 mm). This post-processing step was 
implemented in July 2020 based on interim feedback evaluation from 
the RTTs. 

For the BC group, left lung, right lung, heart, breast clinical target 
volume (CTV) and contralateral breast were delineated. A dedicated 
Breast DL-model was used to contour left and right lungs, the breast CTV 
and the contralateral breast. Training data included a voluntary 
moderately deep-inspiration breath-hold (vmDIBH) CT-scan for left- 
sided BC cases and a free-breathing (FB) CT-scan for right-sided BC 
cases. For the heart and esophagus, the Lung DL-model was used. The 
thyroid was taken from a head-and-neck DL-model [15]. The esophagus 
and thyroid were included when periclavicular or parasternal lymph 
node regions were involved. Heart, CTV, contralateral breast and 
esophagus were contoured using an inter-slice gap of three slices, the 
thyroid using an inter-slice gap of one slice. Automatic post-processing 
of the DL-contours involved removing slices from the CTV and contra-
lateral Breast_L/_R (superior: 12 mm), and from the heart (superior:24 
mm). Both the CTV and contralateral Breast_L/_R were expanded in the 
direction of the body surface (anterior: 10 mm, left/right: 10 mm, 

respectively). 
Following automatic contouring, manual user-adjustments were 

made where necessary to make the contours clinically acceptable. In 
clinical practice, the CTV and the contralateral breast structures are 
cropped with 5 mm to the body contour. DL-contours were similarly 
cropped. 

2.2. Whole-organ evaluation of contour editing 

Volumetric Dice Similarity Coefficient (vDSC), mean slice-wise 
Hausdorff distance (MSHD), surface DSC (sDSC) [17] and added path 
length (APL) [16] were calculated between the automatic and user- 
adjusted contours. For subsampled structures, only slices with a DL- 
contour present were included in the calculation. 

2.3. Local evaluation of contour editing 

To identify anatomical regions of adjustments in the entire patient 
population, contours were aligned to common OAR reference shape as 
proposed by Brouwer et al. [15]. Clinical contours were converted to 3D 
discrete mesh representations. 3D meshes of an OAR were registered to 
the reference, and the amount of editing was quantified. Finally, editing 
statistics were reported as the median and 10-90th percentile range of 
edits per reference vertex over the patient population. 3D renderings 
were visualized using 3D slicer (https://www.slicer.org) [18]. 

In contrast to previous work by Brouwer et al. (2020), DL-contours 
were subsampled for some OARs prior to editing. In Fig. 1A-D the 
clinical workflow of editing these subsampled OARs is presented. To 
analyze total adjustments for the subsampled OARs, pre-processing was 
necessary, as illustrated in Fig. 1E-G. 

To analyze the edits made to interpolated slices, the contour set from 
Fig. 1G is compared to Fig. 1D. To analyze the edits made on the original 
DL-contours, the contour set from Fig. 1E is compared to Fig. 1D. The 
total editing to the full contour is obtained by combining these two sets 
of edits on the appropriate slices, done at the vertices level based on the 
nearest neighbor vertex on either a DL- or interpolated contour. 

For the subsampled structures, further analysis was carried out to 
estimate the number of required edits when no sub-sampling would have 
been performed. A comparison of the interpolated DL-contour (Fig. 1E) 
to the clinical contour (Fig. 1D) provides a good estimate of the amount 
of editing when sub-sampling is not performed. 

2.4. Excluded datasets 

In total, 65 and 2 cases were excluded from the LC and BC group 
respectively, because of an incorrect identification of the location of one 
or both lungs in the first stage of the region detection algorithm, nega-
tively influencing the accuracy of the other OARs. In our clinic, an 
extended scan range in longitudinal direction for breast patients eligible 
for proton therapy (to avoid collision of the treatment machine with the 
body) was performed. In some of these elongated scans, one or both 
automatically generated breasts were predicted in the pelvic region for 
14 cases. These breast CTVs and/or contralateral breasts were excluded. 
Because the esophagus and the heart in the BC group were contoured 
using the Lung DL-model, and following the same exclusion criteria as 
for the LC group, 10 cases for these OARs were excluded. In all cases 
where automatic contouring was failing, the RTT manually recontoured 
the OAR; these cases were excluded for further evaluation in this study. 

2.5. Statistical analysis 

All results were expressed as mean ± standard deviation or median 
(range). Grouped data were tested for statistical significance using two- 
sided Wilcoxon-Mann-Whitney tests. Analyses were performed in Mat-
lab 2020a (The Mathworks Inc., Natick, MA, USA) and SciPy version 
1.5.2. 
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3. Results 

Comparable or better results were found for whole-organ results of 
user-adjustments in the LC group compared to the BC group (Table 1). 
Statistically significant differences were found between LC and BC group 
for the same OARs for the left lung, heart, and esophagus (Table 1). 

Per OAR, the median local amount of editing was low, i.e. < 1 mm 
(Fig. 2). For most structures, an asymmetric distribution of editing was 
observed, and for most vertex points per structure, the median of ad-
justments was within 1 mm as well (Figs. 3 and 4). Almost all median 
adjustments were positive, showing that overall editing of the DL- 
contours was to enlarge the automatic contour. Histograms of the ad-
justments per OAR can be found in Figs. S2-S3 in the Supplementary 
Material. 

For both lungs (LC and BC) and spinal cord (LC), median and 10-90th 
percentile range were close to zero, showing almost no editing was 
performed. For the heart (LC and BC) and mediastinum (LC), most ad-
justments were located in the superior and inferior region of the struc-
ture; the middle part of the structures were mostly accepted with only a 
few edits. For the left and right contralateral breasts most editing was 
also performed in the superior and inferior regions; the middle part was 
almost perfect. In the left and right CTV, a similar pattern was found, 
and additional adjustments were more carried out in the medial and 
lateral side of the CTV. 

Largest 10-90th percentile range was found for the esophagus, with 
adjustments up to several centimeters, indicating the DL-contour was 
either missing or mostly wrong. Higher variability was found in the BC 
group compared to the LC group. The different thyroid topologies did 
not result in different findings, adjustments were highest in the superior 
region. For the topology with the connecting region present, a high 
amount of adjustment was found there. 

For the sub-sampled structures, more adjustments would have been 
made if editing was performed on the full DL-contours. The amount of 
adjustment estimates without DL-contour sub-sampling are shown in 

Figs S4 and S5 in the Supplementary Material. This resembles the 
alternative situation of editing the full DL-structure. As can be seen, 
more adjustments would have been made compared to when editing is 
performed on a sub-sampled structure (see Figs. 3 and 4), showing that 
using sub-sampling improves the clinical workflow in terms of adjust-
ments needed and consequently efficiency. 

Some specific observations were made showing where the DL-model 
could not contour an OAR of clinical quality. From the total number of 
BC cases, 65 were scanned and treated after a mastectomy. Upon feed-
back from the RTTs, it was seen that the Breast DL-model under-
performed for both breasts because the shape of the target volume was 
different compared to the training set of the model, and they might not 
use the structure in clinical practice. For the esophagus, it was seen that 
for a subgroup of cases (LC:71 cases (20.4%), BC:18 cases (19.4%)), the 
inferior part of the esophagus was missing; the DL-contour only included 
the superior part. 

4. Discussion 

A small systematic overall editing (median < 1 mm) of manual ad-
justments was found following DL-contouring of OARs in LC and BC 
cases. The variability in editing (10-90th percentile range) was low for 
the lungs and spinal cord, indicating these contours are generally 
accepted and do not need much editing. There was an asymmetric dis-
tribution of editing at the superior and inferior region of the structures 
(Figs. 2 and S2-3). From post-processing at the top and bottom of OARs, 
this was expected. Besides this, there is a known systematic trend of 
under-segmentation of DL-contours for the currently-used implementa-
tion [15]. 

For the contralateral breasts and breast CTVs, most edits were found 
on the superior and inferior side. To a smaller extent edits were made on 
the medial and lateral sides. Delineation guidelines denote both breasts 
should be delineated medially lateral to the medial perforating mam-
mary vessels; maximally to the edge of the sternal bone, and laterally up 

Fig. 1. Schematic overview of the contour sets considered in this study. A: Sub-sampled DL-contours; B: Manually adjusted DL-contours; C: Manually adjusted DL- 
contours followed by interpolation; D: Final clinical contour following adjustment of C. In this schematic figure, we assumed no edits were made to the blue contours 
from C, but in clinical practice it is possible some minor edits are made on these slices after interpolation; E: Interpolated DL-contours for evaluation purposes, for 
subsampled OARs only to simulate a full DL-contour; F: Subsampling of the clinical contour set (D) at the location of the original DL-contours for analysis, to catch 
also edits made in the second round of adjusting. This means F is not necessarily the same as B, however only minor differences are expected; G: Interpolation of F to 
infer edits only on the interpolated contours. Note: amount of edits are computed as signed Euclidean distances between the contour surfaces (in 3D). Abbreviations: 
DL = Deep-learning, RTSS = RT Structure Set. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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Table 1 
Whole-organ results of both the LC and BC group. Count is the number of patients included in the analysis per structure. Number of structures where the DL-contour can 
be considered as completely wrong (defined as vDSC < 0.2) were also added. Number of slices added and deleted represent slices outside of the range of the auto-
matically generated contour. Median (10-90th percentile). *Statistically significant difference (p < 0.05) between lung cancer (LC) and breast cancer (BC) group. 
Abbreviations: vDSC = Volumetric Dice Similarity Coefficient, sDSC = surface DSC, MSHD = mean slice-wise Hausdorff distance, APL = added path length.  

LC group Count # patients (%) vDSC 
< 0.2 

vDSC [-] sDSC [-] MSHD [cm] APL [cm] # Slices 
Added 
[-] 

# Slices Deleted 
[-] 

Left Lung 350 0 (0%) 1.00 
(0.99–1.00) 

0.99 
(0.94–1.00) 

0.09 
(0.00–0.34)* 

30.60 (0.00–329.70) 0 (0–0) 0 (0–0) 

Right Lung 350 0 (0%) 1.00 
(0.99–1.00) 

0.99 
(0.94–1.00) 

0.11 
(0.00–0.50) 

40.25 (0.00–430.20) 0 (0–0) 0 (0–1) 

Heart 348 0 (0%) 0.89 
(0.77–0.94) 

0.43 
(0.15–0.71)* 

1.13 
(0.58–2.18)* 

234.15 
(102.28–416.67)* 

2 (1–6.7) 2 (0–5) 

Spinal Cord 333 1 (0.3%) 1.00 
(0.93–1.00) 

0.99 
(0.71–1.00) 

0.00 
(0.00–0.13) 

8.50 (0.00–306.50) 0 (0–7) 0 (0–4) 

Esophagus 348 11 (3.2%) 0.73 
(0.32–0.89) 

0.41 
(0.17–0.78) 

0.32 
(0.15–0.57) 

78.15 (27.92–238.80) 2 (0–30) 2 (0–5) 

Mediastinum 349 0 (0%) 0.93 
(0.85–0.96) 

0.39 
(0.15–0.59) 

0.99 
(0.64–1.62) 

468.70 
(293.76–819.02) 

2 (0–9.6) 4 (0–9) 

BC group 

Left Lung 362 0 (0%) 1.00 
(0.99–1.00) 

0.99 
(0.71–1.00) 

0.13 
(0.00–0.68)* 

51.30 (0.00–1027.85) 0 (0–0) 0 (0–0) 

Right Lung 362 0 (0%) 1.00 
(0.99–1.00) 

0.99 
(0.71–1.00) 

0.14 
(0.00–0.77) 

60.15 (0.00–1166.73) 0 (0–0) 0 (0–0) 

Heart 352 0 (0%) 0.91 
(0.75–0.95) 

0.61 
(0.27–0.80)* 

0.75 
(0.37–1.28)* 

149.75 
(63.88–299.30)* 

2 (0–7.3) 1 (0–3) 

Left CTV 164 7 (4.3%) 0.88 
(0.40–0.95) 

0.58 
(0.15–0.77) 

1.32 
(0.67–2.97) 

250.65 
(123.51–670.28) 

2 (0–8.2) 2 (0–7) 

Right CTV 135 4 (3.0%) 0.88 
(0.62–0.95) 

0.55 
(0.18–0.75) 

1.15 
(0.63–2.31) 

282.50 
(139.10–552.60) 

2 (0–8) 1 (0–3) 

Left Contralateral 
Breast 

156 1 (0.6%) 0.90 
(0.79–0.96) 

0.63 
(0.38–0.81) 

1.08 
(0.54–1.74) 

223.70 
(100.96–398.01) 

1.5 (0–5) 1 (0–4) 

Right Contralateral 
Breast 

188 0 (0%) 0.90 
(0.77–0.97) 

0.60 
(0.32–0.83) 

0.91 
(0.41–2.00) 

240.65 (99.41–470.15) 1 (0–5) 1 (0–4) 

Esophagus 93 13 (14.0%) 0.60 
(0.15–0.90) 

0.33 
(0.07–0.80) 

0.33 
(0.15–0.68) 

75.60 (20.40–262.44) 2 (0–48.2) 2 (0–5) 

Thyroid 94 5 (5.3%) 0.66 
(0.25–0.91) 

0.34 
(0.07–0.73) 

0.85 
(0.28–1.80) 

47.95 (21.88–98.30) 1 (0–4) 0 (0–2)  

Fig. 2. Spatial adjustments showing median, 10, 30, 70 and 90 percentiles of the adjustments over all cases per organ at risk (OAR), for the lung cancer (LC) and 
breast cancer (BC) group. For the esophagus in both LC and BC group, the 90th percentile was cut from the axis at respectively 9.8 and 48.0 mm. 
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to the lateral thoracic artery [19]. These regions are not always 
anatomically clearly defined, but rather visual markers, and conse-
quently inter-observer variability is higher [20]. For the contralateral 

breast, the medial side is most relevant since it is closest to the CTV. No 
edits were found on the anterior side of the contralateral breasts since 
we cropped the DL-contours to the body outline in a pre-processing step. 

Fig. 3. Spatial adjustments showing median and 10–90th percentile range projected on the reference shape of each organ at risk (OAR) in the lung cancer (LC) group. 
Positive adjustments reflect an enlargement outward of the DL-contour. The 10–90th percentile range represents the variability in adjustment between cases. 

Fig. 4. Spatial adjustments showing median and 10–90th percentile range projected on the reference shape of each organ at risk (OAR) in the breast cancer (BC) 
group. Positive adjustments reflect an enlargement outward of the deep learning (DL)-contour. The 10–90th percentile range represents the variability in adjustment 
between cases. Both lungs were not shown because they showed similar results as for the lung cancer (LC) group. Left and Right Breast represent the contralateral 
breast, Left and Right CTV represent the CTV breast. Note: for the thyroid there are two topologies because of anatomical variations in contouring. 
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On the posterior side only a few edits were performed, showing the 
ability of the DL-model to distinguish the transition between the breast 
and the pectoralis muscle accurately. We instructed the RTTs afterwards 
to not use the breast CTV structure for these patients having a mastec-
tomy, and to delineate from scratch. A solution to restore performance in 
this category of patients could be a separate post-mastectomy DL-model. 

For the heart and mediastinum, most edits and highest variability 
were seen in the superior and inferior parts. The superior extension of 
these OARs is prone to high inter-observer variability. For the heart, a 
mean dose constraint is often used in clinical practice, and it has been 
shown that the impact of contour variations on the mean dose is only 
relevant when the heart overlaps with the PTV [21]. For the medias-
tinum a maximum dose constraint is considered in clinical practice, 
indicating only the part of the contour close to the PTV is relevant and 
should be adjusted. Different topologies were seen in the delineations of 
the mediastinum, only one would be expected based on the delineation 
guidelines. We chose to use the topology that corresponds best to the 
guidelines. It is not always straightforward in the individual patient 
anatomy to correctly follow the guidelines, by doing these types of 
studies, we were able to bring this back to the attention of the RTTs. 

For the esophagus, most editing was seen in the inferior region. Here 
the esophagus crosses the diaphragm and enters a region in the abdomen 
where it is surrounded by soft tissue. An accurate delineation of the 
esophagus is difficult there, which was reflected in an increase of the 
amount of adjustment. Especially the transition from esophagus to 
stomach can be difficult to contour. Manual adjustments to the DL- 
contour are also prone to inter-observer variations introducing uncer-
tainty to esophagus contours in the inferior region. 

We performed a more thorough post-hoc analysis, looking at 
whether the quality of the CT-scan had an influence on the prediction of 
the esophagus. The training data of the Lung DL-model was based on the 
50%-expiration phase of a 4DCT-scan. A vmDIBH CT-scan is used for 
left-sided BC cases and a FB CT-scan is used for right-sided BC cases. 
Consequently, the esophagus adjustments can be split according to the 
side of breast cancer. It was found that the esophagus adjustments were 
somewhat lower for vmDIBH-scans compared to FB-scans (1 ± 17 mm 
vs. 14 ± 27 mm, p = 0.095, see Fig. 5), showing that the quality of the 
CT-scan impacted the prediction of the esophagus. Thus, even though 
the anatomical region is similar, taking organs from a model trained 
with a different type of data (FB/vmDIBH vs 4DCT), does not result in 
contours of similar quality. This factor needs to be considered regarding 
the transferability of models based on differences in acquisition pro-
tocols. A possible solution could be the training of more robust models 
using different types of CT-scans and acquisition protocols which could 
lead to increased DL-contour quality over the range of CT acquisition 
parameters. Alternatively, acquisition specific models could be 
developed. 

For the thyroid, substantial variability in adjustments was found 
(median:0.72 mm, 10-90th percentile range:8.15 mm). This OAR is 
mostly used during plan optimization as an anatomical region to avoid, 
the exact location of the contour is of less relevance. In future it could be 
investigated if the non-adjusted DL-contour of such regions of avoidance 
could be already sufficient in the treatment planning stage. 

When procedures or acquisition protocols change, or when different 
post-processing is implemented, it is needed to (periodically) investigate 
the results using a continuous monitoring system or logbook, and ask for 
feedback from the users [12]. Specifically, for post-processing, some 
more iterations and careful analysis could find the ideal cut-off point in 
the post-processing to have as few edits as possible. The same holds for 
the impact of subsampling, which has been shown in Fig. S4-5 in the 
Supplementary Material. This showed estimates of expected edits when 
no subsampling was performed. The benefit of subsampling depends 
highly on the size of the OAR and on the DL-model performance for that 
OAR. For large OARs that need much editing, subsampling is more 
beneficial (e.g. the heart) than for smaller OARs or large OARs where 
DL-model performance is almost perfect (e.g. lungs or spinal cord). 

Because most user-adjustments were found within 1 mm, one can ask 
whether these adjustments were clinically meaningful. Multiple studies 
have already shown that small variability in contouring does not always 
result in significant dosimetric differences for the majority of organs 
[3,22,23], whereas errors close to high dose regions or very large errors 
should always be investigated [24–26]. We previously published rec-
ommendations for user-adjustments following auto-contouring for OARs 
in non-small cell lung cancer cases including the distance to the PTV, 
using the same Mirada DL-contouring solution as in this study [21]. 
Considering these guidelines, most of the adjustments performed do not 
have any clinical impact. The current clinical workflow needs to be 
revised in terms of the order of delineation of OARs and target volume. 
Trained RTTs can then accept contours within these thresholds to make 
the clinical workflow more efficient and to decrease inter-observer 
variability. For this current study, a dosimetric analysis is out-of-scope. 

To conclude, training data for any DL-model remains crucial to the 
quality of the contours, as shown here. User-adjustments remain 
necessary to adhere to clinical guidelines and ensure quality of clinical 
contours. Designing separate models for specific clinical indications, 
changes in contouring guidelines or for different CT-scan acquisition 
protocols could be necessary to generate contours of higher clinical 
quality. Subsampling and post-processing of automatically generated 
contours can reduce editing needed and make the clinical workflow 
more efficient. 
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