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Abstract
Background: Radiomic feature reproducibility assessment is critical in radiomics‑based image 
biomarker discovery. This study aims to evaluate the impact of preprocessing parameters on the 
reproducibility of magnetic resonance image  (MRI)  radiomic features extracted from gross tumor 
volume  (GTV) and high‑risk clinical tumor volume  (HR‑CTV) in cervical cancer  (CC) patients. 
Methods: This study included 99 patients with pathologically confirmed cervical cancer who 
underwent an MRI prior to receiving brachytherapy. The GTV and HR‑CTV were delineated on 
T2‑weighted MRI and inputted into 3D Slicer for radiomic analysis. Before feature extraction, 
all images were preprocessed to a combination of several parameters of Laplacian of Gaussian  (1 
and 2), resampling  (0.5 and 1), and bin width  (5, 10, 25, and 50). The reproducibility of radiomic 
features was analyzed using the intra‑class correlation coefficient  (ICC). Results: Almost all 
shapes and first‑order features had ICC values  >  0.95. Most second‑order texture features were not 
reproducible  (ICC  <  0.95) in GTV and HR‑CTV. Furthermore, 20% of all neighboring gray‑tone 
difference matrix texture features had ICC  >  0.90 in both GTV and HR‑CTV. Conclusion: The 
results presented here showed that MRI radiomic features are vulnerable to changes in preprocessing, 
and this issue must be understood and applied before any clinical decision‑making. Features with 
ICC > 0.90 were considered the most reproducible features. Shape and first‑order radiomic features 
were the most reproducible features in both GTV and HR‑CTV. Our results also showed that GTV 
and HR‑CTV radiomic features had similar changes against preprocessing sets.
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Introduction
Cervical cancer  (CC) is one of the most 
common cancers among women globally, 
estimated at 500,000 new cases/year.[1] The 
standard CC stage IB2‑IVA treatment is 
concurrent external beam chemoradiation 
followed by brachytherapy  (BT). Despite 
significant improvement of survival gained 
by established treatment, about 20% of 
patients experienced treatment failure.[2,3] 
Because of differences between patients’ 
tumor architectures, personalized treatment 
based on tumor texture might effectively 
reduce the failure.[4]

Due to its superior soft‑tissue resolution, 
magnetic resonance imaging  (MRI) plays 
an essential role in the management of 

CC patients at several steps of diagnosis, 
staging, treatment planning  (guidance), 
response assessment, and follow‑up.[3] It is 
also feasible for personalizing external beam 
radiotherapy and BT on CC patients.[5‑7] In 
recent decades, image‑guided BT  (IGBT) 
benefited from MRI. For example, various 
guidelines recommended sequential MRI 
at different times, including before external 
beam radiation therapy (EBRT) and BT and 
the treatment planning procedure. It has 
been recently highlighted that MRI before 
the first session of BT could be acquired to 
evaluate remaining tumor extension after 
EBRT, BT target volume estimation, and 
uterine canal anatomy determination for 
preinsertion assessments.[8,9]

Radiomics is a quantitative image analysis 
used noninvasively to determine tumor 
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heterogeneity by extracting a wide range of features. It is 
clearly shown that radiomic features can be helpful in tissue 
characterization, diagnosis, prognosis, response assessment, 
and prediction, and personalized medicine can be easily 
adapted through this approach.[10] Radiomic features derived 
from MRI of CC patients showed excellent performance 
in radiation therapy decision‑making, especially for IGBT 
individualized‑based treatment management.[11‑13] Since 
the microenvironment of tumor and cervix tissue changes 
significantly during EBRT, in the setting of adaptive 
IGBT for CC, assessment of remaining gross tumor 
volume  (GTV) at the end of EBRT and before starting BT 
is an important task.[8,14,15]

In biomarker discovery approaches, for example, 
developing predictive models with high reliability and 
accuracy, it is critical to find and use the most reproducible 
and repeatable markers. For radiomics‑based image 
biomarker discovery, it is clearly shown that radiomic 
features are vulnerable to image acquisition, processing, 
reconstruction, segmentation, and analysis changes. This 
issue was shown for radiomic features in many cancers 
and almost all imaging modalities.[16‑20] MRI radiomic 
reproducibility analysis studies have concluded that 
MRI radiomic features vary over image acquisition, 
segmentation, and preprocessing.[21‑23] Preprocessing is a 
critical step in radiomic analysis. It has been suggested 
that some preprocessing approaches such as gray‑level 
discretization, resampling, and applying some filter‑based 
image processing such as Laplacian of Gaussian  (LoG) 
have significant impacts on images and consequently on 
radiomic features.[23,24]

The present study aims to assess the reproducibility of 
radiomic features derived from manually segmented 
cervix tumors in patients who underwent T2‑weighted 
MRI before BT. Then, the influence of different feature 
extraction parameters is evaluated, and the optimum setting 
is introduced.

Materials and Methods
Patients

This retrospective study was performed at the BT ward 
of the Radiotherapy Department of Golestan Hospital in 
Ahvaz.

Inclusion and exclusion criteria

Patients with histopathologically proven CC, stage IB‑IVA, 
were enrolled in this research. All patients received 
whole‑pelvic EBRT with a 45–52.2  Gy dose before BT. 
All subjects underwent MRI to evaluate tumor response 
to EBRT before the initialization of BT. We included 
only patients who had managed to receive definitive 
chemoradiation, and patients in adjuvant or neoadjuvant 
chemoradiation settings (i.e., metastatic or recurrent patients 
or those who had done surgery before chemoradiation) 

were excluded from the study. Patients with pre‑BT 
tumor size  <1 cm3 or no visible tumors on T2‑weighted 
MRI were excluded from the study. Patients with cardiac 
pacemaker were not eligible for MRI acquisition and were 
then excluded from the study.

Imaging

All MRI scans were acquired with a 1.5 Tesla 
MAGNETOM (Siemens, Erlangen, Germany) MRI scanner. 
Axial T2‑weighted fast spin‑echo MR scans were acquired. 
The information on image acquisition is shown in Table 1. 
Based on some reports, to better distinguish tumor volume, 
normal cervix, and vagina, aqueous gel was injected into 
the vagina.[25,26] No intravenous contrast agent was used. 
The images were acquired before the first session of BT 
without any applicator insertion to eliminate any effect of  
GYN (Gynecology) applicators on extracted features.

Segmentation

GTV and high‑risk clinical tumor volume  (HR‑CTV) based 
on T2‑weighted MRI images were manually delineated 
based on the American Brachytherapy Society guidelines 
and The Groupe Europeen de Curietherapie European 
Society for Radiotherapy and Oncology recommendations 
for MR‑based target volume delineation by a 10‑year 
experienced radiation oncologist with subspecialization 
at GYN‑BT.[14,27] All regions in the cervix that had higher 
signal  (dark) than normal cervix  (gray) were included 
as GTV. GTV plus normal cervix was segmented as 
HR‑CTV. Finally, three‑dimensional volumes of GTV and 
HR‑CTV were created. Furthermore, no gel is included in 
the segmentation. For 3D slicer, you can refer to: https://
www.slicer.org/ In brief, 3D Slicer, is a free, open source 
software package for visualization and image analysis. 
Since it has a number of contributors, around the world, 
you can refer to its website. Based on the Wikipedia, it 
is developed by Harvard University, National Institutes 
of Health was used for delineations. Figure  1 shows the 
segmentation of a typical patient.

Image processing and feature extraction

The radiomic module of 3D Slicer software was used 
to feature extraction. 3D Slicer is an open‑source and 
integrated platform for medical image computing.[28] 
Each radiomic feature has a specific value that can be 

Table 1: Specifications of T2‑weighted magnetic 
resonance image acquisition parameters

Parameter Value
Slice thickness (mm) 4.5
Slice spacing (mm) 1.17
Time of echo (ms) 80
Time of repetition (ms) 3590
Matrix size 256×256
Number of excitations 1
All distances are based on mm and all times are in ms
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obtained by applying its own mathematical analysis to 
medical images. Radiomic features and their equations are 
available at https://pyradiomics.readthedocs.io/en/latest/
features.html. To find the most reproducible set of 
extraction parameters, we changed resampled voxel size, 
LoG kernel size, and bin width in various combinations 
with each other.

Then, we extracted features from 7 different preprocessing 
parameters that were obtained by combining these 
preprocessing parameters, as described in Table  2. These 
sets aimed to study the effect of preprocessing parameters 
separately and/or in combination. At set number 1, bin 
width changed  (5, 10, 25, and 50) with fixed resampling 
size of 0.5  mm and LoG of 1. The experiments were 
conducted in four sets. In the first set, the bin width was 
changed to 5, 10, 25, and 50, while keeping the resampling 
size fixed at 0.5 mm and using a Laplacian of Gaussian 
(LoG) filter with a sigma value of 1. In the second set, 
the bin width was changed to 5, 10, 25, and 50, with a 
resampling size of 0.5 mm and a LoG filter with a sigma 
value of 2. In the third set, the bin width was again changed 
to 5, 10, 25, and 50, but with a fixed resampling size of 1 
mm and a LoG filter with a sigma value of 1. Finally, in 
the fourth set, the bin width was changed to 5, 10, 25, and 
50, with a resampling size of 1 mm and a LoG filter with a 
sigma value of 2.

Set numbers 5, 6, and 7 are more complex than other sets, 
and besides changing bin width  (5, 10, 25, and 50), they 
have different resampling sizes (0.5 and 1) with or without 
different LoG (1 and 2).

Statistical analyses

To assess reproducibility, we applied the intra‑class 
correlation coefficient  (ICC), a principal reproducibility 
measure used in many previous radiomic studies.[29‑31] R 
package “IRR” version  0.84.1 was used for ICC analysis. 
ICC can be calculated from the following equation:

R W

R W

MS ‑ MS
ICC =

MS + ( ‑1) MSK

where MSR and MSW are mean squares for rows and 
residual sources of the variance, respectively, and k is the 
number of observers involved.

In this study, we obtained ICC numbers in all combined 
preprocessing states, and also, we divided them into 
the following categories:  (1) ICC  <50%,  (2) 50% < 
ICC  <80%,  (3) 80% < ICC  <90%,  (4) 90% < ICC  <95%, 
and  (5) ICC  >95%. Features with ICC  >95% were 
introduced as the most reproducible categories.

To show the results, we used GraphPad Prism 8.0 software, 
GraphPad Software, Inc. San Diego, California, US and 
Excel  (Office, 2016) for better data presentations in terms 
of heat maps and box plots.

Results
In this study, to better figure out the results, we categorize 
them into the following sections. First, patient data will 
be presented in terms of number, age, FIGO (International 
Federation of Gynecology and Obstetrics) stage, pathology, 
and EBRT dose. Second, ICC results will be described by 
using heatmaps for each feature set. We also show some 
ICC results in terms of percentage and mean ± Standard 
Deviation (SD)  of ICC in different combinations of 
preprocessing parameters.

Patients

In this study, a total of 130 patients were initially enrolled. 
However, after a thorough assessment, five patients were 
excluded due to the presence of metastases, eight patients 
had undergone a supracervical hysterectomy, 13 patients 
did not undergo magnetic resonance (MR) imaging before 
brachytherapy (BT), and five patients were excluded 
because their Gross Tumor Volume (GTV) volume 
was less than or equal to 1 cm3. This left a total of 99 
patients who were included in the final analysis. The 
characteristics of these patients are presented in detail in 
Table 3.

Radiomic features

We extracted a total of 107 T2‑weighted MRI‑based 
radiomic features quantifying (1) first‑order statistics based 
on pixel gray‑level histograms, 18 features;  (2) shape 
metrics, 14 features; and  (3) statistical features derived 
from texture matrices including gray‑level co‑occurrence 

Table 2: Preprocessing sets
1 2 3 4 5 6 7

Resampling 0.5 0.5 1 1 0.5 1 0.5,1
LoG 1 2 1 2 1.2 1.2 1.2
Bin width 5, 10, 25, 50 5, 10, 25, 50 5, 10, 25, 50 5, 10, 25, 50 5, 10, 25, 50 5, 10, 25, 50 5, 10, 25, 50
LoG – Laplacian of Gaussian

Figure  1: Segmentation approach on T2W images. Red and yellow 
segments show GTV and HR‑CTV, respectively. GTV – Gross tumor volume; 
HR‑CTV – High‑risk clinical tumor volume
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matrix  (GLCM), gray‑level size zone matrix  (GLSZM), 
gray‑level dependence matrix  (GLDM), gray‑level 
run‑length matrix  (GLRLM), and neighboring gray‑tone 
difference matrix  (NGTDM), 75 features. The features are 
detailed in Supplementary Table 1.

Intra‑class correlation coefficient

The mean  ±  Std of ICC in different preprocessing states 
is shown in Table  4, and our results on different ICC 
categories for all feature/preprocessing sets are shown 
in Table  5. The results were presented based on the 
percentage in Table  5. Vertical values  (1–5) represent five 
categories of ICC ranges which 5 is the most reproducible 
range and 1 is the worth one, and horizontal values  (1–7) 
represent seven sets of preprocessing parameters used in 
this study.

Our ICC result for GLDM features is shown in Figure  2. 
Except for dependence nonuniformity, Large dependence 
high gray‑level emphasis, low gray‑level emphasis, and small 
dependence low gray‑level emphasis were found as radiomic 
textures with higher ICC values  (range: 0.63–0.99) for both 
GTV and HR‑CTV in all preprocessing sets. Most features 
have a wide range of ICC variations from 0.14 to 0.93.

The ICC results for GLRLM features, as shown in 
Figure  3, for both volumes and all preprocessing 
sets, including gray‑level nonuniformity, run length 
nonuniformity, and short‑run low gray‑level emphasis, 
were found as features with the highest ICC (range: 0.68–
0.96).

For GLSZM features, we showed the ICC results in Figure 4. 
As was depicted, gray‑level nonuniformity and zone entropy 
were those features with the highest ICC (range: 0.63–0.92) 
for both volumes and all preprocessing sets.

For NGTDM features  [Figure  5], only coarseness was 
found as a highly reproducible feature  (ICC  >  0.93) for 
both volumes and all preprocessing sets (range: 0.93–1).

Figure  6 also shows ICC percentages of 7 preprocessing 
sets for GTV and HR‑CTV. For all features, preprocessing 
numbers 5, 6, and 7 belong to the more stable ones.

Our ICC results for both GTV and HR‑CTV were shown 
as heat maps in Figures  2‑5 and 7‑9 based on the feature 
sets for all preprocessing sets.

In Figure  7, the ICC values for shape features are shown. 
As expected, almost all features, except the feature of 
sphericity for HR‑CTV in preprocessing set number 4, 
were found as most reproducible (ICC >95%).

The results for first‑order features are depicted in Figure 8. 
Two features, including entropy and uniformity, had ICC 

Table 3: Patient demographic and tumor characteristics 
of patients

Demographic Characteristic Number
Total number 99
Age range (median) 28–81 (53)
FIGO stage

IB 1
IIA 16
IIB 57
IIIA 8
IIIB 12
IVA 5

Pathology
SCC 60
Adenocarcinoma 30
Clear cell 9

EBRT dose range (median) 45–52.2 (47.92)
SCC – Squamous cell carcinoma; EBRT – External beam radiation 
therapy; FIGO – International Federation of Gynecology and Obstetrics
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Figure 2: GLDM radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical names 
related to GLDM feature names. GLDM – Gray‑level dependence matrix
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below 0.54  (range: 0.24–0.53) for all preprocessing sets. 
The energy feature also had a range of ICC from 0.78 to 1. 
All remaining features had ICC = 1.

For GLCM texture features, in all preprocessing sets, as 
shown in Figure 9, correlation, Idn, Idmn, Imc1, Imc2, and  
Maximal Correlation Coefficient (MCC)  were found as 
features with higher reproducibility  (range: 0.6–1, most of 
them  >0.9) than other GLCM features. The range of ICC 
for the remaining features was found as 0.1–0.7.

Discussion
Preprocessing is a critical step in radiomic analysis. It is 
clearly shown that some preprocessing algorithms can reduce 
noise, improve image quality, and harmonize/normalize 

images.[32,33] Furthermore, it is identified that radiomic 
features are vulnerable to applying preprocessing algorithms. 
This issue is studied for almost all imaging modalities, 
and other ongoing evaluations are in progress, but there is 
still no comprehensive conclusion.[34,35] Some studies used 
statistical analyses such as the concordance correlation 
coefficient, t‑test, or Spearman correlation. Still, there is no 
established reference for the gold standard test.[36,37] Hence, 
we used the ICC metric accepted for reproducibility and 
repeatability in different studies of T2‑weighted MRI.[5,35,38] 
For gray‑level discretization, Duron et al.[24] showed that 
MRI texture radiomic features significantly change by bin 
size and bin number.[39] On the impact of resampling on 
radiomic features, Park et  al. showed the effect of pixel 

Table 4: Mean±standard deviation of intra‑class correlation coefficient in different combinations of preprocessing 
parameters

Feature 
group

Volume of 
interest

Mean±SD of ICC in different preprocessing states
1 2 3 4 5 6 7

Shape GTV 1 1 1 1 1 1 1
HR‑CTV 1 1 1 0.99±0.02 1 1 1

1st order GTV 0.92±0.23 0.92±0.22 0.92±0.23 0.92±0.23 0.95±0.16 0.94±0.16 0.94±0.16
HR‑CTV 0.92±0.21 0.92±0.21 0.91±0.23 0.91±0.22 0.95±0.15 0.92±0.21 0.94±0.16

GLCM GTV 0.41±0.30 0.43±0.28 0.45±0.32 0.45±0.30 0.62±0.21 0.65±0.20 0.58±0.18
HR‑CTV 0.49±0.25 0.49±0.25 0.42±0.32 0.42±0.31 0.63±0.19 0.56±0.20 0.58±0.18

GLDM GTV 0.51±0.28 0.53±0.26 0.55±0.28 0.53±0.29 0.70±0.18 0.73±0.19 0.67±0.16
HR‑CTV 0.59±0.21 0.59±0.21 0.52±0.26 0.47±0.26 0.72±0.16 0.67±0.22 0.66±0.17

GLRLM GTV 0.42±0.23 0.42±0.23 0.42±0.23 0.40±0.23 0.63±0.17 0.63±0.16 0.58±0.15
HR‑CTV 0.52±0.18 0.52±0.18 0.39±0.20 0.41±0.21 0.66±0.14 0.61±0.15 0.57±0.16

GLSZM GTV 0.37±0.18 0.39±0.18 0.41±0.21 0.42±0.20 0.64±0.14 0.65±0.19 0.54±0.17
HR‑CTV 0.48±0.16 0.48±0.16 0.43±0.19 0.43±0.19 0.65±0.12 0.64±0.14 0.56±0.15

NGTDM GTV 0.51±0.32 0.52±0.32 0.48±0.30 0.54±0.30 0.74±0.19 0.75±0.18 0.62±0.22
HR‑CTV 0.55±0.27 0.55±0.27 0.48±0.31 0.52±0.29 0.74±0.19 0.75±0.17 0.60±0.24

ICC – Intra‑class correlation coefficient; GLCM – Gray‑level co‑occurrence matrix; GLSZM – Gray‑level size zone matrix; 
GLDM – Gray‑level dependence matrix; GLRLM – Gray‑level run‑length matrix; NGTDM – Neighboring gray‑tone difference matrix; 
GTV – Gross tumor volume; HR‑CTV – High‑risk clinical tumor volume; SD – Standard deviation
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Figure 3: GLRLM radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical 
names related to GLRLM feature names. GLRLM – Gray‑level run‑length matrix
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size resampling and interpolation on MRI radiomic features 
in patients with CC.[23] They observed that many radiomic 
features were robust, while others had several changes. 
However, preprocessing is vital in radiomic analysis because 
of image normalization and noise reduction.

In the present inquiry, we assessed and compared the 
consequences of applying different preprocessing parameters, 
including bin width, LoG filter, and voxel size resampling 
on radiomic features extracted from MR images of two 

target volumes that are globally established for BT treatment 
planning in CC patients, including GTV and HR‑CTV.

To our knowledge, there is no published study on HR‑CTV 
radiomic features, and most papers on the reproducibility of 
GTV radiomic features rely on images with a BT applicator 
in place. Although radiomics on pre‑BT images can be 
beneficial for predictive modeling in BT procedures, there is 
a lack of evaluation on this time point imaging and volumes. 
In this era, we focused on using T2‑weighted MR images 

Figure 6: ICC percentage in all radiomic feature sets. The vertical axis is ICC values and the horizontal axis is feature groups. ICC – Intra‑class correlation 
coefficient
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Figure 4: GLSZM radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical 
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without BT applicators in place at a specific time point 
before BT initialization. We evaluated the reproducibility 
of HR‑CTV and GTV radiomic features of CC patients in 
different arrangements of preprocessing parameters.

This study applied a combination of preprocessing 
parameters standard in image processing and 
radiomic analysis studies. Based on our findings, 
shape and first‑order features, except for entropy and 

Table 5: Intra‑class correlation coefficient percentage in all features and preprocessing sets
Different combinations of preprocessing

Feature set‑volume ICC 1 2 3 4 5 6 7 Feature set‑volume ICC 1 2 3 4 5 6 7
Shape First order
GTV 1 0 0 0 0 0 0 0 GTV 1 11 11 11 11 6 6 0

2 0 0 0 0 0 0 0 2 0 0 0 0 6 6 11
3 0 0 0 0 0 0 0 3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 4 0 0 0 0 0 0 6
5 100 100 100 100 100 100 100 5 89 89 89 89 89 89 89

HR‑CTV 1 0 0 0 0 0 0 0 HR‑CTV 1 11 11 11 11 0 11 6
2 0 0 0 0 0 0 0 2 0 0 6 0 11 0 6
3 0 0 0 0 0 0 0 3 0 0 0 6 0 0 6
4 0 0 0 7 0 0 0 4 0 0 0 0 0 0 0
5 100 100 100 93 100 100 100 5 89 89 83 83 89 89 82

GLDM GLRLM
GTV 1 50 36 43 14 14 21 43 GTV 1 69 75 75 75 13 13 25

2 36 36 29 50 29 50 36 2 19 13 13 13 63 75 44
3 7 21 21 21 29 21 7 3 13 6 6 6 13 13 25
4 0 0 0 0 0 7 0 4 0 0 6 6 6 6 0
5 7 7 7 14 14 0 14 5 0 6 0 0 6 6 0

HR‑CTV 1 43 43 21 50 0 21 21 HR‑CTV 1 50 50 50 63 75 19 38
2 36 36 57 29 64 43 36 2 38 38 50 31 13 69 38
3 7 7 14 14 21 21 29 3 13 13 0 0 6 6 25
4 0 0 0 0 7 14 7 4 0 0 0 0 6 6 0
5 14 14 7 7 7 0 0 5 0 0 0 6 6 0 0

GLSZM NGTDM
GTV 1 63 63 50 50 13 13 25 GTV 1 40 20 60 20 20 20 40

2 38 38 44 44 56 69 69 2 40 60 20 60 40 60 40
3 0 0 6 6 25 13 6 3 0 0 0 0 20 0 0
4 0 0 0 0 0 6 0 4 0 0 0 0 0 0 20
5 0 0 0 0 0 0 0 5 20 20 20 20 20 20 0

HR‑CTV 1 63 63 44 44 17 19 31 HR‑CTV 1 40 40 60 20 0 0 60
2 38 38 56 56 75 69 56 2 40 40 20 60 60 80 20
3 0 0 0 6 19 13 13 3 0 0 0 0 20 0 0
4 0 0 0 0 0 0 0 4 0 0 0 20 0 0 20
5 0 0 0 0 0 0 0 5 20 20 20 0 20 20 0

GLCM
GTV 1 63 63 63 79 25 13 33

2 17 17 17 8 50 58 46
3 4 4 4 4 4 4 21
4 4 4 0 4 0 4 0
5 13 13 17 17 21 21 0

HR‑CTV 1 58 58 46 58 4 29 29
2 21 21 29 17 71 54 46
3 4 4 8 13 13 4 25
4 13 13 4 0 4 8 0
5 4 4 21 13 17 4 0

ICC values from 1 to 5 are scales for feature reproducibility (1 as the lowest and 5 as the most reproducible features). The values under set 
numbers 1–7 show the percent of features that are located in 1–5 ICC categories. ICC – Intra‑class correlation coefficient; GLCM – Gray‑level 
co‑occurrence matrix; GLSZM  –  Gray‑level size zone matrix; GLDM  –  Gray‑level dependence matrix; GLRLM  –  Gray‑level 
run‑length matrix; NGTDM – Neighboring gray‑tone difference matrix; GTV – Gross tumor volume; HR‑CTV – High‑risk clinical 
tumor volume
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uniformity  (0.27<ICC<0.53), are the most robust features 
in T2‑weighted MRI after EBRT of CC patients which 
had the highest reproducibility over changes in all 
preprocessing settings. No specific trends were observed 
between ICC of both volumes for entropy, uniformity, and 
other shape and first‑order features. In some preprocessing 
sets, ICC of GTV is higher than HR‑CTV, and for other 
sets, ICC of HR‑CTV is more. Since post‑EBRT radiomic 
features extracted from MRI could be used for BT response 
analysis in radiomic predictive modeling, it is critical to 
find the most robust radiomic features.[40,41]

Furthermore, studies have indicated that 
radiotherapy‑induced radiomic feature changes are feasible 
biomarkers for assessing tumor response or recurrence, 
normal tissue toxicity, and differentiation between tumor 
and normal tissue responses.[10,42] In this era, robust features 
over changing issues such as preprocessing would be 

worthful. This study proposes shape and first‑order features 
as the most robust post‑EBRT radiomic features.

On the other hand, most intensity‑based and GLCM, most 
neighborhood gray‑tone difference (NGTD), most GLSZM, 
and most GLRLM features had a range of mean ICC from 
0.41 to 0.75. Parameter set numbers 5, 6, and 7, which 
belong to the most complex combination of parameters to 
each other, have higher reproducibility  (0.62<ICC<0.75). 
The preprocessing number 6 has the most ICC value for all 
features, and it occurred when resampling is one and other 
two parameters varied. One can conclude that features are 
more robust with a resampling size of 1 mm.

Based on the results obtained from this cohort, it was obtained 
that there are no differences between the reproducibility of 
GTV and HR‑CTV radiomic features. HR‑CTV and GTV 
have different tissue inhomogeneity structures and amounts; 
GTV is more heterogeneous than HR‑CTV. Results of our 
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Figure 7: Shape radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical 
names related to shape feature names

1.00

1.00

1.00

0.29

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.27

1.00

1.00

1.00

1.00

0.31

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.30

1.00

1.00

1.00

1.00

0.29

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.29

1.00

1.00

1.00

1.00

0.29

1.00

1.00

1.00

1.00

1.00

1.00

0.99

1.00

1.00

1.00

1.00

1.00

0.29

1.00

1.00

1.00

1.00

0.50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.51

1.00

1.00

1.00

1.00

0.48

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.52

1.00

1.00

1.00

0.90

0.50

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.52

1.00

1.00

1.00

0.95

0.37

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.32

1.00

1.00

1.00

0.95

0.37

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.32

1.00

1.00

1.00

0.78

0.27

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.29

1.00

1.00

1.00

0.80

0.28

1.00

1.00

1.00

0.98

0.98

0.99

0.99

0.97

0.99

0.98

1.00

1.00

0.35

0.99

1.00

1.00

0.98

0.53

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.52

1.00

1.00

1.00

0.91

0.48

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.24

1.00

1.00

1.00

0.89

0.47

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

1.00

0.52

1.00

1 2 3 4 5 6 7 1 2 3 4 5 6 7

10Percentile
90Percentile

Energy
Entropy

InterquartileRange
Kurtosis
Maximum

MeanAbsoluteDeviation
Mean

Median
Minimum
Range

RobustMeanAbsoluteDeviation
RootMeanSquared

Skewness
TotalEnergy
Uniformity
Variance

GTV HR-CTV

0.4

0.6

0.8

1.0

Figure 8: First‑order radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical 
names related to 1st order feature names
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ICC computations propose that different preprocessing 
parameter sets could have similar consequences on the 
robustness of radiomic features extracted from different 
tissues with various levels of heterogeneity. Our study 
assessed two BT volumes, including GTV and HR‑CTV. 
We aimed to understand how microscopic disease’s radiomic 
features in HR‑CTV respond to preprocessing settings 
compared to GTV. Although we did not perform statistical 
analysis, Based on visual observations such as heat maps and 
Figure 6, it appears that there are no noticeable variations in 
the reproducibility of GTV and HR CTV features. Although 
statistical analysis was not conducted, the results suggest 
that these features exhibit similar patterns. However, the 
ICC values have some differences in the two volumes in 
some preprocessing sets. For example, in sets, number 1 
and 2 ICCs related to GTV are lower than HR‑CTV, and set 
numbers 3 and 4 are reversed.

One can find that changing the LoG filter, bin width, or 
resampling size cannot produce more stable features. In 
all different arrangements of these parameters, all features 
have a similar power of reproducibility. This finding could 
be helpful for other studies in the future for preprocessing 
parameter selection.

Finally, this study has some limitations; first, the sample size 
is small, and future studies are needed to confirm our results; 
second, the effect of segmentation on radiomic features was 
not assessed as it might be the primary bias in radiomic studies.

Conclusion
The results presented here showed that MRI radiomic 
features are vulnerable to changes in preprocessing, and 

this issue must be understood and applied before any 
clinical decision‑making. Our results also showed that both 
GTV and HR‑CTV radiomic features had similar changes 
against preprocessing sets.
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Figure 9: GLCM radiomic feature reproducibility. In the horizontal axis, 1–7 refer to different arrangements of preprocessing parameters and vertical names 
related to GLCM feature names. GLCM – Gray‑level co‑occurrence matrix
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Supplementary Table 1: Contd...
First order

Variance
GLRLM

Gray‑level nonuniformity
Gray‑level nonuniformity normalized
Gray‑level variance
High gray‑level run emphasis
Long run emphasis
Long run high gray‑level emphasis
Long run low gray‑level emphasis
Low gray‑level run emphasis
Run entropy
Run length nonuniformity
Run length nonuniformity normalized
Run percentage
Run variance
Short run emphasis
Short run high gray‑level emphasis
Short run low gray‑level emphasis

GLCM
Autocorrelation
Cluster prominence
Cluster shade
Cluster tendency
Contrast
Correlation
Difference average
Difference entropy
Difference variance
Id
Idm
Idmn
Idn
Imc1
Imc2
Inverse variance
Joint average
Joint energy
Joint entropy
MCC
Maximum probability
Sum average
Sum entropy
Sum squares

GLSZM
Gray‑level nonuniformity
Gray‑level nonuniformity normalized
Gray‑level variance
High gray‑level zone emphasis
Large area emphasis
Large area high gray‑level emphasis
Large area low gray‑level emphasis
Low gray‑level zone emphasis
Size zone nonuniformity

Contd... Contd...

Supplementary Table 1: Radiomic features
Shape

Elongation
Flatness
Least axis length
Major axis length
Maximum 2D diameter column
Maximum 2D diameter row
Maximum 2D diameter slice
Maximum 3D diameter
Mesh volume
Minor axis length
Sphericity
Surface area
Surface volume ratio
Voxel volume

GLDM
Dependence entropy
Dependence nonuniformity
Dependence nonuniformity normalized
Dependence variance
Gray‑level nonuniformity
Gray‑level variance
High gray‑level emphasis
Large dependence emphasis
Large dependence high gray‑level emphasis
Large dependence low gray‑level emphasis
Low gray‑level emphasis
Small dependence emphasis
Small dependence high gray‑level emphasis
Small dependence low gray‑level emphasis

NGTDM
Busyness
Coarseness
Complexity
Contrast
Strength

First order
10 percentiles
90 percentiles
Energy
Entropy
Interquartile range
Kurtosis
Maximum
Mean absolute deviation
Mean
Median
Minimum
Range
Robust mean absolute deviation
Root mean squared
Skewness
Total energy
Uniformity



Supplementary Table 1: Contd...
GLSZM

Size zone nonuniformity normalized
Small area emphasis
Small area high gray‑level emphasis
Small area low gray‑level emphasis
Zone entropy
Zone percentage
Zone variance
GLCM  – Gray‑level co‑occurrence matrix; GLSZM  – Gray‑level 
size zone matrix; GLDM  –  Gray‑level dependence matrix; 
GLRLM – Gray‑level run‑length matrix; NGTDM – Neighboring 
gray‑ tone difference matr ix;  2D  –  Two‑dimensional ; 
3D – Three‑dimensional; MCC – Maximal Correlation Coefficient




