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Ryoko Tani-Tamura, a five-time Olympic medalist in judo, 
said “At best a gold, at least a gold” before the Sydney Olympic 
Games in 2000 and then won a gold medal as she promised. 
Thus, athletes are motivated to achieve their goals. Psychological 
studies have demonstrated that incentive motivation facilitates 
motor performance. Specifically, in a simple reaction time par-
adigm, reward-predicting stimuli have been shown to reduce 
reaction times.1-4 The improvement in the reaction time 
depends on the anticipated reward, indicating that an improved 
reaction time reflects incentive motivation. Based on this back-
ground, many studies have used faster reaction times as a proxy 
for incentive motivation. Thus, motivation and motor systems 
in the central nervous system are closely related. However, the 
neural mechanisms by which motivational states modulate 
subsequent motor performance remain largely unknown.

Using functional magnetic resonance imaging (fMRI), we 
recently reported that the mesocortical system from the ven-
tral midbrain to the primary motor cortex links subsequent 
motor performance with incentive motivation in humans. 
This commentary aims to summarize our recent findings and 
the remaining questions that should be investigated in future 
studies.

Motivational effects are observed in the primary motor cor-
tex (M1), which sends motor commands to spinal motoneu-
rons. Reward anticipation facilitates cortical excitability in  
M1, as measured by transcranial magnetic stimulation.5-8  
Thus, incentive motivation modulates M1 activity, resulting in 
improved motor performance. This evidence raises another 

question: where does the motivational effect in M1 originate? 
The dopaminergic midbrain is believed to be the center of 
motivation.9,10 Dopaminergic neurons respond to stimuli asso-
ciated with subsequent rewards.11-14 In humans, previous neuro-
imaging studies have demonstrated that the ventral midbrain 
(VM), where dopaminergic neurons are located, is activated by 
monetary reward anticipation.15-19 VM neurons directly inner-
vate M1 in monkeys and rodents,20-23 constituting the mesocor-
tical dopaminergic system. In humans, diffusion tractography 
has shown the anatomical connection from the VM to the 
M1.24 According to these findings, the mesocortical system is 
the most plausible candidate for motivation-dependent 
improvement in motor performance. However, no study has 
demonstrated that the premovement activity of the mesocorti-
cal system is associated with future reaction times.

To investigate this hypothetical relationship between the 
mesocortical system and motor performance, we recently 
reported an fMRI study in humans.25 In this study, we asked 
participants to prepare during the Ready period and to grip a 
force device as quickly as possible during the Go period. To 
manipulate motivational levels, three different ready cues asso-
ciated with different expected monetary rewards were used for 
the high-, low-, and no-reward conditions. Consistent with 
previous neuroimaging studies, reward anticipation activated 
the VM. As expected, the reaction time was faster with increas-
ing motivational level. Moreover, although the strength of the 
grip force was independent of reward, the peak grip force was 
greater with increasing motivational level. These behavioral 
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results suggest that the strength of the grip force is involuntar-
ily modulated by incentive motivation for fast responses. 
Additionally, the trial-by-trial correlation between reaction 
time and peak grip force was weak, suggesting that the initia-
tion and strength of the force generation are independently 
controlled by different neural pathways. Thus, the important 
question was whether the activities of VM and M1 were asso-
ciated with subsequent reaction times. Surprisingly, we found 
that VM premovement activity was correlated with only the 
subsequent peak grip force, whereas M1 activity was related to 
both the reaction time and peak grip force. Our findings sug-
gest that incentive motivation modulates M1 activity through 
different neural pathways that decrease the initiation of the 
force generation and increase the strength of the force genera-
tion (Figure 1). The mesocortical pathway from the VM to the 
M1 is associated with the strength (red lines in Figure 1) but 
not the initiation of the generated force. A recent study in 
monkeys showed that VM neurons have multiple synaptic pro-
jections to the spinal cord and that electrical stimulation of the 
VM generates muscle activity in accordance with the current 
intensity.26

Our recent findings elucidated the pivotal role of the meso-
cortical system in controlling motor performance in situations 
involving incentive motivation (Figure 1). In parallel, these 
findings raise several questions. First, what neural pathways 
mediate the improvement in reaction time with incentive 
motivation? Although VM activity was not correlated with 
trial-by-trial reaction times, premovement activity in the cor-
ticostriatal network, including the M1, the premotor cortex, 
the supplementary motor area, and the putamen, was associ-
ated with subsequent reaction times. In addition to the M1 
activity, premovement activities in the putamen and premotor 

cortex are modulated by reward-predicting stimuli.1,2,27 
Furthermore, the premovement activities in M1, the premotor 
cortex, and the putamen are closely linked with movement ini-
tiation.28-30 In addition, anticipatory activity in the nucleus 
accumbens (NAc), which has multisynaptic projections to  
the M1,31 is associated with subsequent reaction times.32 
Furthermore, functional interactions between large-scale net-
works such as the executive control network and ventral visual 
stream contribute to subsequent reaction times.33 Thus, it is 
reasonable that reaction times are controlled through a more 
complex network than the direct mesocortical pathway. This 
possibility should be clarified in future studies. Second, does 
VM activity determine the strength of the force generation 
independent of incentive motivation? Incentive motivation 
improves both reaction time2-4 and force exertion34,35 and is 
associated with the activity of dopaminergic neurons in the 
VM.13,36,37 Based on these findings, it has been hypothesized 
that VM activity mediates motivation-dependent perfor-
mance improvements. However, there is no evidence of a rela-
tionship between VM activity and motor parameters, although 
the striatal activity projecting from the VM is linked to sac-
cade movements.38,39 Considering that our behavioral para-
digm requires participants to respond faster to obtain monetary 
rewards, the strength of the force generation is involuntarily 
affected by motivational states. As mentioned above, electrical 
stimulation of the VM can induce muscle activity in anesthe-
tized monkeys.26 Thus, it is possible that the subsequent peak 
grip force depends on the VM activity even without external 
rewards. Despite recent achievements in noninvasive deep 
brain stimulation.40,41 it remains difficult to manipulate deep 
brain nuclei in healthy humans. One promising approach 
involves real-time fMRI.42-45 Real-time fMRI neurofeedback 

Figure 1.  Two distinct neural pathways control subsequent force generation under incentive motivation. Anticipating rewards increases premovement 

activity in both the ventral midbrain (VM) and primary motor cortex (M1). VM activity increases M1 premovement activity through direct mesocortical 

projections (red lines), enhancing the strength of the subsequently generated force. M1 premovement activity is increased through another neural 

pathway that might be mediated by the basal ganglia, leading to faster response times (blue lines).
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can modulate the VM activity.42,43 However, the impact of 
VM activity on behavior remains unknown. Future neurofeed-
back studies should test the effect of VM modulation on 
motor performance in humans to demonstrate whether a 
causal link exists between VM activity and motor performance 
independent of external rewards.

Our recent neuroimaging study provides novel evidence for 
the functional role of the mesocortical pathway in human 
motor control in the context of existing incentive motivation. 
The mesocortical pathway seems to be crucial for understand-
ing mind–motor interactions in humans. This finding may 
facilitate the development of psychophysiological therapeutic 
approaches in sports and clinical domains. The neural mecha-
nisms underlying mind–motor interactions are of interest to 
many scientists in psychology, sports sciences, neurophysiology, 
and neuroanatomy who investigate motor control, motor learn-
ing, and motivational behavior, as well as people with a desire 
to enhance motor performance.
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