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The cognitive load associated with joint position sense increases with age but does
not necessarily result in impaired performance in a joint position matching task.
It is still unclear which factors interact with age to predict matching performance.
To test whether movement amplitude and direction are part of such predictors,
young and older adults performed a bimanual wrist joint position matching task.
Results revealed an age-related deficit when the target limb was positioned far
from (25◦) the neutral position, but not when close to (15◦, 5◦) the neutral joint
position, irrespective of the direction. These results suggest that the difficulty
associated with the comparison of two musculoskeletal states increases towards
extreme joint amplitude and that older adults are more vulnerable to this increased
difficulty.
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Introduction

Perception is an interpretation of physical reality. Proprioception is the perception of our body state
in the absence of vision (Goble et al., 2009; Proske and Gandevia, 2012; Boisgontier and Swinnen,
2014). This state is defined by position, movement, and muscle force or tension. Interpretation of
this state is based on the processing of information from peripheral receptors and motor efference
copies (Proske and Gandevia, 2012). The proprioception that interprets body segment position is
called joint position sense.

Joint position sense has been widely investigated in the context of aging (for a review, see Goble
et al., 2009). Some of these investigations used dual-task paradigms to reveal that the cognitive
load associated with joint position sense increased with age (Boisgontier et al., 2012; Goble et al.,
2012b). However, such increased load does not necessarily result in an impaired performance in
a joint position matching task, which is the typical task used to test joint position sense. Indeed, a
number of studies reported the absence of an age effect (Jordan, 1978; Stelmach and Sirica, 1986;
Batavia et al., 1999; Deshpande et al., 2003; Pickard et al., 2003; Goble et al., 2012a; Wang et al.,
2012; Boisgontier and Nougier, 2013a; Schmidt et al., 2013). The factors that determine whether
age will impact performance on a matching task are still unclear. These factors can be associated
with the individual or with the context and features of the task. The level of physical activity has
been shown to be one element in these predictors (Ribeiro and Oliveira, 2007; Adamo et al., 2009),
and joint amplitude may be another.

In young adults, matching errors increase with target amplitude (Allen and Proske,
2006; Goble et al., 2006; Goble and Brown, 2008; Rincon-Gonzalez et al., 2011) but are not
dependent on target direction (Walsh et al., 2013). The effect of amplitude on position errors
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could be surprising as joint proprioceptor response to passive
movement increases towards the range of motion limits (Burke
et al., 1988). However, paradigms of these studies allowed the
use of an internal representation of the movement of the target
limb (including duration and speed) to perform the matching
task (Allen and Proske, 2006; Goble et al., 2006; Goble and
Brown, 2008; Rincon-Gonzalez et al., 2011). Therefore, the effect
of amplitude on joint position sense reported in these studies
could also result from an effect on movement sense and if speed
was kept constant across trials, from a tradeoff between accuracy
and speed (Fitts, 1954; Fitts and Peterson, 1964).

Here, we propose that the effect of amplitude could be
explained by examining the difficulty to match the perceptions
of two musculoskeletal states that are different in nature (passive
vs. active). To match position of one hand with the other
hand in the absence of vision, we rely on proprioceptive
signals generated from both limbs (Izumizaki et al., 2010).
As described by Walsh et al. (2013), the brain is likely to
compare proprioceptive afferent signals from the two limbs
and when the difference between the signals is at a minimum,
the positions are assumed to match each other. Furthermore,
recent studies showed that the brain prioritizes the processing
of information from both limbs over information from a single
limb, resulting in better performance (Boisgontier and Nougier,
2013b; Savage et al., 2015). Therefore, when proprioceptive
information associated to muscle contraction is present only
in one limb, this information may not be considered as
relevant information to the matching process. In other words,
in this case, contraction-related information can be considered
as noise. Since the intensity of the contraction increases
towards range of motion limits to counter the resistance of
passive tissues, contraction-related noise increases concurrently.
In other words, amplitude would impact difficulty, i.e., the
cognitive load of the task, and may trigger performance
decline in older adults as they consistently function at a
higher level of processing than young adults (Ward and
Frackowiak, 2003; Heuninckx et al., 2008; Goble et al., 2010,
2012b; Boisgontier et al., 2012) and as their cognitive reserve
is more limited than in young adults (Boisgontier et al.,
2013).

To test whether amplitude and/or direction affect the ability
to match two musculoskeletal states, young and older adults
performed a bimanual joint position matching task with three
amplitudes and two directions. Based on the aforementioned
evidence, we hypothesized that the effect of age is dependent on
amplitude but not direction.

Materials and Methods

Participants
Thirty young [21.1 ± 1.5 (19–24) years, mean ± SD (range);
14 females] and 28 older [69.4 ± 5.3 (61–82) years; 15 females]
healthy volunteers participated in the study. All participants
were right-handed according to the Edinburgh Handedness
Inventory (Oldfield, 1971). The average lateralization quotient
was similar between young and older adults (+91 ± 15 vs.
+90 ± 19, respectively, with a +100 score representing extreme

right-hand preference and a −100 score representing extreme
left-hand preference). All participants had normal or corrected-
to-normal vision, and none reported neurological, psychiatric,
cardiovascular, or neuromuscular disorders. Older participants
were screened for cognitive impairments with the Montreal
Cognitive Assessment test using the standard cutoff score of
26 (Nasreddine et al., 2005). All participants gave their written
informed consent, and procedures were performed according to
guidelines established by the ethics committee for biomedical
research at the KU Leuven, and in accordance with the
WMA International Code of Medical Ethics (World Medical
Association Inc., 1964).

Apparatus
The apparatus used to test wrist joint position sense consisted
of two separate, adjustable units (left and right), both equipped
with a forearm support and a manipulandum for the palm
(Boisgontier et al., 2014). Motion of the right wrist joint (passive
limb) was induced by an AC Servo Motor (AMK DV764,
Goedhard PMC, Helmond, Netherlands) mounted underneath
the right hand unit and coupled to the rotating shaft of the
manipulandum via a 1:10 reducer (Alpha LP120 Gearbox).
The left hand piece was constructed similarly but allowed free
flexion-extension wrist movement (active limb). Shaft encoders
(accuracy = 0.088◦) were connected to the rotating axis to
record angular displacement of the left wrist and the right
wrist. Data were sampled at 1000 Hz (Signal software 4.0,
Cambridge Electronic Design, Cambridge, UK) and low-pass
filtered (second-order Butterworth, cut-off frequency 8 Hz, zero-
lag). The angular displacement signals of the two hand pieces
were stored for offline analysis.

Procedures
To control for muscle history effects (i.e., thixotropy; Proske
et al., 1993), wrist muscle flexors and extensors were conditioned
by asking participants to perform isometric contractions for
2 s at approximately half-maximal intensity at the start of
the experiment (Allen et al., 2010). To perform the matching
task, participants were seated in front of the apparatus with
their shoulders in slight abduction (20◦), elbows at 90◦,
forearms supported in neutral prosupination, and wrists in
a neutral flexion-extension position. Vision was occluded by
opaque goggles. They were instructed to match the right-
hand position (target limb) with their left hand (matching
limb) as accurately as possible at a self-selected movement
speed, with the possibility of final submovements. The task
was completed when participants stopped moving the matching
limb for more than 1 s. This final position of the limbs was
used to compute the dependent variable. The matching task
was performed with three amplitudes (5, 15, and 25◦) and
two directions (flexion and extension). The target limb was
positioned through an indirect movement including various
flexions and extensions ranging from −25 to 25◦ to prevent
movement-based matching. Each condition was performed
three times. Experimental trials were administered in random
order.
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Electromyographic (EMG) activity from the right flexor carpi
radialis and extensor carpi radialis muscles of the wrist was
monitored throughout the experiment to control for the absence
of muscle activity. EMG signals were amplified (×1000), filtered
(4–500 Hz), and sampled at 1000 Hz. When muscle activity was
observed in the EMG before the beginning of a trial, participants
were instructed to relax their wrist.

Data Analysis
Performance in the matching task was assessed using amplitude
total error. The total error, also called total variability, root mean
square error, or simply E, is explained equally by the response
variability and bias (total error2 = variable error2

+ constant
error2; Henry, 1975). The total error was therefore preferred
over the absolute error, a more complex relationship between the
response variability and bias that complicates the determination
of the relative contribution of each component (Schutz and
Roy, 1973). Total error was defined according to the following
formula: √

1
n
×

∑
(xi − t)2

where xi is the score on trial i, t is the target (t =−25,−15,−5, 5,
15, or 25◦) and n is the number of trials (n = 3).

Statistical Analyses
To test whether amplitude or direction impacted the effect of
aging on joint position sense, total errors were analyzed by
a 2 × 3 × 2 analysis of variance (ANOVA) with the factors
Age (Young adults, Older adults), Amplitude (5, 15, 25◦), and
Direction (Flexion, Extension). Level of significance (α) was set at
p = 0.05. When the ANOVA revealed significant effects, post hoc
tests (Tukey HSD, which corrects for multiple comparisons) were
conducted to identify the loci of these effects. Partial eta squared
values (η2

p) were reported to indicate small (≥0.01), medium
(≥0.06), and large (≥0.14) effect sizes (Sink and Stroh, 2006).

Results

The three-way ANOVA demonstrated a significant main effect
of Amplitude [F(2,112) = 5.06; p = 0.008; η2

p = 0.08] with greater
total error in the 25-degrees than 5-degrees condition (p = 0.011).
Main effects of Age [F(1,56) = 2.75; p = 0.103; η2

p = 0.05] and
Direction [F(1,56) = 0.90; p = 0.348; η2

p = 0.02] were not significant.
The Age× Amplitude interaction was significant [F(2,112) = 5.39;
p = 0.006; η2

p = 0.09; Figure 1] but not the Age × Direction
[F(1,56) = 0.28; p = 0.600; η2

p < 0.01] and three-way interaction
[F(2,112) = 0.37; p = 0.693; η2

p < 0.01]. Post hoc analyses revealed
an age-related total error increase in the 25-degrees condition
(p = 0.049) but not in the other amplitude conditions (p > 0.692;
Figure 1).

Discussion

Here, we investigated whether the effect of age in a bimanual
wrist joint position matching task was dependent on target
amplitude and direction. Results revealed an age-related deficit

FIGURE 1 | Total error as a function of the amplitude of the target
position in young and older adults. *indicates significant difference.

when the target limb was positioned far (25◦, p = 0.049) from but
not close to (15◦, p = 0.692; 5◦, p > 0.999) the neutral position,
irrespective of direction (p = 0.693).

Sensitivity to an Increase in Task Difficulty
in Young and Older Adults
The age-related decline in matching performance observed
in the highest amplitude suggested that the cognitive load
resulting from the processing of proprioceptive input reached a
threshold in this condition, and triggered a decline in matching
performance. We believe that such a decline is explained by
a combination of the points reported below. Older adults
consistently function at a higher level of processing than young
adults in order to compensate for a decreased signal-to-noise
ratio (Ward and Frackowiak, 2003; Heuninckx et al., 2008;
Goble et al., 2010, 2012b; Boisgontier et al., 2012). Furthermore,
their cognitive reserve is more limited than in young adults
(Boisgontier et al., 2013). Therefore, older adults may be more
sensitive to an increase in task difficulty. Such an increase in
difficulty can result from the addition of information that is not
relevant to the task such as noise at the peripheral and processing
levels.

Increased Noise at the Proprioceptor Level
The decrease in signal-to-noise ratio may originate at the
proprioceptor level. Due to age-related proprioceptors alteration
(Bolognia, 1995; Liu et al., 2005; Aydŏg et al., 2006), the firing rate
may show greater variance in older adults, thereby replicating
observations made for motor neurons (Laidlaw et al., 2000). Such
an age-related increase in the variance of the firing rate would
decrease the signal-to-noise ratio. In addition, the standard
deviation of motor-neuronal firing has been shown to increase
with its mean level (Clamann, 1969; Matthews, 1996). Assuming
that standard deviation perception-neuronal firing also increase
with its mean level, and as the joint proprioceptor firing rate
increases towards range of motion limits (Burke et al., 1988),
the age-related decrease in the signal-to-noise ratio would be
amplified towards range of motion limits.

Increased Noise at the Processing Level
At the processing level, the hypothesis stating that our findings
result from a speed-accuracy tradeoff does not hold, as
final submovements were allowed. Additionally, the random
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flexion-extension movements performed during positioning
of the target limb prevented the participant from matching
movement features, and only allowed matching of the position
per se. We propose that this decline in performance was instead
accounted for by an amplitude-dependent amplification of the
difficulty to match the perceptions of two musculoskeletal
states that are different in nature (passive vs. active).
The brain prioritizes the processing of information from
both limbs over information from a single limb (Boisgontier
and Nougier, 2013b; Savage et al., 2015). In our bimanual
matching task, proprioceptive information associated to muscle
contraction is only generated in one limb (active matching limb)
and may therefore be considered as noise. Since the intensity
of the contraction increases towards range of motion limits,
matching performance would decline as the target limb moves
away from the neutral position, which supports our findings.

Additionally, although not assessed here, range of motion has
been shown to be limited in older adults (Chaparro et al., 2000).
Therefore, the intensity of the contractions may be higher in
older than in young adults, especially when the target limb was
positioned far from the neutral position. This increased intensity
of the contractions would amplify the noise at both the peripheral
and processing level and explain the age-related deficit observed
in our study.

No Age-Related Deficit in the Lower Amplitudes
The absence of a difference in matching performance between
young and older adult in the lower amplitudes supports studies
demonstrating the absence of age-related deficits in joint position
sense (Jordan, 1978; Stelmach and Sirica, 1986; Batavia et al.,
1999; Deshpande et al., 2003; Pickard et al., 2003; Goble et al.,

2012a; Wang et al., 2012; Boisgontier and Nougier, 2013a;
Schmidt et al., 2013). These results demonstrate that older
adults are able to sense position to the same degree as young
adults under certain circumstances. Specifically, it shows that the
accuracy of proprioceptor information is either robust against
aging or altered by aging but compensated for by central
mechanisms. The latter is more likely as age-related changes in
muscle (Liu et al., 2005), joint (Aydŏg et al., 2006) and skin
(Bolognia, 1995) receptors are thought to reduce the signal-to-
noise ratio by decreasing quantity and/or intensity of their output
and increasing sensory noise (Speers et al., 2002). Moreover,
the greater recruitment of neural resources in older relative
to young adults observed in motor tasks supports the idea
of a compensation mechanism (Ward and Frackowiak, 2003;
Heuninckx et al., 2008; Goble et al., 2010).
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