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The mutations in the receptor binding domain (RBD) of the SARS‐CoV‐2 are shown to enhance its replication,
transmissibility, and binding to host cells. Recently, a new strain is reported in India that includes mutations
(T478K, and L452R) in the RBD, which are possibly increasing the infection rate. Here, using Molecular
Mechanics (MM) and Monte Carlo (MC) sampling, we show that the mutations in the RBD of the Delta variant
of SARS‐CoV‐2 induced conformational changes in ACE2‐E37, which enhanced the electrostatic interactions by
the formation of a salt‐bridge with SARS‐CoV‐2‐R403. In addition, we observed that these mutations altered
the electrostatic interactions of the salt‐bridge formed between the RBD‐T500 and the ACE2‐D355, which
reduced by more than 70% compared the to the WT.
The Severe Acute Respiratory Syndrome Coronavirus‐2 (SARS‐CoV‐
2) belongs to the large family of viruses that were reported to cause
respiratory diseases in humans called Corona viruses (CoVs) [1].
Coronaviruses family have caused two previous severe pandemics:
SARS and MERS in 2003 and 2012 [1]. SARS‐CoV‐2 is the virus that
was reported to cause the novel COVID‐19 pandemic. In December
2019, a cluster of severe unidentified pneumonia disease have been
reported in Wuhan, China. In January 2020, COVID‐19 outbreak
emerged substantially and explosively worldwide till it was officially
considered as a pandemic by the WHO. As of July 2021, the total num-
ber of confirmed COVID‐19 cases have accumulated to over 197 mil-
lion cases while the death toll was escalated to over 4 million deaths
affecting more than 180 countries [1–6]. The angiotensin converting
enzyme 2 (ACE2) is the target protein in humans (hACE2) and many
other species that mediates the cell entry via binding with the SARS‐
CoV‐2 spike protein [4,7–9]. Like all other viruses, SARS‐CoV‐2 exhi-
bits changes all the time. Some changes may affect the viruses’ proper-
ties “severity, spreading rate, …etc. while others may have no effect at
all. It was recently reported that the mutations in the virus have led to
an increase in the virus transmissibility due to change in the receptor‐
binding domain (RBD) or in the furin cleavage site [10–13]. There are
four variants of concern (VOC) so far; alpha, Beta, Gamma, and Delta
have been emerged out of the original virus [14]. The Delta variant has
mutations in the S protein that are suggested to affect the virus trans-
missibility alongside its susceptibility to be neutralized by the previous
COVID‐19 variants’ antibodies [15–17]. Those changes include two
mutations in the RBD; Leucine at position 452 to Arginine (L452R)
and Threonine at position 478 to Lysine (T478K) [16,17]. The muta-
tion L452R have been reported to enhance the binding affinity to
the host entry receptor ACE2, transmissibility, fitness, and infectivity
and so improves the viral replication [18,19]. Besides, L452R mutation
recently reported to enhance the viral replication by increasing the S
protein stability and viral infectivity and viral fusogenicity [19,20].
The infectivity of the virus is mainly affected by different protein–pro-
tein interactions [21]. Mutations occur in the vital residues at the bind-
ing site would alter the adhesion of virus to host cells [20]. In this
research, we study the effect of both of L452R and T478K variants
in the RBD of the SARS‐CoV2 on its binding to ACE2. The electrostatic
interactions are known to be dominant over various protein–protein
interactions [15]. Therefore, we used both of Molecular mechan-
ics MM and Monte Carlo MC simulations to evaluate the interactions
between RBD of S‐protein and ACE2 at molecular level. We performed
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Table 1
The interaction energies between SARS-CoV-2-RBD and ACE2 in WT, single
mutated proteins L452R and T478K, and protein structure with T478K and
L452R mutations combined.

Coulomb Van der Waals Total

T478K and L452R −7.98 −38.69 −46.67
L452R −9.98 −32.03 −42.01
WT −6.64 −32.74 −39.38
T478K −6.09 −32.79 −38.88

Fig. 1. a. The SARS-CoV-2 RBD protein (cyan) with ACE2 protein (green). b–e. The interactions between selected residues at the RBD/ACE2 interface in the WT
protein and the structures with a single RBD mutation (L452R or T478K) and double mutation (L452R and T478K). The WT RBD and ACE2 are presented in cyan
and green, respectively. RBDs of L452R, or T478K mutated structures are shown in Pink and Blue respectively, while ACE2 associated with these structures are
shown in Yellow and Red, respectively. Finally, the double mutated (L452R and T478K) structure is presented in Orange and Magenta for RBD and ACE2. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Selected favorable vdW and Electrostatic interactions between residues at the RBD/ACE2 binding interface. The x-axis is the interaction energies (Energy
in kcal/mol), while y-axis reflects the selected pairs of residues at the RBD/ACE2 interface. left and right panels: Depiction of vdW and electrostatic interaction
energies, respectively, associated with each structure (wild type (magenta), T478K mutated structure (red), L452R mutated structure (black), and structures with
double mutations (L452R and T478K) (blue). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
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our calculations for the aforementioned mutations and compared our
results with the wild type (Native) protein. All calculations were based
on the protein structure retrieved from the protein data bank (PDB ID:
6m17). Firstly, the crystal structure was optimized using openMM
[22]. Followed by the generation of rotamers using MCCE [23], where
that each rotatable bond was rotated by 60

�
to, properly, sample the

sidechains’ conformations. To build both variants L452R and T478K,
the sidechains of L452 and T478 were replaced by sidechains of Argi-
nine and Lysine, respectively, using MCCE. Finally, optimized protein
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structures with the most occupied conformers were used to calculate
electrostatic interactions by solving Poisson Boltzmann equation using
DELPHI [24]. Then, Boltzmann distribution for all conformers is com-
puted at pH 7 using MCCE for the WT and the mutated structures. The
contribution of the electrostatic and the van der Waals (vdW) forces to
the interaction energies of SARS‐CoV‐2/ACE2 were calculated for the
single (L452R or T478K) and the double (L452R and T478K) mutated
structures as well as the WT protein. In contrary to T478K, the L452R
variant is shown to enhance the total binding energy between RBD and
ACE2 by 2.63 kcal/mol compared to the WT protein. Furthermore, the
interactions in the structure with both mutations L452R and T478K
are enhanced by ∼7.29 kcal/mol compared to WT protein see Table 1.

For WT protein, vdW interaction is shown to be maximum between
RBD‐N487 and ACE2‐Q24 with ∼−2.06 kcal/mol. The L451R and
T478K mutations in the RBD has noticeable effect on the vdW interac-
tions between the RBD‐N487 and ACE2‐Q24, which decreased by
∼1.27 Kcal/mol. Moreover, the maximum vdW interactions are
observed between RBD‐Q498 and ACE2‐Y41 in the structure with both
mutations T478K and L452R (∼−1.97 kcal/mol ) and structures with
single mutation T478K (−1.89 kcal/mol ) or L452R (−1.92 kcal/mol).
Based on our calculations, the formation of RDB‐R403/ACE2‐D30, RBD‐
K417/ACE2‐D30, RBD‐K417/ACE2‐E37, and RBD‐R403/ACE2‐D38
salt bridges were conserved among all structures with interaction ener-
gies of ∼−0.4, −1.4, −0.6 and −0.4 kcal/mol, respectively. The salt
bridge between RBD‐R403 and ACE2‐E35 is observed in the mutated
structure with electrostatic interaction energies of about −0.4 kcal/-
mol. Our data demonstrated that all mutations enhanced the
electrostatic interactions between RBD‐Q493 and ACE2‐K31, where
that the mutation L452R induced a maximum increase in the electro-
static interactions of about −1.53 kcal/mol compared to its value in
WT protein. In WT and in the structure with single mutation T478K,
maximum electrostatic interactions were reported between RBD‐T500
and ACE2‐D355 of ∼−2.94 and −2.8 kcal/mol, respectively. These
interactions are shown to be, slightly, reduced by the L452R mutation
(0.52 kcal/mol more positive compared to WT protein). For the struc-
ture with both mutations T478K and L452R, the RBD‐T500 and ACE2‐
D355 exhibit less attraction than in WT by ∼−2.12 kcal/mol. In con-
trary to structureswith singlemutation, the structurewith doublemuta-
tions (T478K and L452R) in RBD is shown to induce a significant
conformational change in sidechain of ACE2‐E37 residue, Fig. 1.
Structures with single mutation T478K or L452R induced an increase
in the electrostatic interactions between RBD‐R403 and ACE2‐E37 by
∼0.1 kcal/mol, while in the structure with the T478K and L452R
mutations, the interaction energies of the salt bridge RBD‐R403 and
ACE2‐E37 increased by ∼0.8 kcal/mol compared to the WT Fig. 2.

Herein, we showed that the binding affinity of SARS‐CoV‐2 to
human ACE2 is higher in the double mutated structure (T478K and
L452R) than that in WT because of the significant changes in the elec-
trostatic and vdW interactions. Our simulations show an enhanced
electrostatic interactions between the E37‐ACE2 and the R403‐RBD
aminoacids due to the delta variant mutations. Moreover, the salt‐
bridge electrostatic interactions between the RBD‐T500 and the
ACE2‐D355 decreased compared to the WT protein.
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Appendix A. Supplementary data

Supplementary data to this article can be found online at
https://doi.org/10.1016/j.medidd.2021.100114.
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