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Simple Summary: The wide variety of next-generation sequencing technologies requires thorough
evaluation and understanding of their advantages and shortcomings of these different approaches
prior to their implementation in a precision medicine setting. Here, we compared the performance
of two DNA sequencing methods, whole-exome and linked-read exome sequencing, to detect large
structural variants (SVs) and short variants in eight multiple myeloma (MM) patient cases. For three
patient cases, matched tumor-normal samples were sequenced with both methods to compare somatic
SVs and short variants. The methods’ clinical relevance was also evaluated, and their sensitivity
and specificity to detect MM-specific cytogenetic alterations and other short variants were measured.
Thus, this study systematically demonstrates and evaluates the performance of whole-exome and
linked-read exome sequencing technologies for detecting genetic alterations to aid in selecting the
optimal method for clinical application.

Abstract: Linked-read sequencing was developed to aid the detection of large structural variants
(SVs) from short-read sequencing efforts. We performed a systematic evaluation to determine if
linked-read exome sequencing provides more comprehensive and clinically relevant information
than whole-exome sequencing (WES) when applied to the same set of multiple myeloma patient
samples. We report that linked-read sequencing detected a higher number of SVs (n = 18,455)
than WES (n = 4065). However, linked-read predictions were dominated by inversions (92.4%),
leading to poor detection of other types of SVs. In contrast, WES detected 56.3% deletions, 32.6%
insertions, 6.7% translocations, 3.3% duplications and 1.2% inversions. Surprisingly, the quantitative
performance assessment suggested a higher performance for WES (AUC = 0.791) compared to linked-
read sequencing (AUC = 0.766) for detecting clinically validated cytogenetic alterations. We also
found that linked-read sequencing detected more short variants (n = 704) compared to WES (n = 109).
WES detected somatic mutations in all MM-related genes while linked-read sequencing failed to
detect certain mutations. The comparison of somatic mutations detected using linked-read, WES and
RNA-seq revealed that WES and RNA-seq detected more mutations than linked-read sequencing.
These data indicate that WES outperforms and is more efficient than linked-read sequencing for
detecting clinically relevant SVs and MM-specific short variants.

Keywords: genomics; NGS; linked-read sequencing; whole-exome sequencing; RNA sequencing;
structural variants; short variants; FISH; multiple myeloma
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1. Introduction

Genetic alterations are broadly categorized into short variants, like single nucleotide
substitutions and small insertions and deletions, and larger structural variants (SVs).
Aberrations longer than 50 bp are defined as SVs [1] and can occur in single or multiple
chromosomes as pairs of breakpoints resulting in duplications, deletions, insertions, inver-
sions and translocations among others in the genome [2,3]. Identifying and understanding
SVs and short variants are important for cancer diagnosis and prognosis and have been
employed to study disease initiation, progression and tumor evolution for multiple cancer
types [3–7]. Extensive genome sequencing studies have revealed the landscapes of short
variants and SVs in cancers [3]. However, detecting SVs with more cost-effective and popu-
lar exome targeting sequencing methods has been challenging. Although technological
advances have made the detection of SVs with the help of exome sequencing more feasible,
the proportion of SVs detected in the human genome has remained underrepresented in
cancer genome studies [8–11].

Short paired-end read-based whole-exome sequencing (WES) approaches have suc-
cessfully been used to identify many cancer-causing variants [12,13]. Although WES has
been mostly used for short variant detection, the method has also been employed to identify
SVs. For example, computational tools such as SvABA, BreakDancer, Manta and DELLY
have been developed to extract SV information from short-read sequences [14–17]. Never-
theless, the detection of SVs is an open question. The main challenge in detecting SVs by
WES is due to the presence of repetitive sequences in the human genome and the location
of breakpoints in genome regions that are troublesome for WES. Alignment errors, lack
of sensitivity, complex SVs, high false-positive rates and the low signal from breakpoints
within repetitive regions present other challenges [10,18,19]. WES also typically relies on
paired-end reads 200–500 bp in size [20], whereas the average SV size in the human genome
is 8 kb [21]. Moreover, detecting SVs from WES data is challenging as the evidence of SVs
resembles standard sequencing and alignment artifacts [22,23]. Third-generation sequenc-
ing technologies developed by Pacific Biosciences [24] and Oxford Nanopore [25] overcome
these challenges by generating long reads, even 100 kb or more in length. Nevertheless,
despite longer reads, SVs larger than the average read size and those with breakpoints in
repetitive regions remain challenging to detect. Additionally, these long-read sequencing
methods are prone to a high per-base error rate and are costly [26]. Although method-
ological advances have enabled the detection of large SVs by sequencing and mapping
of long reads, several technical and analytical limitations still hinder the successful de-
tection of large SVs. Compared to WES, whole-genome sequencing (WGS) is capable of
more accurate detection of copy number variations and produces less bias in identifying
non-reference alleles [27]. However, WES is favored over WGS due to lower cost, faster
turn-around-time, reduced data footprint and less complex data interpretation [28].

Similar to long-read approaches such as Single-Molecule Real-Time (SMRT) sequenc-
ing [24–26,29], Oxford Nanopore Technologies (ONT, Oxford, UK) [25] and synthetic
long-read technology [30], linked-read sequencing [31] has been developed to improve
SV detection across the genome. 10X Genomics (Pleasanton, CA, USA) developed the
Chromium methodology, which provides linked-reads to reconstruct long DNA fragments
by genome partitioning and barcoding [31]. Like the Pacific Biosciences (Menlo Park, CA,
USA) and Oxford Nanopore technologies, the 10X Genomics linked-read method also uses
a mapping-based approach where SVs are detected by mapping the reads directly to a given
reference genome. The main advantage is the library preparation technique, which requires
very low input (one nanogram) of high molecular weight DNA to generate sequence reads.
It uses microfluidics partitions to produce droplet particles and avoids any fragmentation,
making it ideal for sequencing high molecular weight DNA of 50 kbs or higher. More
importantly, the linked-read method allows mapping the reads from the repetitive regions
where SV breakpoints are often located [32,33]. Recent studies have demonstrated the
utility of the linked-read method for detecting complex SVs in a variety of samples [34–36].
However, systematic evaluation of the performance of this relatively new method for
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detecting SVs is required. Moreover, its power in detecting SVs in hematological cancers,
where high-quality DNA can easily be obtained, has not yet been assessed.

Previous studies comparing long read-based linked-read and short read-based se-
quencing technologies reported contradicting performances. Mark and colleagues com-
pared linked-read sequencing with short read-based WGS as well as WES for SV detec-
tion [36]. The study reported that linked-read sequencing produced scalable and compre-
hensive information on SVs as compared to short-read sequencing. Later, Uguen et al.
compared the linked-read method with short read-based WGS to detect SVs [33]. The study
reported that linked-read sequencing could not improve the detection or characterization
of SVs.

In this study, we assessed the performance of linked-read and WES methods for
detecting SVs and short variants in samples from eight multiple myeloma (MM) patient
cases. This cancer type provides an intriguing choice to systematically evaluate methods
given that hypodiploidy and translocations are the predominant genetic alterations in
MM and as MM tumors often encompass short variants like single nucleotide variants
(SNVs) multinuclear variants and indels. Here, the performance of linked-read and WES
to detect SVs was examined by comparing clinical cytogenetic data. The ability to detect
short variants as well as MM-specific somatic mutations were assessed by integrative
examination of linked-read, WES and RNA sequencing (RNA-seq) data, extending the
scope of the study further to other types of genomic alterations.

2. Results

We evaluated the performance of linked-read sequencing and WES to detect SVs.
We also compared the performance of linked-read sequencing, WES and RNA-seq to
detect short variants. For these analyses, bone marrow (BM) aspirates with matched skin
biopsies were collected from three MM patients and BM aspirates without matched skin
biopsies from five additional MM cases. CD138+ plasma cells were enriched from the BM
samples and DNA and RNA were extracted from the CD138+ cell fraction. Only DNA was
also extracted from three skin samples. The clinical and cytogenetic characteristics of the
patients are presented in Table 1. The samples were analyzed using linked-read, WES and
RNA-seq methods. SVs were called using Manta SV caller, CNVkit and short variant using
standard GATK variant calling pipeline, respectively (Figure 1).

Table 1. Clinical characteristics of the multiple myeloma patients.

Sample ID Gender Age at
Diagnosis

Disease
Status

Myeloma
Character-

istics
ISS

Stage WES Linked-
Read RNA-Seq Sample Type Cytogenetics

MM_01_03 Male 57 Relapse IgG
lambda 3 Yes Yes Yes Bone marrow

and skin del(13q), 1p loss

MM_02_03 Male 65 Relapse IgG kappa 2 Yes Yes Yes Bone marrow
and skin del (13q), possibly del(14)

MM_03_03 Male 60 Relapse IgA
lambda 3 Yes Yes Yes Bone marrow

and skin
del (13q), t(4;14),
gain(1q), 14q32

MM_04_06 Female 69 Relapse IgA, kappa 1 Yes Yes Yes Bone marrow

gain (1q), trisomy 9,
trisomy 11, Other

deviation: trisomy 5,
trisomy 15

MM_05_03 Male 56 Relapse Unknown,
kappa 1 Yes Yes Yes Bone marrow

trisomy 9, trisomy 11,
other deviation: trisomy

5, trisomy 15

MM_05_09 Male 56 Relapse Unknown,
kappa 1 Yes Yes Yes Bone marrow

trisomy 9, trisomy 11,
other deviation: trisomy

5, trisomy 15

MM_06_03 Male 41 Refractory IgG
lambda ND Yes Yes Yes Bone marrow Monosomy 13, del(13q)

MM_07_03 Male 56 Relapse IgG kappa ND Yes Yes Yes Bone marrow del (17p), gain (1q),
1p36 loss
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Figure 1. Experimental design and data analysis workflow of the study. Bone marrow aspirates were collected from eight 
multiple myeloma patient samples and three matched skin controls, followed by plasma cell (CD138+) isolation. Matched 
skin controls were collected from three patients. DNA and/or RNA were isolated and used for linked-read, whole-exome 
and/or RNA sequencing. The Manta SV caller and CNVkit were used to detect structural variants and the GATK variant 
calling pipeline was used to detect short variants. 

  

Figure 1. Experimental design and data analysis workflow of the study. Bone marrow aspirates were collected from eight
multiple myeloma patient samples and three matched skin controls, followed by plasma cell (CD138+) isolation. Matched
skin controls were collected from three patients. DNA and/or RNA were isolated and used for linked-read, whole-exome
and/or RNA sequencing. The Manta SV caller and CNVkit were used to detect structural variants and the GATK variant
calling pipeline was used to detect short variants.

2.1. Sequencing and Mapping Quality Statistics

The average total number of reads sequenced in the linked-read libraries (n = 11) was
77.74 million and mapped reads were 77.42 million with a 99.7% mapping rate. In WES
libraries (n = 11), the average total number of reads was 129.12 million and the mapped
reads were 129.02 million with a 99.9% mapping rate (Supplementary Table S1). The av-
erage mapped reads inside of regions were 57.72 million with 74.40% mapping rates in
linked-read libraries. While in WES libraries, the average mapped reads inside of regions
were 92.82 million with 73.31% mapping rates (Supplementary Table S1). However, the av-
erage on-target ratios were similar for linked-read and WES libraries, 74.62% and 73.38%,
respectively (Supplementary Table S1).

The coverage was calculated for both linked-read (Figure 2a) and WES (Figure 2b),
including matched skin (n = 3) and tumor samples (n = 8). The mean coverage inside of
regions was 53 for linked-read and 139 for WES libraries, respectively (Supplementary
Table S1). The genome fraction at different depts was calculated for both linked-read and
WES. At the lower depths (<10×), both methods performed similarly. However, at the
higher depths of 30× and 50×, WES had a higher percentage of bases captured (Figure 2c).
The mean mapping quality inside of regions resulted in 57.82 and 58.28 for linked-read and
WES, respectively (Figure 2d). Next, we calculated median insert size in base pairs (bp)
and GC content for the linked-read and WES methods. The average insert size was 169 bp
and 185 bp for linked-read and WES samples, respectively (Supplementary Table S1), while
the average GC content was 49% for both linked-read and WES (Supplementary Table S1).
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Figure 2. Sequencing and mapping quality statistics across all 8 MM samples and 3 skin samples. The coverage histograms 
for linked-read (a) and WES (b) show the number of reference bases plotted against the read depth (depth of coverage). 
The x-axis represents coverage, and the y-axis represents genome bin counts. Aggregating coverage values conveniently 
scale the bins of the x-axis. (c) The bar plot depicts the fraction of the genome with 1×, 5×, 10×, 30×, 50× coverage depths by 
linked-read and WES sequencing. The x-axis represents base coverage depth, and the y-axis represents the percent of bases 
at coverage depth. (d) The mean mapping quality inside of regions is plotted for each sample sequenced using both linked-
read and WES methods. 

2.2. Detection of Total SVs by Linked-Read Sequencing and WES 
To evaluate the efficiency of linked-read and WES for detecting total SVs, we com-

pared SVs identified using the two methods applied to the same eight MM patient sam-
ples. The Manta SV caller identified five types of genomic alterations, including deletions, 
duplications, insertions, inversions and translocations. The analysis revealed discrepan-
cies in the average SV counts produced by the two sequencing methods across the eight 
samples. Altogether, linked-read and WES reported an average total of 18,455 and 4065 
SVs in the eight MM analyzed samples, respectively. The overlaps were calculated using 
bedtools with a minimum cutoff of 70% overlap. The two methods resulted in only 92 
overlapping SVs. Of the total number of duplications identified by both methods, linked-
read sequencing detected an average of 88.3% of the duplications (n = 1225) compared to 
WES, which detected only 9.8% (n = 111), with only 1.7% (n = 21) of the identified dupli-

Figure 2. Sequencing and mapping quality statistics across all 8 MM samples and 3 skin samples. The coverage histograms
for linked-read (a) and WES (b) show the number of reference bases plotted against the read depth (depth of coverage).
The x-axis represents coverage, and the y-axis represents genome bin counts. Aggregating coverage values conveniently
scale the bins of the x-axis. (c) The bar plot depicts the fraction of the genome with 1×, 5×, 10×, 30×, 50× coverage depths
by linked-read and WES sequencing. The x-axis represents base coverage depth, and the y-axis represents the percent of
bases at coverage depth. (d) The mean mapping quality inside of regions is plotted for each sample sequenced using both
linked-read and WES methods.

2.2. Detection of Total SVs by Linked-Read Sequencing and WES

To evaluate the efficiency of linked-read and WES for detecting total SVs, we compared
SVs identified using the two methods applied to the same eight MM patient samples.
The Manta SV caller identified five types of genomic alterations, including deletions,
duplications, insertions, inversions and translocations. The analysis revealed discrepancies
in the average SV counts produced by the two sequencing methods across the eight
samples. Altogether, linked-read and WES reported an average total of 18,455 and 4065 SVs
in the eight MM analyzed samples, respectively. The overlaps were calculated using
bedtools with a minimum cutoff of 70% overlap. The two methods resulted in only 92
overlapping SVs. Of the total number of duplications identified by both methods, linked-
read sequencing detected an average of 88.3% of the duplications (n = 1225) compared
to WES, which detected only 9.8% (n = 111), with only 1.7% (n = 21) of the identified
duplications overlapping between the two methods (Figure 3a). For the total number
of inversions identified, linked-read sequencing detected over 99% (n = 17,026) of these
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SVs, whereas WES detected less than 1% (n = 49) (Figure 3b). In contrast, WES detected
95.7% (n = 2254) of the total deletions identified compared to linked-read sequencing,
which detected an average of 2.6% (n = 56), where only 1.4% (n = 34) of all the identified
deletions overlapped between the two methods (Figure 3c). In the case of translocations,
WES detected 72.8% (n = 267) compared to linked-read sequencing, which detected 25.4%
(n = 53), where only 1.8% (n = 4) of identified translocations overlapped (Figure 3d). For the
total number of identified insertions, WES detected over 99% (n = 1323), whereas linked-
read completely failed to detect insertions (Figure 3e). Overall, the distribution of SV counts
from linked-read sequencing analysis indicated that 92.4% of the SVs were inversions,
while other types of SVs were poorly detected. Overall, WES analysis detected all five types
of SVs, including deletions (56.3%), insertions (32.6%), translocations (6.7%), duplications
(3.3%) and inversions (1.2%) (Figure 3f), indicating that WES performs better for overall
SV detection compared to linked-read sequencing, which mostly detected inversions.
The absolute numbers are provided in Supplementary Table S2. Next, the analysis was
restricted to high-quality SVs passing all the Manta quality filters, which reduced variant
calls significantly but retained the trend of several fold higher amount of SV calls in linked-
read datasets, linked-read: 67 duplications, 230 inversions and seven deletions where
translocation and, insertions were not identified. In the case of WES: 19 duplications, nine
inversions, 68 deletions, three insertions where no translocations were identified.

2.3. Detection of Somatic SVs by Linked-Read Sequencing and WES

Somatic SVs are genomic alterations that arise in tumors and can include genomic
rearrangements, duplications or deletions of large DNA segments. Somatic SVs are critical
for initiating and driving tumor development. For three of our samples, a matched skin
sample was available and the cancer-specific somatic alterations specific in a given tumor
sample (CD138 + cells) were detected by filtering SVs with those found in the skin DNA
samples from the same patient. The results were in large part similar to those obtained
with total SVs and revealed discrepancies in the average somatic SV counts produced by
the two sequencing methods across the three sets of samples. Linked-read sequencing
detected 2640, while WES detected only 50 somatic SVs in the same set of samples. Only
seven somatic SVs overlapped between both methods. While linked-read sequencing
detected a total of 625 somatic duplications, WES detected four, with only two duplications
overlapping between both methods (Supplementary Figure S1a). Linked-read detected a
total of 1985 inversions and WES detected only five inversions where only two overlapped
(Supplementary Figure S1b). In contrast, WES detected 24 deletions and linked-read
sequencing detected eight, where only three overlapped (Supplementary Figure S1c). WES
detected 16 translocations and linked-read sequencing detected 12, where none of the
translocations overlapped (Supplementary Figure S1d). Both methods failed to detect
insertions in the somatic data. Overall, the distribution of SV counts detected by linked-
read sequencing in the paired samples suggested that 75% of the SVs were inversions
and 24% duplications, leaving other types of SVs poorly detected. Whereas the WES
method detected 49% deletions, 32.7% translocations, 10% inversions, 8.2% duplications
(Supplementary Figure S1e), suggesting that WES is a more efficient method for detecting
somatic SVs. The absolute numbers of somatic SVs are provided in Supplementary Table S3.
Next, the analysis was restricted to high-quality somatic SVs passing all the Manta quality
filters, which reduced variant calls significantly but retained the trend of several fold higher
amount of somatic SV calls in linked-read datasets, linked-read: 187 duplications, 397
inversions and five deletions where translocation and, insertions were not identified. In the
case of WES: 14 deletions, four inversions and two duplications were identified.
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Figure 3. Total structural variants detected by linked-read sequencing and WES. The proportion of each type of structural
variation separately across all 8 tumor samples. The orange bar represents the proportion of linked-read, the gray bar
represents that of WES, and the green bar represents overlaps (a) Duplication; linked-read sequencing detected a higher
proportion of duplication (b) Inversion; linked-read detected more than 99% of inversions called in each sample. (c) Deletions;
WES detected more deletions across all the samples. (d) Translocations; with the exception of one sample, WES detected
a higher proportion of translocations across the samples. (e) Insertions; WES detected 99.86% of all insertions. (f) The
proportion of each type of SV is called by each sequencing method. Linked-read sequencing detected more duplications
and inversions. No insertions were observed in the linked-read data as the insertion calls represent only 0.009% of total
linked-read calls.

2.4. Performance Evaluation for Detecting Known Clinical Cytogenetic Alterations

The genetic landscape of MM is complex and mainly includes hyperdiploidy defined
as gains of chromosomes, and by chromosomal translocations involving the immunoglob-
ulin heavy chain (IGH) gene. Cytogenetic events assessed by fluorescence in situ hy-
bridization (FISH) is part of routine diagnosis and prognosis for MM patients in the clinic.
We considered clinical cytogenetic alterations as the gold standard to evaluate linked-
read and WES performance to detect clinically relevant SVs (Supplementary Table S4).
We identified a total of ten different MM-associated cytogenetic alterations in our samples
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by FISH, including the translocations t(4;14), t(6;14), t(11;14), t(14;16) and t(14;20), plus
recurrent chromosomal gains and losses, including gain(1q), del(1p), del(13q), del(14q)
and del(17p). Next, we accessed the performance of linked-read sequencing and WES
to detect these alterations. The true positive rate (sensitivity) is plotted against the false
positive rate (100-specificity) to generate the receiver operating characteristic (ROC) curve
and to calculate the area under the curve (AUC). Neither method could detect all of the
cytogenetics events well in this test. The WES method, however, systematically surpassed
the linked-read method and generated 3% better AUC measurements (Figure 4a,b).
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Next, we analyzed copy number variations (CNVs) detected using linked-read and
WES methods. The CNVkit [37] tool was used to detect and visualize the copy number
variants. A flat reference was created using reference genome, target and anti-target
interval files for each probe. Although the overall CNV data is comparable between linked-
read and WES methods, several discrepancies were observed (Figure 5). We observed no
distinct pattern of discrepancies specific to chromosomes or type of CNVs. Linked-read
sequencing detected a total of 1373 copy number segments, with 843 duplications and
530 deletions. WES detected 1160 events with 658 duplications and 502 deletion events.
In contrast to Manta, both methods detected more duplications than deletions. Next,
the clinically relevant losses and gains were compared between linked-read and WES in
the same samples del(13q) was only detected by WES in the MM_06_BM sample while
del(17p) found in the MM_07_BM sample using both the methods. Although gain(1q) was
detected by both methods in three samples, linked-read failed to detect this alteration in
the MM_06_BM sample.

2.5. Performance Evaluation for Detecting MM-Specific SV Hotspots

To determine the competency of linked-read sequencing and WES at detecting myeloma-
specific SVs, we used publicly available data from a recent large-scale study that comprehen-
sively characterized SVs in 752 MM patients and identified 68 SV hotspots by low-coverage
large-insert whole-genome sequencing [7]. Among the SV hotspots, 49 (>70%) have been
identified as the gain of function hotspots and 19 (<30%) as loss of function hotspots.
The gain of function hotspots included copy number gains, translocations, inversions and
insertions. Loss of function hotspots included mostly deletions, also complex SVs and
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inversions. A median of two hotspots per patient was reported in the study. We analyzed
the SVs detected by both linked-read sequencing and WES independently in our MM
samples using these hotspots. Linked-read detected an average of 43.8 hotspots with a
distribution of 71.8% (n = 31.5) gains, 22.8% (n = 10) losses and 5.4% (n = 2.38) fragile types
in our samples. The median number of SV hotspots detected per sample by linked-read
sequencing and WES were 41.5 and 3.5, respectively. The hotspots identified in each pa-
tient are available in Supplementary Table S5. The high number of hotspots detected by
linked-read sequencing is due to the over-capture of inversions and duplications compared
to WES. On average, WES detected 3.38 SVs with a distribution of 14.8% (0.5) gains, 51.9%
(1.75) losses and 33.3% (1.13) fragile hotspots in our samples (Supplementary Figure S2a,b).
The higher numbers of losses and fragile types are likely due to the high numbers of dele-
tions detected by WES in our samples. However, the surprisingly large number of hotspots
detected by linked-read sequencing suggests the possibility of a high false-positive rate by
this method.
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2.6. Detection of Total Short Variants by Linked-Read Sequencing and WES

We next evaluated the performance of linked-read sequencing and WES for detecting
short variants. For both methods, short variants were called using the GATK best practice
exome sequence analysis pipeline [38,39]. For the total number of short variants detected,
linked-read sequencing detected 73% (n = 704) and WES detected 25% (n = 109) average
short variants across the eight MM samples, with only 1.8% (n = 15) overlap (Figure 6a).
Two samples, MM_04_BM and MM_05_BM, were outliers, where WES detected a higher
number of short variants compared to the linked-read method. Next, we compared the
number of somatic short variants in three paired samples. The linked-read method detected
94.3% (n = 673) and WES detected 4.9% (n = 37) average short variants, where less than 1%
(n = 3) of the paired short variants overlapped (Figure 6b), suggesting that the linked-read
sequencing detected a higher number of both total short variants and somatic short variants
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compared to WES. The absolute numbers of short variants are provided in Supplementary
Tables S6 and S7. The genes and overlaps are presented in Supplementary Table S8.
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2.7. Performance Evaluation for Detecting Myeloma Specific Mutations

To determine the clinical applicability of the two methods, we assessed the concor-
dance with specific somatic mutations that occur recurrently in MM. Variant calling was
performed using the standard GATK pipeline for comparable results. For this comparison,
MM-specific recurrent mutations were analyzed in five genes, including BRAF, KRAS,
NRAS, TP53 and FAM46C [40]. Linked-read sequencing detected seven out of a total of
thirteen mutations detected by WES in the samples Figure 7a. Linked-read failed to detect
BRAF (n = 2), KRAS (n = 2), NRAS (n = 1) and FAM46C (n = 2) in the samples. However,
the failure to detect the mutations was not restricted to any particular type of mutation,
e.g., frameshift, insertion or deletion. Further, we assessed gene-specific coverage and
found that poor coverage and low quality in the linked-read data resulted in the discrep-
ancies for detecting the mutations (Supplementary Figure S4). For example, mutations to
NRAS in MM_05_BM1 and BRAF in MM_04_BM were only detected by WES (Figure 7b,c).
Next, we also assessed these mutations in the RNA-seq data derived from the same samples.
By RNA-seq, we found nine out of thirteen mutations. However, RNA-seq analysis failed
to detect mutations to TP53, BRAF, KRAS and FAM46C in three different samples.
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Figure 7. (a) List of myeloma-specific somatic mutations detected by whole-exome sequencing, linked-read and RNA-seq.
(b,c) Gene coverage plots generated using SAMtools depicting NRAS in MM_05_BM1 and BRAF in MM_04_BM sample in
linked-read and WES data.
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2.8. Comparison of Short Variants and SVs Detected by Linked-Read Sequencing, WES
and RNA-seq

To determine the overlap between technologies and to find out dataset-specific mu-
tations, we compared linked-read sequencing, WES and RNA-seq derived short variants
from the eight MM samples analyzed by all three methods (Supplementary Figure S3a–h).
The maximum number of overlapping short variants among linked-read, WES and RNA-
seq were 11 in patient MM_07_BM, while none of the overlapping short variants were
found in patient MM_05_BM. Altogether, 25 overlapping short variants were detected by
linked-read sequencing, WES and RNA-seq in the eight MM samples, while 113 overlap-
ping short variants were identified by both linked-read sequencing and WES, 48 short
variants by linked-read sequencing and RNA-seq, and 53 overlapping short variants by
WES and RNA-seq. To compare SVs that could be detected by all three methods, we as-
sessed if RNA-seq analysis could detect any of the fusion genes identified by linked-read
sequencing or WES. However, none of the fusion genes identified by the DNA sequencing
methods were detected by RNA-seq in any of the samples.

3. Discussion

Advances in next-generation sequencing technologies have enabled the investigation
of the complexity of the human genome and the identification of structural variants in
multiple cancer types [21,40,41]. Recurrent structural variations associated with different
cancers signify the importance of studying these genomic alterations to better understand
these diseases. Nevertheless, exome targeting sequencing technologies, which are still a
popular technique, have had limited success in detecting SVs in genomic areas with high
GC content, SV breakpoints in repetitive sequences, and large SVs. The 10X Genomics
linked-read library preparation method has provided promising SV detection results by
addressing challenges in exome sequencing. Although previous studies reported the ability
of the linked-read technology to detect complex SVs [34–36], a comprehensive comparison
of SV detection from hematological samples would help determine the added value of
the more costly linked-read sequencing method in the diagnosis of these diseases from
which high-molecular-weight DNA can easily be obtained. In this study, we compared the
performance of whole-exome sequencing with the 10X linked-read methods for detecting
SVs and short variants in samples from MM patients.

Our results suggest that WES performed better at detecting SVs compared to linked-
read sequencing when applied to clinical samples. We used the Manta tool to call SV events
independently from linked-reads and WES to produce comparable results. In our study,
linked-read sequencing out-performed WES for detecting duplications and inversions
but failed to detect insertions. Algorithms such as Long Ranger and LinkedSV have
previously been used to detect SVs from linked-read sequence data; however, these tools
are not designed to handle insertions [31,36]. Our findings are in line with previous
reports inferring that linked-read sequencing can successfully detect deletion, duplication,
inversion and translocation events except for insertions. Thus, the data analysis technique
limits the detection of insertions using the linked-read method.

Linked-read sequencing was suggested to be capable of replacing commonly used
assays for SV detection such as array comparative genomic hybridization and karyotyp-
ing [31,36], or to complement FISH [42], all of which are used in clinical diagnostics.
However, our data indicated that linked-read sequencing was not able to detect common
MM-related cytogenetic events that WES detected. In contrast to a previous study [43]
where linked-read sequencing was able to detect disease-causal SVs missed by WES,
we found that linked-read sequencing was unable to detect t(4;14) and del(13q) events
in one sample, while WES did detect these alterations. Although both methods detected
false-positive events, WES showed 3% better AUC measurements in identifying clinically
relevant SVs. In the case of clinically relevant CNVs, neither CNVkit (Figure 5) nor Manta
(Supplementary Table S4) results matched perfectly with the gold standard FISH data.
For example, del(13q) was reported by FISH in four samples. However, Manta failed to
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detect this alteration in the MM_03_BM and CNVkit failed to detect it in the MM_01_BM
sample. We were unable to provide evidence that linked-read sequencing could replace
FISH in a diagnostic setting. In accordance with our results, a recent study also demon-
strated that linked-read sequencing could not improve SV detection and characterization
compared to short-read methods in a diagnostic setting [33].

Specialized visualization software designed for linked-read sequence data analysis
such as Loupe have been used previously to detect such missed events [36]. Along with
Loupe, complex events have been identified using advanced computational methods,
special algorithms and other visualization tools specifically designed for linked-read se-
quencing such as Long Ranger and LinkedSV [31,35,36]. While significant computational
advances have improved data visualization, it is equally essential to improve alignment
and mapping techniques to increase data quality substantially, performance and sensitivity
of the linked-read technology.

A landmark study of 752 patients established the SV landscape of multiple myeloma
and reported a median of 2 SV hotspots observed per patient with this disease [7]. Our anal-
ysis compared MM-specific SV hotspots identified by Rustad et al. [7] using both linked-
read sequencing and WES applied to a set of three germlines and tumor paired MM patient
samples. The median of 3.5 SV hotspots detected by WES in our sample set was in line
with the Rustad study. However, the median number of 41.5 SV hotspots detected by
linked-read sequencing was comparatively high. We believe that the high number of
SV hot spots detected in the linked-read data could be due to more false-positive events
leading to discrepancies with the matched WES data. However, this finding should be inter-
preted with caution as the analysis was limited by a small sample size. Furthermore, WES
reported more loss of function hotspots, whereas linked-read analysis reported more gain
of function hotspots. These observations are in line with the higher number of deletions
detected by WES and a higher number of duplications detected by linked-read sequencing.

Previous studies using primarily WES and array-based approaches have successfully
contributed to identifying driver mutations in MM, including SNVs and copy number
variations [4,44–46]. NRAS, KRAS, BRAF, TP53, FAM46C, DIS3, CCND1, and other genes,
are thought to contribute to the pathogenesis of MM and are clinical biomarkers for the
selection of targeted therapeutic strategies. Our study demonstrated that WES identified
more somatic mutations than linked-read sequencing in five selected MM driver genes,
including NRAS, KRAS, TP53, FAM46C and BRAF. In contrast, linked-read sequencing
could detect just over 50% of the total somatic mutations detected by WES in these samples.
These results contradict an earlier study indicating that linked-read sequencing facilitated
the identification of mutations in disease-related genes otherwise difficult to sequence
using WGS [36]. In addition, and unlike earlier studies, we were able to compare results
between linked-read derived somatic mutation data with RNA-seq and WES data from
the sample samples. Our results suggested both WES and RNA-seq were superior at
detecting mutations in MM driver genes than linked-read sequencing analysis. We assume
that the currently available short variant calling tools are not competent with linked-read
sequencing. The tools might be inefficient at calling short variants from the long-reads in
the case of linked-read WES as the long-read chemistry is designed to detect larger genomic
alterations. Also, the lower coverage for linked-reads compared to WES leads to an inferior
ability of the linked-read approach to detect driver mutations.

Our study focused on comparing data quality, SVs and short variant detection effi-
ciency and clinically significant cytogenetic events and somatic mutation detection effi-
ciency between WES and whole-exome linked-read methods. Our analysis suggests that
WES outperformed linked-read sequencing to detect biologically and clinically relevant
genomic alterations for our disease model of multiple myeloma. WES is considered a
suboptimal method to detect SVs. Nevertheless, we found that WES detected the most
clinically relevant SVs and short variants. It also was more cost-effective. Nevertheless,
the linked-read approach could potentially help identify novel large SVs in different dis-
ease models with further development and improvement of downstream data analysis
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methods. Moreover, a comparison of WGS and linked-read whole-genome sequencing
approaches could be more useful to evaluate the efficiency for investigating the panorama
of genome-wide SVs. Taken together, we suggest that WES is a more powerful and robust
approach for detecting cytogenetic alterations and somatic mutations in MM patients
compared to linked-read sequencing. The same may also hold for other hematological
cancers. Similar comparative evaluations between WES and linked-read sequencing with
other state-of-the-art technologies specialized in detecting large SVs such as PacBio, Oxford
Nanopore and Bionano Genomics technologies are warranted, especially to determine
their applicability for diagnostic applications. Nevertheless, the low cost and established
standard data analysis pipelines for WES make this an optimal method for current clinical
implementation.

4. Materials and Methods
4.1. Patient Materials and Ethical Compliance

This study was conducted in accordance with the guidelines of the Declaration of
Helsinki. BM aspirates (n = 8) and skin biopsies (n = 3) were obtained from MM patients
after informed consent using protocols approved by an ethical committee of Helsinki Uni-
versity Hospital (study numbers 239/13/03/00/2010 and 303/13/03/01/2011). The data
generated from the samples were stored in a secured server to protect data privacy and
anonymity was maintained by encoding the sample identities.

4.2. Sample Processing

Bone marrow mononuclear cells (MNC) were isolated using Ficoll-Paque PREMIUM
(GE Healthcare, Chicago, IL, USA) density gradient centrifugation. CD138+ cells were
enriched from the MNC fraction using the EasySep™ positive selection kit from StemCell
Technologies as described earlier [47]. DNA was isolated from CD138+ cells and skin
biopsies using the DNeasy Blood and Tissue kit (Qiagen, Hilden, Germany). RNA was
extracted from CD138+ cells using the miRNEasy kit (Qiagen, Hilden, Germany).

4.3. Whole-Exome Sequencing (WES)

The NEBNext® DNA Library Prep Master Mix protocol (New England Biolabs, Ip-
swich, MA, USA) was used for the preprocessing of the DNA samples. Exomes were
captured with the SeqCap EZ MedExome kit (Roche Nimblegen, Roche Nimblegen, Seattle,
WA, USA), SureSelect Clinical Research Exome kit or the SureSelect Human All Exon V5
kit (Agilent Technologies, Santa Clara, CA, USA). The final libraries were sequenced using
the HiSeq 2500 platform (Illumina, San Diego, CA, USA).

4.4. Linked-Read Exome Sequencing

Linked-read exome sequencing was used to sequence eight tumor samples and three
skin samples. 1 ng of high molecular weight DNA was loaded onto a chromium controller
chip. Linked-read libraries were processed according to the Chromium Exome Demon-
strated Protocol (10x Genomics) with modifications in target enrichment (step 5.1–6.2).
Hybridization was captured with the NimbleGen SeqCap EZ Library SR User’s Guide v5.1
protocols (Supplementary Table S1). 1000 ng per sample was pooled for five samples per
capture. Blocking oligos were replaced with 10 µL of IDT xGen Universal Blockers—TS
mix and 25 µL of COT. Samples were sequenced with the HiSeq 2500 instrument with
paired-end 100 cycle runs using V4 chemistry. 6.4–9.9 gigabases were produced per sample.
The data were analyzed as described previously [48].

4.5. RNA Sequencing

RNA-seq was performed as described earlier [49]. Briefly, mRNA was enriched from
total RNA by depleting ribosomal RNA using the RiboZeroTM rRNA Removal kit (Il-
lumina). A reverse transcription reaction was performed on the mRNA to synthesize
complementary DNA (cDNA). From the cDNA, indexed libraries were constructed using
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the ScriptSeq V2™ Complete kit (Illumina), size selected and purified by agarose gel elec-
trophoresis. Paired-end libraries were sequenced on the Illumina HiSeq 2500 instrument.
RNA-seq data analysis was processed as described earlier [49] and included fusion gene
calling with FusionCatcher [50] from RNA-seq fastq files and small variant analysis using
GATK [51] best practice for transcriptome data.

4.6. Sequencing and Mapping Quality Statistics

Sequencing and mapping quality statistics for linked-read and WES were obtained with
qualimap version 2.2 [52]. The quality metrics were combined using multiqc, version 0.8 [53].
Plots were generated using the multiQC and ggplot2 package in R.

4.7. Short Variant Calling

Small variants were called using the previously established GATK protocol [48].
Briefly, raw sequencing reads were trimmed and filtered using the Trimmomatic soft-
ware [54]. Paired-end reads passing processing were then aligned to the GRCh38 human
reference genome using Burrows-Wheeler Aligner, duplicates were marked with Picard,
and alignment quality was improved using the Genome Analysis Toolkit [51] local re-
aligner and base quality score recalibrator. Short somatic variants were then called using
MuTect2 [55]. The analysis protocol with version information of all tools and details of ref-
erence datasets used in analyses have been explained earlier [48]. Following variant calling,
variants were annotated with Annovar [56] and variants not passing all MuTect2 filters,
falling into intronic and intergenic regions, classified as synonymous or non-frameshift vari-
ation, with an ExAC [57], ESP [58], 1KG [59] minor allele frequency higher than 1%, with
a variant calling quality less than 40, residing in sites covered by less than 10 reads, with
variant allele frequency less than 2% or higher than 30%, and with SNV strand-odd-ratio
higher than 3 or indel strand-odd-ratio higher than 11 were removed.

4.8. Structural Variant (SV) Calling

Alignment files used in small variant discovery were also subjected to SV callings.
SVs were called for eight tumor samples from both libraries using Manta [17] at default
parameters. To collect the number of SVs detected in each sample the candidateSV.vcf.gz
file generated by Manta tool was used. SVs and indel candidates also less than 50 bp in
size from candidateSV.vcf.gz were used in Manta analyses. Given that filtering can exclude
known variants and proper Manta filtering protocol is an open question, Manta variant
calls were not filtered for quality. For the filtered analysis tumors.vcf.gz files were used.
Somatic SVs were also called with Manta for three paired samples. In the case of somatic
SVs candidateSV.vcf.gz files were used to count the number of detected SVs. For the filtered
analysis somaticSV.vcf.gz were used.

4.9. Overlapping Variants

All overlapping SV and short variants were identified with bedtools version 2.29.1 [60]
at 70% similarity at genomic positions. Candidate SVs identified by Manta and belonging to
the same variation type in the WES and linked-read data were considered and overlapping
variants were identified as unique WES features overlapping with linked-read features.
Translocations were filtered before running bedtools due to the missing end position
and compared separately in R. For paired samples, SV candidates passing the quality
filters by Manta as somatic SVs were overlapped. Overlapping short variants were called
similarly. Libraries Lattice, ggplot, dplyr, VennDiagram in R/Bioconductor software
package (version 4.0) were used for visualization.

4.10. Somatic Mutation Overlap Analysis

To compare somatic mutations identified by linked-read sequencing, WES and RNA-
seq, we focused on recurrently mutated genes in MM including BRAF, KRAS, NRAS, TP53
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and FAM46C. Somatic mutations were identified in the outputs of the GATK pipeline using
linked-read sequence, WES and RNA-seq data.

4.11. Clinically Relevant Alterations

To identify clinically relevant SVs in our samples from the WES and linked-read
sequence data, we relied on alterations identified by FISH, which is routinely performed at
the clinic upon the patient’s diagnosis. Routinely checked events in MM including del(1p),
gain(1q), del(13q), del(14q), del(17q), t(4;14), t(6;14), t(11;14), t(14;16) and t(14;20) were
identified in our samples using deletion, duplication and translocation calls by Manta in
the respective chromosome/chromosome arm. For translocations, the ID value was used
to link breakend partners. SV candidates passing the quality filters by Manta as tumor SVs
were used for this analysis.

4.12. Sensitivity and Specificity Calculation

The sensitivity and specificity were calculated considering cytogenetics events de-
tected by FISH in the clinic as true labels. Altogether 14 cytogenetics events were detected
across eight samples (Supplementary Table S4). The true positive rate (sensitivity) was
plotted against the false positive rate (100-specificity) to generate the receiver operating
characteristic (ROC) curve and to calculate the area under the curve (AUC) using the R
package ROCR. The prediction and performance functions were used to calculate sensitiv-
ity and specificity. Every classifier evaluation using ROCR starts with creating a prediction
object. The prediction function was used to transform the input data into a standardized
format. Predictions; SVs detected using MANTA tool in WES and linked-read datasets
independently. Labels; the true class labels considered from the FISH results (Supple-
mentary Table S4). Next, predictor evaluations were performed by calculating sensitivity;
P(Yhat = +|Y = +), estimated as: TP/P and specificity; P(Yhat = −|Y = −), estimated
as: FN/P. Abbreviations; P (\# positive samples), N (\# negative samples), TP (\# true
positives), TN (\# true negatives), FP (\# false positives), FN (\# false negatives).

4.13. Identification of SV Hotspots

To identify MM-specific SV hotspots, we relied on a recent study, which identified
these hotspots using low-pass WGS [7]. The original publication used somatic SVs in
paired samples, which were identified using Manta and Delly and passing the filters to
identify the SV hotspots. The SV candidates passing the quality filters by Manta as tumor
SVs were used to identify SV hotspots in our samples. Due to the limited number of paired
samples, we used the tumor SV calls passing the filters from Manta in eight unpaired
samples for this analysis. GRCh37 coordinates in the SV hotspot tables were converted
to GRCh38 coordinates using the UCSC genome browser gateway. Two of the hotspots,
involving chromosome 12 and chromosome X were not converted and therefore were
excluded from further analysis. Using the position of the hotspots, SV events falling within
these hotspots were identified. The number of hotspots was calculated for each patient.
Lattice, ggplot, dplyr, Rcolorbrewer in the R/Bioconductor software package (version 4.0)
were used for visualization.

4.14. Identification of Copy Number Variants (CNVs)

CNVkit [37] (version 0.9.8) was used for identifying copy number gains and losses in
chromosomes in each tumor sample. Target and anti-target bed interval files were created
according to the default pipeline using capture regions bed file for each probe. A flat
reference was created with reference genome hg38 and respective target and anti-target
interval files for each probe. Visualization was also performed with the CNVkit pipeline.

5. Conclusions

Our study systematically evaluated the performance and efficiency of WES and linked-
read exome sequencing to detect SVs comprehensively and short variants highlighted



Cancers 2021, 13, 1212 17 of 20

discrepancies between methods, however, the outcome of these analyses demonstrated
that WES out-performed linked-read sequencing for the identification of somatic and
clinically relevant SVs and short variants. Although linked-read sequence analysis detected
more events, WES identified more clinically relevant events and produced better coverage
and mapping quality, indicating that WES is a more reliable method than linked-read
sequencing for clinical implementation.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/6/1212/s1, Table S1: Sequencing quality matrix and kit information, Table S2: Number of SVs
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by Linked-read sequencing, WES and overlaps, Table S4: Clinical cytogenetic alterations detected by
FISH, Linked-read sequencing and WES, Table S5: MM specific SV hotspots identified by Linked-read
sequencing and WES, Table S6: Number of short variants detected by Linked-read sequencing, WES
and overlaps, Table S7: Number of somatic short variants detected by Linked-read sequencing, WES
and overlaps, Table S8: Genes and overlaps between the short variants detected by linked-read
sequencing and WES; Figure S1: Total SVs detected by linked-read and WES in 3 paired samples,
Figure S2: The number of multiple myeloma specific SV hotspots across 8 samples identified by
linked-read and WES, Figure S3: The overlapping short variants across all 8 tumor samples identified
by GATK tool using RNA-seq, WES and linked-read exome sequence data, Figure S4: Gene coverage
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