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ABSTRACT

In mammalian cells, DNA double-strand breaks
(DSBs) are repaired by three pathways, nonhomo-
logous end-joining (NHEJ), gene conversion (GC)
and single-strand annealing (SSA). These pathways
are distinct with regard to repair efficiency and
mutagenic potential and must be tightly controlled
to preserve viability and genomic stability. Here,
we employed chromosomal reporter constructs to
characterize the hierarchy of NHEJ, GC and SSA at a
single I-SceI-induced DSB in Chinese hamster ovary
cells. We discovered that the use of GC and SSA
was increased by 6- to 8-fold upon loss of Ku80
function, suggesting that NHEJ is dominant over the
other two pathways. However, NHEJ efficiency was
not altered if GC was impaired by Rad51 knock-
down. Interestingly, when SSA was made available
as an alternative mode for DSB repair, loss of Rad51
function led to an increase in SSA activity at the
expense of NHEJ, implying that Rad51 may indi-
rectly promote NHEJ by limiting SSA. We conclude
that a repair hierarchy exists to limit the access of
the most mutagenic mechanism, SSA, to the break
site. Furthermore, the cellular choice of repair
pathways is reversible and can be influenced at
the level of effector proteins such as Ku80 or Rad51.

INTRODUCTION

DNA double-strand breaks (DSBs) are the most deleter-
ious type of DNA damage that may lead to cell death or

genomic instability. In mammalian cells, DSB repair is
widely executed by two mechanistically distinct processes,
nonhomologous end-joining (NHEJ) and homology-
dependent recombination, which can be either conserva-
tive, i.e. gene conversion (GC), or nonconservative,
i.e. single-strand annealing (SSA) (1–3).

GC is generally considered an error-free repair path-
way, while NHEJ may introduce minor sequence altera-
tions at the DNA ends and SSA is always associated with
deletion of sequence. Additionally, all three pathways bear
a risk of repair errors that may result in potentially onco-
genic chromosomal aberrations. Failure of the NHEJ
machinery to hold legitimate ends together allows promis-
cuous end-joining leading to deletions or translocations
(4–7). GC is usually error-free if the homologous repair
template is provided by the nearby sister chromatid in the
S- or G2-phase of the cell cycle. In contrast, GC initiated
in the G1-phase carries a high risk of chromosomal
rearrangements because the homologous template can
only be found on a distant chromosomal locus, i.e. the
second allele, a pseudo gene or a repeat sequence (8,9).
Crossover events coupled to GC will result in deletions,
inversions, loss of heterozygosity (LOH) or gene amplifi-
cation (10,11), all of which potentially promote carcino-
genesis (12). Hence, GC should be generally suppressed in
G1-phase. SSA is well characterized in yeast (3,13,14) but
not in mammalian cells. Abundant repetitive elements in
higher eukaryotes (15) should render SSA a suitable repair
option but it is not known whether it actually contributes
to overall DSB repair. Recently, however, SSA has also
been identified as a significant pathway leading to trans-
locations frequently inflicted in human cancers (16–18). It
is important that cells control the choice of DSB pathways
in order to optimize repair efficiency and to minimize the
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risk of genetic alterations. However, the relationship
between the pathways and the mechanisms of regulation
is poorly understood.

NHEJ is guided by the Ku70/80 heterodimer, which
initially binds to free DNA ends. Ku then recruits and
activates other components of the end-joining process
(19), namely the DNA-PKcs, the polymerases m and � and
the LigIV/XRCC4/XLF complex. Although Ku supports
nearly all NHEJ functions and is essential for cellular
radioresistance (20), we and others revealed a limited role
of Ku80 for the repair of enzyme-induced chromosomal
breaks (21–24). In contrast to XRCC4�/� mouse embry-
onic fibroblasts (MEFs), Ku80 knock-out cells were
almost as competent to rejoin I-SceI-induced DSB as the
wild-type cells (24). Analysis of repair products in Ku80-
deficient cells showed that Ku-independent end-joining is
mechanistically distinct from repair in wild-type cells,
suggesting a switch to another pathway (23,24). One
possible alternative is the PARP1/XRCC1/LigIII-
dependent end-joining pathway, which was recently
shown to operate in the absence of Ku (25,26). In
addition, lack of Ku might favor the initiation of recom-
bination processes such as GC (27–29) as well as Rad52-
dependent SSA. Rad52 has been suggested to compete
with Ku for end binding (30,31). However, the functional
relationship between NHEJ and SSA has not been
addressed in mammalian cells.

From these observations, we hypothesized (i) that DSB
repair pathways are regulated in a hierarchical order and
(ii) that mammalian cells can switch to alternative pathways
if the preferred repair mode is impaired. In this study, we
simultaneously examined the three major DSB pathways in
mammalian cells using novel chromosomal reporter sub-
strates. We found that Ku80 controls the accuracy of
NHEJ and regulates the usage of the other two pathways.
In addition, we present evidence that SSA can serve as a
back-up mechanism for both NHEJ and GC. Furthermore,
the current study reveals a novel mechanism by which
Rad51 may regulate the genomic integrity in mammalian
cells by controlling the ratio between NHEJ and SSA.

MATERIAL AND METHODS

Cells

The hamster cell lines CHO K1 (wild-type) and xrs5
(Ku80-deficient) were grown in Alpha-Medium (Gibco-
Invitrogen, Karlsruhe, Germany) supplemented with 5%
fetal calf serum, 100U/ml penicillin and 100 mg/ml
streptomycin at 378C with 5% CO2. For complementation
of Ku80-deficiency, 40 mg of pcDNA3.1-hKu80 were
electroporated, thereby transiently expressing human
KU80 (kindly provided by P. A. Jeggo).

Plasmids

Three novel green fluorescent protein (GFP)-based repair
substrates were cloned using pEGFP-N1 (Invitrogen)
and pBlueskriptII-KS (Stratagene, Amsterdam, the
Netherlands) as backbones: pEJ to monitor NHEJ,
pEJSSA for SSA together with end-joining and pGC
for homology-directed GC.

The end-joining substrate, pEJ, is designed similar to
the previously described substrate pPHW2 (32,33) con-
taining two I-SceI sites inserted into the 50 untranslated
region of the GFP transcript. Between both I-SceI sites, an
artificial start codon (ATGart) was placed out of frame
with the original open reading frame (ORF), hence
preventing translation of GFP. The Kozak sequence
flanking the original GFP start codon of the pEGFP-N1
was modified by site-directed mutagenesis (QuikChange,
Stratagene) replacing the A preceding the ATG with a
G. The sequence now reads as -CCGCCATGG-. The
modification gradually weakens the translational enhancer
(34). In four subsequent steps, the following oligonucleo-
tides were inserted into the multiple cloning site of
pEGFP-N1: (i) XhoI-TCCACCGAGACATCTACTTG
ATCAATCGAACACT GCG-EcoRI, (ii) EcoRI-TAGG
GATAACAGGGTAATTAAGCTT-PstI, (iii) PstI-ACC
ATGGAGATTACCCTGTTATCCCTACCCCGGGGA
TACTGAC-KpnI, (iv) KpnI-TCAATAATCCGATCGA
AGTCTACTGATCGC-BamHI. The oligonucleotide
(ii) contains the first I-SceI site and (iii) the artificial
ATG and the second I-SceI site. Splice donor or acceptor
sites were avoided.
To create pEJSSA, the combined substrate for end-

joining and SSA, two 50 bp repetitive sequences named
SSA1 (XhoI-GCAACCGCTCATACGACCGACAACCG
ACCGCGCATCACGCCGCAAGATCT-BclI) and SSA2
(PvuI-GCAACCGCTCATACGACCGACAACCGACC
GCGCATCACGCCGCAGTCGAC-AgeI) were inserted
as XhoI-BclII and PvuI-AgeI fragments, respectively.
After DSB induction repair can proceed via NHEJ or
SSA, as both will result in reconstituted translation of
the GFP.
For the GC substrate pGC, the 18-bp I-SceI recog-

nition site was inserted into the unique BcgI site of
the pEGFP-N1 thereby inactivating the GFP-coding
sequence. This intermediate, named pGC-intermedI and
linked to a modified fragment of pBluescriptII-KS, was
previously generated as follows: The sequences for the
puromycin resistance gene and the BSH-polyA-signal
were amplified by PCR from pPHW1 (32) and subse-
quently inserted into the pBluescriptII-KS as HindIII/
EcoRV- and EcoRV-EcoRI fragments, respectively. A
526-bp fragment of the pEGFP-N1 was amplified by PCR
and inserted as XbaI/NotI fragment into the modified
pBluescriptII-KS. This fragment spans the terminal 30 bp
of the Cytomegalovirus (CMV) promoter and 398 N-
terminal bp of the GFP-cDNA. This intermediate was
cleaved by ClaI/AflIII and ligated with the ClaI/AflIII
fragments of pGC-intermed1. By this approach, the
neomycin resistance gene was replaced with the puromy-
cin resistance gene, which is now under control of the
SV40 promoter. The truncated GFP donor copy is located
2.2 kb downstream of the mutated GFP acceptor sequence
and placed in the same orientation. The 2.2 kb intervening
sequence carries the puromycin resistance gene. The
homologies between both inactive GFP-copies amount
to 219 bp upstream and 301 bp downstream of the I-SceI
recognition site.
After linearization of pEJ or pEJSSA with AflIII or

pGC with XmnI, 0.5 mg of either vector was
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electroporated into the hamster cells as described (32). For
stable integration of pEJ and pEJSSA, CHO cells were
grown in 14 mg/ml and xrs5 cells in 6 mg/ml of G418 for
two weeks. For pGC integration, puromycin was used at
concentrations of 1.5mg/ml for CHO and xrs5 cells.
Thirty to sixty individual colonies were picked for each
cell line and repair substrate and further analyzed as
described (24,32).

RAD51 down-regulation by short interfering RNA (siRNA)

The siRNA duplexes were custom designed and synthe-
sized by Qiagen, Hilden, Germany. The sequences were
the following: 50-GCUGGUUUCCAUACGGUGG-30, to
target the hamster Rad51 transcript, and 50-UAGGCAU
UGCGCGUGUGUC-30 (scrambled control). Cells were
transfected using Trans-IT-TKO (Mirus, Madison, WI,
USA) according to the manufacturer’s protocol, with a
final oligonucleotide concentration of 200 nM. Clonogenic
cell survival was not affected by Rad51 knockdown.
Protein expression was monitored by Western blotting
following standard procedures (32, anti-Rad51 mAb-
51Rad01, Calbiochem, Darmstadt, Germany).

DSB-repair reporter assay

The cells containing single stably integrated copies of
either reporter construct were electroporated with 50 mg
of I-SceI expression vector (pCMV3xnls-I-SceI, a kind
gift of M. Jasin) as described (32) to induce DSB or with
pCMV-neo as a control. Forty eight hours posttransfec-
tion the cells were assessed for green fluorescence by
flow cytometry (FACScan, BD Bioscience). For further
analysis of the individual NHEJ or SSA events, positive
cells were sorted (FACS Calibur, BD Bioscience,
Heidelberg, Germany) and processed. First, cells were
reseeded, raised to individual colonies, and further
expanded for DNA isolation (DNeasy Tissue Kit,
Qiagen) and PCR amplification and sequencing using
the primers P1 and P2 flanking the I-SceI cleavage sites
(forward 50-GCAAATGGGCGGTAGGCGTGTA-30,
reverse 50-TCGGGCATGGCGGACTTGAA-30). PCR
conditions were 968C for 10min for lysis of the bacterial
cells, then 35 cycles at 968C for 20 s, at 688C for 20 s and at
728C for 80 s, and a postamplification extension for 7min
at 728C. Second, total genomic DNA of the entire sorted
cell population was isolated and subjected to PCR. The
mixtures of those PCR products were ligated into the
TOPO-cloning vector (TOPO TA cloning kit, Invitrogen)
according to the manufacturer’s protocol and transformed
into bacteria (one shot TOP10 competent Escherichia coli,
Invitrogen). Single bacterial clones were scraped off the
plate, directly subjected to PCR using the primers P1 and
P2 and subsequently sequenced (ABI 3100, Applied
Biosystems-Hitachi, Foster City, CA, USA). PCR pro-
ducts were analyzed on 2% agarose gels stained with
ethidium bromide. For two clones (one of each CHO K1
and xrs5 carrying pEJSSA), TOPO cloning was directly
compared to the method of raising positive cells indivi-
dually, which gave identical values for the ratio between
NHEJ and SSA events.

To assess transfection efficiencies, 30 mg of pEGFP-N1
(Clontech, Saint-Germain-en-Laye, France) was electro-
porated into both strains and analyzed by fluorescent-
activated cell sorting (FACS) 24 h later. CHO K1 and xrs5
cells showed 70.8� 3.9% and 64.2� 8.4% of green
fluorescent cells, respectively. All repair results were
corrected for the 1.1-fold lower transfection efficiency of
xrs5 cells.

RESULTS

Repair substrates

Three novel GFP-based repair substrates were designed
to investigate the relationship between the main DSB
repair pathways, NHEJ, GC and SSA in the chromosomal
context. All constructs rely on reactivation of GFP
expression upon repair of single I-SceI-endonuclease-
induced DSBs. The substrate to monitor NHEJ, pEJ,
makes use of the same principle as the previously
introduced pPHW2 (32). It contains two recognition
sites for the rare-cutting I-SceI restriction enzyme inserted
in opposite directions into the 50-untranslated region of
the GFP gene (Figure 1A). Between the two I-SceI sites,
an artificial start codon is integrated out of frame with the
original start codon, thus preventing GFP translation.
I-SceI cleavage removes the artificial ATG and subsequent
rejoining of the free DNA ends reactivates translation
leading to green fluorescence. The advantage of this
system is that it is independent of how the ends are
rejoined as long as any repair-associated deletions are no
longer than 160 bp. The critical distance for base loss is
reached at the transcription initiation site and the GFP
open reading frame (86 bp upstream of the first and 76 bp
downstream of the second I-SceI site, respectively).

pEJSSA is identical to pEJ except for the insertion of
two homologous direct repeats (SSA1 and SSA2) flanking
the break site, thereby enabling the use of SSA in addition
to NHEJ (Figure 1B). These SSA1 and SSA2 repeats are
50 bp in length and located 39 and 41 bp away from the
DSB ends, respectively. This arrangement leaves sufficient
space for NHEJ mechanisms to occur before sequences
suitable for SSA become available. PCR amplification of
the repair junctions using P1 and P2 primers (Figures 1B
and 2B) were used to differentiate between the two repair
pathways as NHEJ events produce bands of about 550 bp
while SSA events lead to a 415-bp band.

The GC substrate, pGC, carries a single I-SceI site
within the GFP sequence, which is hence disrupted
(Figure 1C). After DSB induction, only GC from the
30-truncated donor copy (520-bp shared homology) but
neither NHEJ, SSA, nor crossing-over can restitute a
functional GFP.

Ku80-mediated NHEJ suppresses SSA, which can
serve as a back-up mechanism for impaired NHEJ
in Ku80-deficient cells

The Ku heterodimer mediates classical NHEJ (19,20). In
the absence of Ku, however, repair might be shuttled into
alternative pathways. To address this possibility, we stably
integrated single copies of pEJSSA (Figure 1B) into CHO
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K1 cells with wild-type Ku80 and Ku80-deficient-xrs5 cells
(1). Transient transfection of the I-SceI expression vector
into either strain led to numerous green fluorescent cells
(Figure 2A). Notably, the mean repair frequency across
seven independent clones from each cell line revealed no
difference between CHO K1 and xrs5 cells (1.88� 0.49%
and 1.83� 0.37% of green fluorescent cells, respectively;
Mann–Whitney test P=0.927). This indicates that DSB

repair was equally efficient with or without functional
Ku80, in excellent agreement with our previous findings in
MEFs (24).
Next, we wished to elucidate the contributions of

NHEJ and SSA to DSB repair in the pEJSSA substrate.
Green fluorescent cells were sorted, plated and expanded.
PCR across the repair junctions revealed many SSA
events in xrs5 but only few in CHO K1 cells (Figure 2C).
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CHO K1 cells showed a repair distribution of 97.6%
NHEJ and 2.4% SSA events while the respective ratio for
xrs5 cells was 79.9% and 20.1%, thus representing an �8-
fold relative increase in SSA (Fisher’s Exact test,
P< 0.001). To verify that the shift towards SSA required
the absence of Ku, we ‘added back’ hKu80 into the xrs5
cells and found that NHEJ was rescued (Figure 2D).
Together, these data indicate that NHEJ is only mildly
impaired in the absence of Ku80 (�1.2-fold reduction) and
that the SSA repair mode using two nearby repetitive
sequences can efficiently replace NHEJ. This observation
implies that functional Ku is required to restrict

mutagenic SSA. Of note, NHEJ remains the principal
DSB repair pathway in xrs5 cells, which may reflect the
activity of the remaining NHEJ core proteins or the
presence of an alternative end-joining pathway (25,26,35).

NHEJ is error-prone in Ku80-deficient cells

Loss of Ku80 has been reported to affect repair fidelity
(22,24,36–38). To address this, 125 different NHEJ break-
points (61 in CHO K1 and 64 in xrs5 cells) were sequenced
(Figure 3A). Cleavage of both I-SceI sites creates
noncompatible ends with four-base overhangs that require
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CTGCGGAATTCTAGGGATA-------------------------------------------- tCCCTACCCCGGGGATACTGA     10     0    2
CTGCGGAATTCTAGG---------------------------------------------- tatCCCTACCCCGGGGATACTGA      8     2    0
CTGCGGAATTCTAGGGAT---------------------------------------------- CCCTACCCCGGGGATACTGA      7     2    2 
CTGCGGAATTCTAGGGA------------------------------------------- ttatCCCTACCCCGGGGATACTGA      5   -1    1
CTGCGGAATTCTAGGGATAA------------------------------------------- tCCCTACCCCGGGGATACTGA      5     0    1
CTGCGGAATTCTAGGGA-------------------------------------------- tatCCCTACCCCGGGGATACTGA      4     0    1
CTGCGGAATTCTAGGG-------------------------------------------- ttatCCCTACCCCGGGGATACTGA      4     0    0
CTGCGGAATTCTAGGGAT------------------------------------------ ttatCCCTACCCCGGGGATACTGA      3   -2    0
CTGCGGAATTC------------------------------------------------------- CTACCCCGGGGATACTGA      2    11    1

CTGCGGAATTCTAGGGATAA-------------------------------------------- CCCTACCCCGGGGATACTGA     11     0    0
CTGCGGAATTCTAGGGAT------------------------------------------- tatCCCTACCCCGGGGATACTGA      9   -1    1
CTGCGGAATTCTAGGGATAA------------------------------------------- tCCCTACCCCGGGGATACTGA      8   -1    1
CTGCGGAATTCTAGGGATA-------------------------------------------- tCCCTACCCCGGGGATACTGA      5     0    2
CTGCGGAATTCTAGGGATA--------------------------------------------- CCCTACCCCGGGGATACTGA      3     1    0
CTGCGGAATTCTAGGGAT-------------------------------------------- atCCCTACCCCGGGGATACTGA      3     0    1
CTGCGGAATTCTAGGG-------------------------------------------- ttatCCCTACCCCGGGGATACTGA      2     0    0
CTGCGGAATTCTAGGGAT---------------------------------------------- CCCTACCCCGGGGATACTGA      2     2    2
CTGCGGAATTC----------------------------------------------------- CCCTACCCCGGGGATACTGA      1     9    0
CTGCGGAATTCTAGGGATA------------------------------------------------------------- CTGA      1    17    6

hKu80hKu80--xrs5 (n=45)xrs5 (n=45)

CTGCGGAATTCTAGGGATAACAGGGTAAT TAAGCTTCTGCAGACC ATGGAGATTACCCTGTTATCCCTA CCCCGGGGATACTGA
GACGCCTTAAGATCCCTATTGTCCCATTA ATTCGAAGACGTCTGGTACCTC TAATGGGACAATAGGGAT GGGGCCCCTATGACT

CTGCGGAATTCTAGGGATAA-------------------------------------------- CCCTACCCCGGGGATACTGA
GACGCCTTAAGATCCC-------------------------------------------- AATAGGGATGGGGCCCCTATGACT
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Figure 3. Loss of Ku80 leads to error-prone end-joining (A) Sequences of NHEJ repair junctions based on pEJSSA obtained from CHO K1, xrs5
and xrs5 cells complemented with hKu80. For the parental and the cleaved sequences, both strands are shown. For the repair products, only the
sense strand is displayed. I-SceI recognition sites are depicted in bold. The artificial start codon is underlined in the parental sequence. Del indicates
the net loss or gain of base pairs, whereby both single-stranded overhangs were regarded as 4-bp double-stranded DNA. tmh indicates the number of
terminal microhomologies used for rejoining. (B) Distribution of the length of deletions generated upon NHEJ. (C) Mean deletion length. Differences
between CHO K1 and xrs5 cells were statistically significant (Mann–Whitney, P=0.03).
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modification before rejoining. The most straightforward
processing involves removal of the terminal A on either
side, annealing along TA/AT microhomologies and fill-in
synthesis of the missing Ts. In fact, 16.4% of junctions in
CHO K1 cells were formed in this way (Figure 3A, see
second row line of CHO K1 sequences). In contrast, only
3.1% of junctions were aligned along terminal TA/AT
microhomologies in xrs5 cells (Figure 3A, third line from
the bottom of xrs5 sequences), indicating that in the
absence of Ku, cells repair DSB with more complex end
modifications, including long deletions (Figure 3A and B).
41.8% of junctions in xrs5 cells showed a loss of >4 bp, i.e.
error-prone repair with end resection extending beyond
the 4-nt overhangs, indicating instability of the ends. In
contrast, CHO K1 cells rejoined the vast majority of ends
via a high-fidelity mechanism that was restricted to �4 bp
deletions (59/61 junctions) (Figure 3B). Accordingly, in
xrs5 cells deletions were significantly longer than in CHO
K1 cells (Figure 3C), i.e. 5.0� 0.7 bp versus 0.9� 0.3 bp,
respectively (Fisher’s Exact test, P< 0.0001). Error-prone
repair events were almost completely abolished in xrs5
cells upon complementation with hKu80 (Figure 3A–C).
Interestingly, two common features of NHEJ-deficient

cells were not observed with the pEJSSA substrate:
(i) extended sequence loss at the break site and (ii) use
of longer microhomologies for end-joining (2,23,24,36,37).
In a preceding study, we found an average deletion
length of 31 and 30 bp in Ku80 and XRCC4�/� MEF,
respectively (24), compared to 5 bp observed here for xrs5
cells. This raises the possibility that the presence of the
long flanking sequence repeats restricts uncontrolled
nucleolytic activity (see Discussion section). The observed
limited end-degradation would also explain why the small
built-in microhomologies flanking the DSB were not
reached.

Presence of Ku80 suppresses GC in addition to SSA

Next, we wished to ascertain whether the observed increase
in SSA in Ku80-deficient cells was a reflection of a general
increase in homology-mediated repair activities. To
measure GC, we stably integrated the pGC substrate into
the two CHO strains. Transfection of the I-SceI expression
vector into CHO K1 and xrs5 cells resulted in 0.8� 0.1%
and 4.6� 0.7% of green fluorescent cells, respectively
(Mann–Whitney test, P=0.02) (Figure 4). This almost
6-fold increase in the GC frequency in xrs5 cells was
inhibited by preceding knockdown of Rad51 (Figure 4,
inset). Together, these data suggest that the presence of
Ku80 suppresses both SSA and GC mechanisms from
acting on DSB.

Ku80 and Rad51 act together in suppressing SSA

Having established the dominance of Ku80-mediated
NHEJ over GC and SSA, we next asked whether Rad51-
dependent GC is preferred over SSA. To address this, we
knocked down Rad51 in CHO K1 and xrs5 cells carrying
pEJSSA. No significant change in the total repair efficiency
was observed compared to untreated cells or cells
transfected with control siRNA (Figure 5A). To assess

the contributions of NHEJ and SSA to I-SceI repair, we
applied a TOPO-TA subcloning strategy, which proved to
give the same results as raising individual clones (data not
shown). Interestingly, Rad51 knockdown in CHO K1 cells
resulted in a small yet robust increase in the frequency of
SSA by 11% (Figure 5B; second bar), consistent with the
idea that SSA is normally restricted in the presence of
Rad51. Similarly, in Ku80-deficient xrs5 cells, which
already exhibit an increased SSA frequency (Figures 2
and 5B, third bar), Rad51 knockdown raised the fraction
of SSA-mediated repair events up to 40% (Figure 5B,
fourth bar), suggesting that Ku80 and Rad51 suppress this
mutagenic pathway in an additive manner, i.e. 26% due to
Ku80 plus 11–14% due to Rad51. These results also
illustrate that SSA can be an efficient alternative repair
pathway in case NHEJ or GC is impaired.

Unexpectedly, inactivation of GC in cells carrying
pEJSSA by knockdown of Rad51 led to a relative decrease
in the NHEJ frequency with an associated rise in SSA,
which was not reported previously (28,29). We hypothe-
sized that this NHEJ decrease required the availability of
the SSA pathway. We thus knocked down Rad51 in cells
carrying the pEJ substrate, which lacks the 50-bp repeat
sequences that are substrates for SSA (Figure 1A). We
found that the NHEJ frequency was unaffected (Figure 5C)
indicating that Rad51-dependent GC does not by itself
compete with NHEJ but rather suppresses SSA.
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Figure 4. Ku80 suppresses Rad51-mediated GC. Repair efficiency by
GC assessed by the substrate pGC. Cells were pretreated for 16 h with
siRNA and then transfected with the I-SceI expression plasmid. Shown
is the mean fraction (� SE) of green fluorescent cells derived from three
independent clones after 48 h. Cells not subjected to siRNA yielded
essentially the same results as the scambled control (sc) (data not
shown). Asterisk: actual value is 0.02%. Inset: Western blot for Rad51
expression in CHO K1 cells 48 h after transfection of siRNA. Anti-
Rad51 siRNA (Rad51) reduced protein expression by 80% compared
to scrambled control (sc).
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DISCUSSION

The NHEJ pathway is dominant over GC and SSA

In the current study, we investigated the relationship
between the three main DSB repair pathways, NHEJ,
GC and SSA, using novel chromosomal reporter sub-
strates that stably integrated in hamster cell lines. We
found that functional Ku80 acts as a suppressor of GC
and SSA (Figures 4 and 2D), thus rendering NHEJ the
dominant DSB repair pathway. It has been shown
previously that loss of Ku70/80, XRCC4 or DNA–PKcs
function (27,28,39–43) increases the frequency of GC.
These results indicate that inactivation of any NHEJ core
component permits DSBs to be repaired via GC. We now
show for the first time that loss of Ku80 also promotes
SSA (Figure 2D). GC and SSA commonly require long 30

single-strands for homology search and strand-annealing,
and the initial resection of DSB ends has been suggested to
guide the choice between these pathways (29,44–46).
However, the Ku protein ‘hides’ DNA ends, protects
them from degradation (47–49) and hence prevents
channelling repair towards recombination. In addition,
Ku may compete with Rad52 for DNA binding. Rad52
has been shown biochemically to bind to and mediate
ligation of blunt and cohesive ends similar to Ku (30).
Under identical conditions, however, Ku preferably
bound to ends with short protrusions while Rad52
strongly favoured long single-stranded overhangs (31).
The absence of Ku might significantly facilitate access of
Rad52 to double-stranded DNA ends, in particular, as
these become prone to nucleolytic attack. In yeast, a
single-stranded overhang of only 8–10 bp is sufficient to
initiate a Rad52-mediated recombination process (31),
which could be either SSA or GC. We observed for the
pEJSSA substrate in Ku80-deficient xrs5 cells a mean
deletion length of only 5 bp. The end degradation never
reached into any homologous repeat sequences although
several microhomologies were offered to mediate end-
joining (i.e. several copies of CCGC and others, see SSA1/
2 sequences depicted in Material and Methods section). In
contrast, Ku deficiency in MEFs or xrs5 hamster cells
leads to extensive base loss in pure end-joining substrates
such as pPHW2 and pEJ (24, and Mansour et al.,
unpublished results). We conclude that not only the
overhang length but also the presence of the nearby
tandem copies are recognized and actively guide the repair
towards SSA. A similar switch from the end-joining mode
to SSA has been described in a cell-free system if the
length of homologies extended beyond 25 nt (37).
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Figure 5. Impact of Rad51 function on the NHEJ–SSA balance.
(A) Total repair efficiency (NHEJ plus SSA) using pEJSSA in CHO K1
and xrs5 cells without or with 16 h of pretreatment with Rad51 siRNA.
Experiments were carried out as before. Neither the individual values
nor the means of all CHO K1 versus all xrs five data were significantly
different from each other (Mann–Whitney, P=0.97). siRNA experi-
ments were performed with two independent clones of each strain.

Data represent the means of three independent repeat experiments.
(B) Relative distribution between SSA (gray) and NHEJ (open bars).
Indicated is the difference in the respective fractions of SSA as
compared to CHO K1 cells (dashed line). (C) Total NHEJ efficiency
using pEJ in CHO K1 and xrs5 cells with or without 16 h of
pretreatment with Rad51 or sc siRNA. Data represent the mean (�SE)
of three clones each and two independent repeat experiments. Notably,
the repair efficiency of clones harboring the pEJ was slightly higher
compared to those with the pEJSSA.
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Rad51 controls the balance between NHEJ and SSA

Both homologous recombination pathways (GC and SSA)
may be used if sequences of sufficient homology are
available (50–52). In line with the model of a competition
between GC and SSA, lack of functional Rad51, Rad54,
BARD or BRCA2 decreases the rate of GC and increased
SSA (28,52,53). The repair substrate used here, pEJSSA,
was not designed to monitor both homology-directed
processes but instead addressed the relationship between
SSA and NHEJ. We not only found a competition
between those two pathways, but also discovered a
hitherto unknown role for Rad51 controlling this balance.
Knockdown of Rad51 increased the usage of SSA at the
expense of NHEJ even in Ku80-proficient cells
(Figure 5B). Rad51 may normally hinder Rad52 from
interfering with end-joining as it physically associates with
Rad52 after DNA damage (54,55). This Rad51–Rad52
interaction simultaneously promotes strand-exchange
during GC (56,57) and inhibits Rad52-mediated strand
annealing for SSA (55). In the absence of Rad51, Rad52 is
freely available to compete with Ku for end binding and
may promote SSA as it retains its Rad51-independent
strand-annealing function (57). These results suggest that
Rad51 indirectly supports NHEJ via interference with
SSA. In contrast, using the pure end-joining substrate
pEJ, we verified that Rad51 does not interfere with NHEJ
in the absence of a SSA mechanism (Figure 5C).

Features of the chromosomal repair substrates

The use of I-SceI-based repair assays has greatly advanced
our understanding of the molecular mechanisms and
genetic determinants of homologous recombination
(8–11,28,43,51), and more recently, several investigators
have begun to successfully employ NHEJ substrates
(21,22,32,58–60). However, several caveats need to be
recognized. For example, studying the impact of a genetic
manipulation on the functional repair readout may only
produce evidence of an indirect relationship. It also

remains to be defined to which extent I-SceI-type ends
are models for DSB generated during normal DNA
metabolism or after exposure to DNA-damaging agents.
By their nature, I-SceI assays select DSB induction and
processing events that trigger the reporter/selection signal.
As a result, repair efficiency and pathway utilization may
be to a certain degree assay specific. With regard to the
NHEJ assays employed here, recombination events
require a pop-out of the sequence between the two
tandem I-SceI sites. Thus, factors that influence simulta-
neous I-SceI cleavage and synapsis of the cleaved ends can
principally affect the repair readout.

Of note, however, we and Lopez and colleagues recently
reported a strikingly different phenotype of XRCC4- and
Ku80-deficient cells with regard to the repair of I-SceI-
induced DSBs, which mirrored the embryonic lethality of
XRCC4 knock-out mice as opposed to the viability of the
Ku80 knock-out (23,24). These findings suggest that
I-SceI ends may be representative of DSB generated
during normal cell development.

CONCLUSION

We propose a hierarchical model for DSB repair
(Figure 6), which is dominated by the Ku protein. Due
to its abundance and high affinity (2), Ku occupies all
DNA ends and initiates high fidelity end-joining. In the
absence of Ku, NHEJ shifts to an error-prone mode,
which either relies on the remaining NHEJ core proteins
or involves an alternative end-joining pathway (25,26). In
addition, homology-mediated recombinational repair
pathways (SSA and GC) can partly substitute for NHEJ
and rescue repair proficiency. Yet, the reverse does not
occur, as loss of Rad51 function is not compensated by an
increased repair via NHEJ. This is consistent with the
notion that the 30-ssDNA ends generated as substrates for
homologous recombination can no longer be channelled
towards NHEJ. Together, the data imply that the most
mutagenic pathway, the SSA pathway, is the least
desirable option for the cell, as it is suppressed by both
Ku80 and Rad51.
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