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1. Summary
The transketolase (TKT) enzyme in Mycobacterium tuberculosis represents a

novel drug target for tuberculosis treatment and has low homology with the

orthologous human enzyme. Here, we report on the structural and kinetic

characterization of the transketolase from M. tuberculosis (TBTKT), a homodi-

mer whose monomers each comprise 700 amino acids. We show that TBTKT

catalyses the oxidation of donor sugars xylulose-5-phosphate and fructose-6-

phosphate as well as the reduction of the acceptor sugar ribose-5-phosphate.

An invariant residue of the TKT consensus sequence required for thiamine

cofactor binding is mutated in TBTKT; yet its catalytic activities are unaffected,

and the 2.5 Å resolution structure of full-length TBTKT provides an explanation

for this. Key structural differences between the human and mycobacterial TKT

enzymes that impact both substrate and cofactor recognition and binding were

uncovered. These changes explain the kinetic differences between TBTKT and

its human counterpart, and their differential inhibition by small molecules.

The availability of a detailed structural model of TBTKT will enable differences

between human and M. tuberculosis TKT structures to be exploited to design

selective inhibitors with potential antitubercular activity.
2. Introduction
Mycobacterium tuberculosis is the aetiologic agent of tuberculosis (TB), a disease

that is one of the leading causes of death from a single infectious agent world-

wide. The World Health Organization currently estimates that 1.8 billion

people, approximately one-third of the world’s population, are infected with

M. tuberculosis, and that there are 9 million new active cases annually and

2 million deaths each year as a result of infection [1]. TB treatment is compli-

cated, requiring at least three drugs, of long duration and often accompanied

by side-effects. This has resulted in poor compliance to treatment regimens

that, in turn, have contributed to the emergence of numerous multi-drug-

resistant (MDR) and extensively drug-resistant (XDR) strains that further com-

plicate the therapy. In the case of XDR TB, there are usually no effective

therapeutic agents remaining to constitute a successful combination therapy

regimen [2]. In conjunction with HIV, this represents a serious problem.
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Figure 1. Transketolase enzyme catalysed reactions. TKT catalyses the cleavage of carbon – carbon bonds to transfer two ketol carbon units from donor ketose
sugars, like xylulose-5-phosphate, to acceptor aldose sugars, such as ribose-5-phosphate or erythrose-4-phosphate, resulting in the production of sedoheptulose-7-
phosphate or fructose-6-phosphate.
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Therefore, there is an urgent need for the identification of

novel targets and pathways within M. tuberculosis in order

to develop new chemotherapeutic agents.

Analysis of the genome sequence of M. tuberculosis H37Rv

[3], together with saturation transposon mutagenesis by

Himar1 [4], has led to the identification of a number of differ-

ent proteins and biosynthetic pathways, which may be

attractive targets for antitubercular therapy as they are pre-

dicted to be essential for the survival of M. tuberculosis in
vitro. One such pathway that has been identified as essential

for the survival of M. tuberculosis in vitro is the pentose-

phosphate pathway (PPP). Furthermore, evidence that this

pathway is an important metabolic process for mycobacteria

is provided by its conservation in Mycobacterium leprae, as

this obligate pathogen has undergone massive gene decay,

resulting in a core set of genes that are required for its survival

in humans [5]. A putative functional transketolase (TKT) gene

product, which is part of this non-oxidative branch of the PPP,

has been identified in M. tuberculosis through a number of pro-

teomic studies and two-dimensional liquid chromatography–

mass spectrometry studies [6–10].

TKT enzymes (EC2.2.1.1) have been identified and

studied in several organisms, including humans [11,12],

Saccharomyces cerevisiae [13–15], Escherichia coli [16], maize

[17], spinach [18] and Plasmodium falciparum [19], the causa-

tive agent of malaria. These are typically cytosolic enzymes

have a molecular mass of 70–75 kDa, with the homo-

dimer being the active entity. This class of enzyme uses the

cofactor thiamine pyrophosphate (TPP) and a divalent

metal cation to catalyse the cleavage of carbon–carbon

bonds to transfer two ketol carbon units from donor ketose

sugars, such as xylulose-5-phosphate, to acceptor aldose

sugars, such as ribose-5-phosphate or erythrose-4-phosphate,

resulting in the production of sedoheptulose-7-phosphate

or fructose-6-phosphate, respectively (figure 1) [20–23].

The reaction proceeds via a Ping Pong Bi Bi mechanism.

A broad range of donor and acceptor substrates have been

reported, with the bacterial, plant and yeast enzymes

having a wider range of substrate recognition than human

TKT enzymes [22].
The first TKT structure that was reported in literature was

from S. cerevisiae (pdb 1trk) [24]. Subsequently, a number of

other structures have been solved, both with and without

sugar substrates and cofactor, for other species including

E. coli (pdb 2r5n) [25], maize (pdb 1itz) [17], Leishmania mex-
icana (pdb 1r9j) [26], Thermus thermopilus (pdb 2e6k), Bacillus
anthracis (pdb 3hyl) and Francisella tularensis (pdb 3kom).

Until recently, no mammalian TKT structures were available;

however, the human structure has recently been solved (pdb

3ooy and 3mos) [11]. All of the TKT structures from the

different species show a similar overall TKT fold and arrange-

ment of three domains [13,17,24,26,27]. Domains I (1–322)

and II (323–527), numbering from the TKT enzyme from

S. cerevisiae, have been shown to be involved in dimeric inter-

actions of each monomeric subunit and are also involved in

TPP cofactor binding and recognition. The third domain,

which comprises the last approximately 150 amino acids, is

believed to be involved in the regulation of the activity of

the enzyme and in stereochemical control of the sugar sub-

strates, in which D-threo at the C-3 and C-4 positions are

favoured [13,24,28–30]. Studies have shown that the TKT

enzyme from E. coli is still active in the absence of the third

domain [28].

Despite its importance in plants and bacteria, detailed

studies of TKTs from a mycobacterial species have not yet

been reported. The cell wall of M. tuberculosis is unique in its

complexity, comprising three covalently attached layers (pepti-

doglycan, arabinogalactan and mycolic acids), and is very

important to the survival of M. tuberculosis, its pathogenicity

and impermeability to drugs. One of the first committed steps

in the production of the arabinogalactan layer of M. tuberculosis
is the production of D-ribose-5-phosphate. The biosynthesis of

D-ribose-5-phosphate can potentially occur through two pro-

cesses [31]: either the enzyme ribose-5-phosphate isomerase

(Rv2465) can convert ribulose-5-phosphate to D-ribose-5-

phosphate [32], or the TKT enzyme (Rv1449) can convert

sedoheptulose-7-phosphate to D-ribose-5-phosphate. Given

that the ribose-5-phosphate isomerase enzyme Rv2465 is not

essential based on the studies of Sassetti et al. [4], it is thought

that the TKT plays a key role in linking the non-oxidative part
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of the PPP to biosynthesis of pentose sugars and hence to essen-

tial arabinans in cell wall biosynthesis. A number of current

antitubercular drugs target key components of the cell wall,

including isoniazid and ethionamide (which block mycolic

acid synthesis [33–35]), ethambutol (which targets arabinoga-

lactan formation [36]) and cycloserine (which inhibits the

biosynthesis of peptidoglycan [37,38]). Recently, a new class

of compounds, 1,3-benzothiazin-4-ones, have been identified

that prevent the formation of arabinose by inhibition of the dec-

aprenyl-phosphoribose epimerase activity catalysed by the

DprE1 and DrpE2 proteins [39].

Given the potential importance of TKT in the production of

arabinan in M. tuberculosis, this biosynthetic pathway is an attrac-

tive target for identifying additional, novel antitubercular agents.

As the first step in this process, we report here our structural

and functional studies of the TKT enzyme from M. tuberculosis
(TBTKT), encoded by gene rv1449c, and discuss structural

differences between the human, yeast and bacterial homologues.
3. Material and methods
All chemicals and reagents were purchased from Sigma-Aldrich,

unless otherwise stated. Restriction enzymes were obtained

from New England Biolabs. Double-distilled water was used

throughout.

3.1. Plasmid construction
The putative TKT gene, rv1449c, was amplified in two steps

by PCR from cosmid I392 of M. tuberculosis using gene-

specific primers, followed by gateway adaptor primers with

attB1 and attB2 sites for incorporation into the gateway

entry vector pDONR207 (Invitrogen). The gateway adaptor

forward primer encoded a thrombin recognition sequence

ctggttccgcgtggatc. The first PCR step used primers

50CTGGTTCCGCGTGGATCCACCACACTCGAAGAGATCT

CCG (forward) and 50-CAAGAAAGCTGGGTCTCAGTTA

TCCAGCGCTCGTTCG-30 (reverse). The second PCR reaction

used primers 50-ggggACAAGTTTGTACAAAAAAGCAGGC

TTCctggttccgcgtggatc-30 (forward) and 50-ggggACCACTTT

GTACAAGAAAGCTGGGTC-30 (reverse). For both PCR reac-

tions, PCR amplification consisted of 30 cycles (958C, 2 min;

958C, 1 min; 608C, 30 s; 728C, 3 min), followed by an exten-

sion cycle (10 min at 728C). The resulting PCR product was

cloned into the pDONR207 vector and the resultant plasmid

was used to transfer the gene sequence into pET160_DEST

(Invitrogen; N-term hexa-histidine-tag) by homologous recom-

bination. The Rv1449c_pET160_DEST plasmid obtained was

sequenced fully and used for protein expression.

3.2. Heterologous overexpression of transketolase
enzyme from Mycobacterium tuberculosis

Escherichia coli BL21(DE3) transformed with the Rv1449c_

pET160_DEST plasmid was grown at 278C to an optical

density at 600 nm (OD600) of 0.6–0.8 in 2xLuria-Bertani

(LB) medium supplemented with 100 mg ml21 ampicillin.

The production of the protein was induced with 500 mM iso-

propyl-b-thiogalactopyranoside (IPTG) and the cultures were

grown at 168C overnight with shaking. The cells were har-

vested by centrifugation at 6000 g for 20 min at 48C, and

the cell pellet was resuspended in lysis buffer (50 mM
sodium phosphate, 500 mM sodium chloride, 2 mM TPP, 10

per cent glycerol, 5 mM b-mercaptoethanol, 0.1% Triton-X

100 and pH 7.4) and Complete Protease Inhibitor Cocktail

(Roche). The cells were freeze–thawed and sonicated.

Following centrifugation at 18 000 g for 30 min at 48C, the

supernatant was loaded onto a Cobalt-Talon affinity column.

3.3. Purification of transketolase enzyme from
Mycobacterium tuberculosis

Recombinant TBTKT was purified in three steps. The soluble

lysate was incubated with Talon-resin (Clontech) at 48C for

1 h. The column was washed with 20 mM sodium phosphate,

100 mM sodium chloride, 2 mM TPP, 10 per cent glycerol,

5 mM b-mercaptoethanol (pH 7.4) and the His-tagged protein

eluted with increasing concentrations of imidazole. The 50

and 250 mM imidazole fractions as determined by SDS-PAGE

were pooled, concentrated (Amicon centrifugal device) and

run on a Resource Q column (GE Healthcare) in 20 mM

sodium phosphate, 100 mM sodium chloride, 2 mM TPP and

5 mM b-mercaptoethanol (pH 7.4), and eluted with sodium

chloride (0.1–1 M). Fractions containing TBTKT were pooled

and purified further using size exclusion chromatography.

Gel filtration experiments were carried out on a Superdex 200

16/60 column (GE Healthcare). The gel filtration column was

run in 20 mM sodium phosphate, 100 mM sodium chloride,

2 mM TPP, 5 mM b-mercaptoethanol (pH 7.4). Fractions con-

taining TBTKT were pooled, and the dimer and monomeric

fractions collected separately.

3.4. Crystallization of transketolase enzyme from
Mycobacterium tuberculosis

Monomeric TBTKT was concentrated to 8 mg ml21 (Amicon

ultracentrifugal concentrators from Millipore) and buffer

exchanged into 20 mM Tris-HCl, 1 mM ethylenediaminete-

traacetic acid (EDTA), 1 mM dithiothreitol (DTT) (TED)

buffer plus 5 mM MgCl2, 5 mM TPP (pH 7.6) or 20 mM

glycyl-glycine (Gly-Gly), 5 mM MgCl2, 10 mM TPP

(pH 7.7). The crystals were grown using the sitting-drop

vapour-diffusion technique by mixing equal volumes

(150 nl) of concentrated TBTKT with mother liquor using a

protein crystallization robot (Mosquito, TTP LabTech).

TBTKT crystals grew within one week at 228C, in 0.1 M

ammonium acetate, 0.1 M bis-tris pH 5.5 and 17% w/v poly-

ethylene glycol 10 000 with the protein in buffer 20 mM

Gly-Gly, 5 mM MgCl2, 10 mM TPP (pH 7.7).

3.5. Data collection, structure determination
and refinement

The TBTKT crystal was cryoprotected with 30% v/v glycerol

and flash frozen in liquid nitrogen prior to data collection.

Data were collected on beamline PXIII at the Swiss Light

Source (Villigen, Switzerland) with a mar225 mosaic CCD

detector. The space group was determined, and the data

were integrated, scaled and merged using the program XDS

[40]. PHASER [41] was used to solve the TBTKT structure

by molecular replacement with a TBTKT model, built using

SWISS-MODEL [42] and the TKT structure from E. coli (PDB

code 2r8o chain A [25]) as a template. The structure was



Table 1. Data collection and refinement statistics. Numbers in brackets
denote values for the highest-resolution shell.

TBTKT (3RIM)

data collection statistics

beam line PXIII – Swiss Light

Source

space group P1

resolution range (Å) 50 – 2.49 (2.64 – 2.49)

wavelength 0.979000

cell dimensions

cell axial lengths (Å) a ¼ 75.5, b ¼ 80.1,

c ¼ 130.0

cell angles (o) a ¼ 82.2, b ¼ 81.2,

g ¼ 66.4

number of molecules in the

asymmetric unit

4

redundancy 3.9 (3.65)

completeness (%) 96.6 (91.2)

Rmeas
a 15.9 (54.0)

mean I/sI 7.90 (2.77)

refinement statistics

resolution range 50 – 2.49

Rwork/ Rfree 0.22/0.27

number of atoms

protein/ligand/water 21206/156/410

Ramachandran

favoured/allowed/disallowed (%) 88.4/11.6/0

average B-factor (Å2)

protein/ligand/solvent 27.2/27.6/19.3

root mean square deviations

bond lengths (Å) 0.017

bond angles (Å) 1.634
aRmeas is defined by Diederichs & Karplus [46].
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refined by iterative cycles of alternating manual rebuilding in

O [43] and COOT [44], and reciprocal space crystallographic

refinement with REFMAC5 [45]. The successful refinement was

dependent on making use of the non-crystallographical sym-

metry for averaging using the tools within O. Data processing

and refinement statistics are shown in table 1. Preparation

of structure-related images was carried out with PYMOL (ver-

sion 0.99, Schrödinger, LLC). Sequences were aligned with

CLUSTALW2, and sequence figures were generated with ESPRIPT

version 2.2 [47,48].

The atomic coordinates and experimental structure factor

data of the refined M. tuberculosis TKT have been deposited in

the protein data bank (PDB code 3RIM).

3.6. Steady-state kinetic analysis
Activity of the recombinant TKT was measured by the

reduction of potassium ferricyanide by the a-carbanion inter-

mediate formed, as described previously by Kochetov [49].
The reaction was carried out in 100 ml in a 96-well plate, in

50 mM Gly-Gly buffer (pH 7.6), 2 mM magnesium chloride,

0.1 mM TPP, 0.5 mM potassium ferricyanide, 3 mM fruc-

tose-6-phosphate (6FP) and recombinant TBTKT enzyme,

and the reduction of potassium ferricyanide was monitored

at 420 nm on a Tecan Infinite M200 plate reader at 378C.

The Km,app values were determined by varying the con-

centration of substrate from 0 to 4 mM. Alternatively, the

activity of the recombinant TKT was measured using

the auxiliary enzymes: triosephosphate isomerase and

a-glycerophosphate dehydrogenase. The reaction (100 ml)

was performed in a 96-well plate, in 50 mM Gly-Gly buf-

fer (pH 7.6), 2 mM magnesium chloride, 0.1 mM TPP,

0.4 mM NADH 4 mM ribose-5-phosphate (R5P) and 4 mM

xylulose-5-phosphate (X5P), 8 units of triosephosphate iso-

merase and 8 units of a-glycerophosphate dehydrogenase.

Oxidation of NADH was followed spectrophotometrically

by measuring the absorbance at 340 nm (A340), as descri-

bed previously by Kochetov [21]. Substrate concentrations

were varied to below and above the Km,app value. The pro-

gram PRISM (version 5, GraphPad Software, La Jolla, CA,

www.graphpad.com) was used for nonlinear regression

analysis of kinetic data. Inhibitors oxythiamine (Sigma)

and 5-benzyl-3-phenylpyrazolo[1,5-a]pyrimidin-7(4H)-one

(Chembridge Screening Library) were added at a final

concentration of 30 mM and tested in both enzyme assays.

3.7. Testing for in vitro growth inhibition
of Mycobacterium tuberculosis

The inhibitory activity of oxythiamine was tested at a concen-

tration range of 0–100 mg ml21 in the resazurin reduction

assay as described previously [39].
4. Results
4.1. Identification and production of transketolase

enzyme from Mycobacterium tuberculosis
A putative TKT gene (tkt, rv1449c; hereafter TBTKT)

was annotated in the genome of M. tuberculosis (http://tuber

culist.epfl.ch/index.html) based on the presence of a consen-

sus sequence for TPP binding and extensive sequence

similarity to other known TKT genes. The predicted open

reading frame of TBTKT contains a specific sequence motif

of THDSIGLGEDGPTHQPIE that has been identified pre-

viously in other TKT proteins [50] and corresponds to

amino acids 490–507 in this enzyme. Interestingly, a second

sequence motif, which is common to thiamine cofactor-

binding enzymes, is a GDG consensus motif followed by 21

amino acids varying in sequence identity. In M. tuberculosis,

the GDG motif has been replaced by SDG (amino acids

176–178), and this is also the case in all other sequenced

mycobacterial TKTs (figure 2; electronic supplemen-

tary material, S1). No other known TKT enzymes that have

been studied contain this mutation in the TKT consensus

sequence [11].

To produce recombinant TBTKT protein, primers were

designed and the full-length tkt gene was cloned with an

N-terminal hexa-histidine tag and over-expressed in an

E. coli expression system. Soluble, active protein was obtained

http://www.graphpad.com
http://tuberculist.epfl.ch/index.html
http://tuberculist.epfl.ch/index.html
http://tuberculist.epfl.ch/index.html


Figure 2. Sequence comparison of transketolase enzyme from Mycobacterium tuberculosis (TBTKT) and human transketolase (TKT). Sequence alignment of TBTKT
versus human TKT using the programs CLUSTALW2 and ESPRIPT version 2.2 [47,48]. Numbering corresponds to the sequence of TBTKT. Identical residues are indicated
by a red background, and conserved residues are indicated by red characters. The secondary structure elements of TBTKT are shown above the sequences, and those
of human TKT are shown below.
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in a yield of 10 mg l21 bacterial culture and purified to

apparent homogeneity.
4.2. Overall structure of transketolase enzyme from
Mycobacterium tuberculosis

Crystal trials of TBTKT were set down as described (§3.4).

Crystals typically grew after 7 days, and diffraction data

were collected from crystals that were formed in 17% w/v

polyethylene glycol 10 K, 0.1 M ammonium acetate, in
0.1 M bis-tris at pH 5.5. Crystals of the TBTKT were in sym-

metry group P1 with four molecules predicted in the

asymmetric unit, with a Matthew’s coefficient [51] of

2.3 Å3 Da– 1 and a solvent content of 46 per cent. The struc-

ture was solved by using molecular replacement with a

homology model of TBTKT built using SWISS-MODEL [42]

and the E. coli TKT structure (pdb 2r8o) [25] that has

42 per cent amino acid sequence identity to TBTKT. In

almost all protein molecules, electron density could be

observed for residues 6–700, the last residue of the full-

length protein. The final model was refined with tight
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Figure 3. Crystal structure of TBTKT and superposition to human tkt. (a) Surface representation of TBTKT dimer with bound cofactor TPP ( pink) with one monomer
in grey and the second monomer coloured by domains (blue, domain I; orange, domain II; green, domain III; red, linkers 1, 2). (b) Dimer representation of TBTKT
with one monomer represented as surface and coloured by B-factor, and the second one as a cartoon with the domains coloured as in (a). (c) Superposition of
TBTKT and human tkt ( pdb code 3MOS) monomers depicted as cartoon representation. The domains are colour-coded as in (a) and (b), with human tkt in lighter
colours compared with TBTKT. (d ) The structures are rotated 908 around the twofold axis compared with (c).
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non-crystallographic restraints to a resolution of 2.5 Å and

consists of 2776 amino acids, 410 water molecules, four TPP

molecules, 4 Mg2þ ions and eight glycerol molecules, with

an Rwork of 22 per cent and an Rfree of 27 per cent (pdb

3RIM; table 1).

The TBTKT enzyme forms a homodimer, where the two

monomeric units are related by a non-crystallographic two-

fold axis. There are two dimers per asymmetric unit that

are related to each other by a twofold axis to create a non-

crystallographic screw axis parallel to the crystallographic

Z-axis. The overall structure of each TBTKT monomer con-

sists of three domains interconnected by flexible linker

regions (figure 3a,b). The N-terminal pyrophosphate (PP)-

binding domain (domain I) that binds the PP part of TPP

(residues 6–299) consists of a central five-stranded parallel

b-sheet, surrounded by 11 a-helices. The pyridine (Pyr)-

binding domain (domain II) that involves the aminopyrimi-

dine moiety of TPP (residues 377–550) comprises a central

six-stranded parallel b-sheet with seven a-helices surround-

ing it. The C-terminal domain (Domain III, residues

571–700) forms a central five-stranded mixed b-sheet with

four parallel strands and one antiparallel strand. These

three domains are linked by linkers (linker 1: residues

300–376; linker 2: residues 551–570; figure 3a,b). Domains I

and II are mostly involved in dimer formation, while the

third domain makes rather few contacts to the other subunit

(figure 3a,b). The Protein Interfaces, Surfaces and Assemblies

(PISA) service at the European Bioinformatics Institute
(http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html) gives

a complexation significance score of 0.614 between chains A

and B (or chains C and D), indicating that the interface

plays an essential role in dimer complexation with a large

number of residues involved. There are 60 hydrogen bonds

and 15 salt-bridges between the two monomers. In total, a

surface of around 4200 Å2 is buried upon formation of the

dimer (chains A and B and chains C and D), with 17 per

cent of the total residues being involved in its formation.

The solvent accessible surface area of a monomeric subunit

is 25 785 Å2. TBTKT is also found as a homodimer in solution

as seen by size exclusion chromatography (data not shown)

and therefore it is likely that the homodimer found in the

crystal structure is the biologically relevant unit as shown

for other TKT enzymes. Two important conserved residues

involved in dimeric interaction are Glu182 and Glu441, the

buried acidic side chains of which form a hydrogen bond

interaction, allowing Glu441 to interact with the N10 atom

of the aminopyrimidine ring of the TPP [13].

The subunits of different TKT structures were compared

and superimposed using DALILITE version 3 [52]. The

TBTKT and human TKT structures can be superimposed

with a root mean square deviation (RMSD) value of 2.3 Å

and a high Dali Z-score of 36.7 (584 Ca atoms were aligned,

23% sequence identity to TBTKT). With other TKTs, the fol-

lowing values were obtained: for yeast (pdb 1trk), RMSD

of 1.4 Å, Z-score of 48.4 (678 Ca atoms, 44% sequence iden-

tity); for E. coli (pdb 2r5n), RMSD of 1.6 Å, Z-score of 48.0

http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
http://www.ebi.ac.uk/msd-srv/prot_int/pistart.html
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Figure 4. Structure of the cofactor-binding site in TBTKT. (a) Illustration showing TPP cofactor as cyan sticks, Mg2þ as a cyan sphere as well as selected amino acid
residues in stick representation. Amino acids contributed by different monomers are indicated by different colour-coding. (b) Superposition of the TBTKT (green) to
human TKT (silver) with cofactors TPP and Mg2þ, and selected residues in stick representation.
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(663 Ca atoms, 42% sequence identity); for B. anthracis (pdb

3hyl), RMSD of 1.3 Å, Z-score of 50.1 (663 Ca atoms, 47%

sequence identity); for maize (pdb 1itz), RMSD of 1.5 Å, Z-

score of 49.4 (666 Ca atoms, 44% sequence identity). The

combined superimposition results of TBTKT and other TKT

structures confirm the similarity of the overall fold and

domain topology of TKT enzymes from different species.

However, the TBTKT enzyme is 87 amino acids longer than

the human TKT. The deletions in the human TKT correspond

to two loop regions at amino acids 153–167 (in domain I) and

amino acids 413–432 (in domain II) in TBTKT. No binding is

predicted to occur between these residues and substrate or

TPP cofactor. In addition, linker 1 is longer and more struc-

tured, forming a helix-turn-helix in TBTKT compared with

human TKT—77 amino acids (residues 300 to 376) versus

39 amino acids (residues 277 to 315)—and may result in

some specificity (figure 3c,d ).
4.3. Binding of TPP and Mg2þ ion to transketolase
enzyme from Mycobacterium tuberculosis
and comparison with homologues from
different species

Well-defined electron density has revealed the binding

pocket of the cofactor TPP and an Mg2þ ion in the TBTKT

structure. Each TBTKT monomer contains one TPP molecule

and one Mg2þ ion, suggesting that each active site is equival-

ent, and this has been found to be the case for other reported

structures of TKT enzymes [11,13,15,17,25]. An active site

cleft is formed between the two monomeric units allowing

the cofactors TPP and Mg2þ to bind, such that the N-terminal

domain I of chain A binds the PP moiety of TPP, and

domain II of chain B interacts with the aminopyrimidine

ring. The PP moiety of TPP is anchored in place through a

number of hydrogen bonds formed with residues Thr48,

His85, Ser176, Asp177, Gly178, Asn207, Ile209 and His283

from one monomer (figure 4a). The Mg2þ ion is octahedrally

coordinated to residues Asp177, Asn207 and Ile209, along

with two oxygen atoms of the PP moiety of the cofactor

TPP and a water molecule.
Of the eight residues of TBTKT that are involved in

hydrogen bonding to the PP moiety of TPP, four residues

are conserved among all TKT enzymes, including the mam-

malian versions, and these correspond to His85, Asp177,

Asn207 and His283 in TBTKT. One non-conserved amino

acid residue is Thr48, and this is specific to mycobacterial

TKTs (electronic supplementary material, figure S1). By

superposing the available structures, Thr48 corresponds to

an alanine residue in both yeast (pdb 1ngs) [15] and E. coli
(1qgd) [25], and a leucine in maize (pdb 1itz) [17]; this resi-

due is unable to interact with the cofactor. However, the

equivalent serine residue in human TKT (Ser40) also has

the potential to hydrogen bond with the terminal PP

moiety in a manner similar to that of Thr48 as found in the

TBTKT structure. Ile209 is highly conserved among non-

mammalian species and is replaced by a leucine residue in

human TKT (Leu187), but this does not affect its interaction

to the divalent ion through its backbone carbonyl group.

The other non-conserved residue that is involved in the bind-

ing of the PP segment of TPP is the hydroxyl side chain of

Ser176 (figure 4b). This is noteworthy since Ser176 represents

the mutation in the consensus sequence GDG to SDG. This

non-conserved residue in the motif does not affect the overall

fold of the protein and forms a turn separating a b-stand from

an a-helix in the bab-fold. In TBTKT, the hydroxyl side chain

is positioned to hydrogen bond with the PP group of the

cofactor. However, in the yeast and human structures,

the equivalent glycine residues (Gly156 in yeast TKT and

Gly154 in human TKT) lack this hydroxyl side chain and

cannot form such a hydrogen bond with the PP moiety. The

backbone carbonyl oxygen of the glycine residue is pointed

away from the cofactor and does not compensate for this lack

of hydrogen bond in this way. We demonstrated in our kinetic

experiments that mutating GDG to SDG does not affect

the activity of the enzyme, and this can be explained at the

structural level by the remaining hydrogen bonding of

the backbone nitrogen of another residue, Gly178, correspond-

ing to Glu157 in human and Gly158 in yeast, to the PP of TPP.

Moreover, additional interactions are formed in human TKT

between Lys75 and Lys244 and the PP moiety of TPP that

are not present in TBTKT (replaced by Ala83 and Ile269,

respectively; figure 4b).



Table 2. Steady-state kinetic constants, Km,app (mM), of TBTKT and other transketolase enzymes. Assay conditions for TBTKT are detailed under ‘§2’. n.d., not
determined.

R5P F6P X5P reference

M. tuberculosis 0.8+ 0.1 0.6+ 0.1 0.4+ 0.1 this study

human 0.61+ 0.36 7 mM 0.30+ 0.79 [11], [22]

S. cerevisiae 0.4 1.8 0.21 [21]

S. cerevisiae 0.15+ 0.21 n.d. 0.70+ 0.10 [15]

S. cerevisiae H481A 0.15+ 0.50 n.d. 1.24+ 0. 90 [15]

S. cerevisiae H481Q n.d. n.d. 4.08+ 0.51 [15]

spinach chloropasts 0.33 n.d. 0.06 [53]

E. coli 1.4 1.1 0.16 [16]

P. falciparum n.d. 2.25+ 0.5 n.d. [19]
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The pyrimidine ring portion of TPP binds in a hydropho-

bic core that is formed by residues from both monomers:

Leu135 and Ile211 from one monomer, and Leu402, Val439,

Phe464, Phe467 and Tyr470 from the second monomer

(figure 4a). The pyrimidine ring forms p-stacking interactions

with the phenyl ring of residue 467. There are also hydrogen

bond interactions between the pyrimidine ring, and Glu441,

Gly133 and His503. Glu441 has been demonstrated to be

important in activating the cofactor by protonating the N10

position of the aminopyrimidine ring [13], and it appears

that this will also occur in TBTKT. Of these residues,

Glu441 and Gly133, as well as Phe464, Phe467 and Leu135,

are conserved among yeast and human TKT enzymes.

Leu402 and Tyr470 are replaced by slightly more hydrophilic

residues in the human equivalent (Thr342 and Arg395,

respectively). However, these residues are positioned in a

similar way as the yeast TKT and TBTKT residues, and do

not form extra hydrogen bonds to the aminopyrimidine

ring of TPP.
4.4. Kinetic studies of transketolase enzyme from
Mycobacterium tuberculosis

Apparent kinetic (Km,app) constants were determined for

TBTKT with the two donor substrates—xylulose-5-phosphate

(X5P) and fructose-6-phosphate (F6P)—and the acceptor sub-

strate ribose-5-phosphate (R5P). R5P had a Km,app of 0.82+
0.12 mM, F6P had a Km,app of 0.63+0.09 mM and X5P had

a Km,app of 0.35+ 0.12 mM (table 2). These kinetic constant

values for the TBTKT enzyme are comparable with kinetic

constants previously determined for TKTs from S. cerevisiae
[15,21], spinach [53], E. coli [16] and P. falciparum [19]

(table 2), with X5P having the highest binding affinity. As

explained by the crystal structure, mutation of GDG to

SDG has no effect upon the TKT reaction as the cofactor

TPP still binds to the active pocket in the same manner via

additional hydrogen bounds formed (e.g. by Lys75, Lys244

and Gly157 in human TKT). Based on these kinetic studies,

it appears that the TBTKT is more similar to the TKTs

from bacteria, yeast and plants because it was shown that

fructose-6-phosphate is a poor substrate for the human

TKT enzyme, with a Km,app of 7 mM [22], whereas in

TBTKT, F6P is a good substrate for catalysis, with a Km,app

of 0.63 mM (table 2).
Previous extensive mechanistic studies of TKT enzymes

have shown that this class of enzyme follows Ping Pong

Bi Bi reaction kinetics where the donor and acceptor sub-

strates are not able to bind to the protein simultaneously

[14,22,25,54,55].

The structure suggests that this would also be the case for

TBTKT because the substrate cleft is not large enough to

allow binding of donor and acceptor sugar substrates simul-

taneously. The yeast TKT enzyme has been co-crystallized

with the substrate erythrose-4-phosphate (pdb 1ngs) [56],

with no large conformational changes observed upon bind-

ing of the substrate, and this led to the identification of a

number of catalytically important residues for substrate rec-

ognition. These residues are all conserved and correspond

to His45, His283, Arg378, Ser405, His491, Asp499 and

Arg552 in TBTKT (figure 5a). The residues Arg378, Arg552

and His491 have been shown to be important in the recog-

nition of the phosphate moiety of the sugar [56]. These

residues in TBTKT can be superimposed upon those from

the yeast structure and human structure (figure 5a), and it

is envisaged that the TKT sugar substrates for the TBTKT

enzyme are able to bind in a similar manner, and the

enzyme reacts via a Ping Pong Bi Bi reaction mechanism

[29,30,57,58].

Two inhibitors of the human TKT were tested for inhibi-

tory activity against purified TBTKT enzyme, as well as on

live M. tuberculosis cells. Oxythiamine is an analogue of the

cofactor TPP and inhibits TKT activity in human tumour

cells in vivo [59], although it is only a weak inhibitor in vitro
[60]. Oxythiamine has also been found to inhibit weakly

the TKT enzyme from P. falciparum but to have in vivo activity

against P. falciparum [19]. The other inhibitor of human

TKT—5-benzyl-3-phenylpyrazolo[1,5-a]pyrimidin-7(4H)-one

(5BPPO), a compound identified from a high-throughput

screen of 64 000 compounds against human TKT—was also

found to be active against three cancer cell lines, and had

IC50 values in the low micromolar range [60]. Oxythiamine

had no inhibitory activity on the TBTKT enzyme at a rela-

tively high concentration of 30 mM (table 3). Instead,

oxythiamine, at this concentration, increased the rate of the

reaction of the TBTKT enzyme by 30 per cent under the

assay conditions tested. We are unable to explain this result

structurally because oxythiamine is predicted to bind in the

same position as TPP in both the TBTKT and human TKT

enzymes (results not shown). In addition, 5BPPO also had



His45/37/30His45/37/30His45/37/30

His283/258/263His283/258/263His283/258/263

Arg378/318/359Arg378/318/359Arg378/318/359

Ser405/345/386Ser405/345/386Ser405/345/386

His491/416/469His491/416/469His491/416/469 Asp499/424/477Asp499/424/477Asp499/424/477

Arg552/474/528Arg552/474/528Arg552/474/528

E4PE4PE4P

TPPTPPTPP

Mg

His491/416His491/416His491/416

His45/37His45/37His45/37

His283/258His283/258His283/258

His503/Gln428His503/Gln428His503/Gln428

Gly404/Asn344Gly404/Asn344Gly404/Asn344

Gln189/Ile211Gln189/Ile211Gln189/Ile211

Ala285/Lys260Ala285/Lys260Ala285/Lys260

His285/77His285/77His285/77

(a)(a) (b)(b)

Figure 5. Superposition of active sites of TBTKT ( pdb code 3RIM), human TKT ( pdb code 3MOS) and yeast TKT ( pdb code 1ngs). (a) Illustration of the three
structures with sphere representation of substrate erythrose-4-phosphate (E4P) and cofactors TPP and Mg2þ as found in the active site of yeast TKT. Amino acid
residues (amino acid numbering: TBTKT/human TKT/yeast TKT) involved in the binding of E4P to yeast TKT (light blue orange) as well as the corresponding TBTKT
(green and pink) and human TKT (dark blue/yellow) amino acid residues are shown in stick representation. (b) Illustration of TBTKT and human TKT with selected
amino acid residues of TBTKT (magenta) and human TKT (yellow). Cofactors TPP and Mg2þ are represented as spheres. Same orientation as in (a).

Table 3. Effects of human TKT inhibitors on TBTKT and in vitro growth of M. tuberculosis. Assay conditions are detailed under §2. 5BPPO, 5-benzyl-3-
phenylpyrazolo[1,5-a]pyrimidin-7(4H)-one.

inhibitor structure IC50 TBTKT
(mM)

specific activity TBTKTa

(%)
MIC (mg ml21)/
(mM)

Oxythiamine .30 130 .100/.332

5BPPO .30 100 .100/.227

aSpecific activity of the TBTKT enzyme calculated compared with a 5% DMSO control taken as 100% activity.
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no inhibitory effect on the activity of TBTKT at a con-

centration of 30 mM (table 3), which is higher than the

IC50 value of 4 mM determined for the human TKT enzyme

[60]. When tested for their inhibitory effects on the growth

of M. tuberculosis in vitro, both compounds (oxythiamine

and 5BPPO) displayed no growth inhibition at concentrations

as high as 100 mg ml21, corresponding to a molar concen-

tration of 332 mM for oxythiamine and 227 mM for 5BPPO

(table 3).
5. Discussion
Here, we have successfully cloned, expressed and character-

ized, both kinetically and structurally, TBTKT, the first

TKT enzyme to be characterized from mycobacteria. Kineti-

cally, TBTKT has very similar kinetic constants to the TKT

enzymes from yeast, E. coli, maize and spinach, despite the

GDG to SDG mutation in the TKT consensus sequence. The
TBTKT also displays broad substrate specificity for a range

of phosphorylated sugars and in this respect differs from

the mammalian TKT, as the human TKT enzyme has a

much higher Km,app and lower affinity for fructose-6-

phosphate, compared with other identified substrates [11].

Phylogenetic studies have shown that mammalian TKT

enzymes have diverged distinctly from equivalent TKTs in

plants, yeast and bacteria, and therefore may have diversified

to play a different, more selective role in humans.

Structurally, TBTKT consists of three domains with the

same overall fold and domain topology as those of other

TKTs whose structures have been determined [11,13,24,25,

56,61,62]. Dimer formation and binding of the TPP cofactor

occur via domains I and II, with domain III being more

likely to play a regulatory role in substrate recognition as

shown for the E. coli counterpart [28]. The recently reported

structure of the human TKT structure [11] has allowed us

to determine key structural differences between the human

TKT enzyme and the TBTKT. Although the fold of the
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human TKT structure is similar overall to that of the TBTKT

structure, despite only 27 per cent amino acid sequence

similarity, we have identified important differences between

the two structures, which may be exploited with a view to

identifying specific inhibitors of TBTKT. It is important

to ensure that inhibitors of the TKT enzyme in M. tuberculosis
show specificity and do not inhibit human TKT or other

thiamine-dependent enzymes such as pyruvate dehydrogen-

ase, in order to minimize potential side-effects associated

with a decrease in thiamine availability [22]. First, the sub-

strate-binding channel in the human TKT enzyme is

narrower than the TBTKT equivalent. This structural differ-

ence is believed to result in a more selective substrate

specificity of human TKT compared with TBTKT [11].

The entrance of this substrate channel in the human TKT

enzyme contains a lysine residue (Lys260) that is predicted

to be involved in the binding of the phosphate of the sugar

substrate [11]. This lysine residue is replaced by smaller

residues in TBTKT and yeast TKT (Ala285 and Ala265,

respectively), leaving more space to accommodate larger

substrates (figure 5b).

TPP cofactor binding differs slightly between TBTKT and

human TKT. The hydrophobic core that binds the pyrimidine

ring of TPP in TBTKT is more hydrophilic in the human TKT

enzyme. Moreover, the human enzyme displays a quasi-

irreversible binding of TPP, which has not been observed

for the yeast and E. coli homologues, in which the activity

of recombinant human TKT in not dependent upon an

excess of TPP or a divalent cation in the assay mixture. This

is believed to be conferred in part by residue Gln189

(replaced by Ile211 in TBTKT) by sterically hindering

cofactor dissociation [11] (figure 5b).

Another important difference between human and myco-

bacterial TKTs is the absence of the characteristic TKT

five-histidine cluster from human TKT, as one of these

histidines (His481 in yeast and His503 in TBTKT) has been

replaced by a glutamine (Gln428; figure 5b). In yeast,

His481 has mutated to Gln481, resulting in an increase in

Km,app values for X5P from 70 mM in wild-type yeast TKT

to 4080 mM in the His481Gln yeast TKT mutant, suggesting

a role for this residue in catalysis and substrate recognition

in the activation of TPP through proton abstraction of the

40-imino group of the cofactor [15].

Overall, the human TKT enzyme is 87 amino acids shorter

than the TBTKT enzyme. The deletions in the human TKT

correspond to two loops, between amino acids 153–167

and amino acids 413–432 in TBTKT. No possible interactions

are predicted to occur between these loops and substrate or
TPP. Also, the linker region between domains I and II

(residues 300–376) is longer in TBTKT and forms a helix-

turn-helix motif that may confer some specificity. On the

basis of these structurally identified differences, it should

be possible to design specific inhibitors rationally. Indeed, it

is encouraging that oxythiamine and 5BPPO both inhibit

human TKT [60], yet showed no inhibition of TBTKT activity

or the growth in vitro of M. tuberculosis.

TBTKT represents a potential novel target for anti-

tubercular therapy because it is predicted to be essential for

in vitro growth of M. tuberculosis [4]. Additionally, TBTKT is

believed to have an important role in production of precur-

sors for the biosynthesis of the arabinans essential for the

cell wall [31]. The tkt gene has been shown to be twofold

upregulated 6 days after bacterial infection of host macro-

phages, and this probably reflects a response to the stress

and toxic oxygen metabolites within this environment [10].

Additionally, this pathway is also responsible for the pro-

duction of erythrose-6-phosphate that feeds into the

shikamate pathway, producing folate, a de novo process in

prokaryotic species. Escherichia coli mutants that lack TKT

activity are auxotrophic for shikimic acid [63], while yeast

mutants that are TKT-deficient are auxotrophic for aromatic

amino acids [64]. TKT inhibitors are being considered for

development for cancer therapy because TKT activity is upre-

gulated in proliferative cells, and specificity for TKT enzymes

in cancer cells can therefore be achieved through targeting an

upregulated metabolic process [60].

In summary, TBTKT is the first TKT to have been

characterized both structurally and biochemically from a

mycobacterial species. The structure has revealed that,

although the overall fold, domain organization and active-

site architecture are very similar to those of other known

TKTs, there are key structural and kinetic differences between

the human TKT and TBTKT enzymes. This will enable us to

exploit the TBTKT structure for rational drug design in an

effort to find novel agents for antitubercular therapy.
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