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Abstract: The charge transfer interactions between the seproxetine (SRX) donor and π-electron
acceptors [picric acid (PA), dinitrobenzene (DNB), p-nitrobenzoic acid (p-NBA), 2,6-dichloroquinone-
4-chloroimide (DCQ), 2,6-dibromoquinone-4-chloroimide (DBQ), and 7,7′,8,8′-tetracyanoquinodi
methane (TCNQ)] were studied in a liquid medium, and the solid form was isolated and characterized.
The spectrophotometric analysis confirmed that the charge–transfer interactions between the electrons
of the donor and acceptors were 1:1 (SRX: π-acceptor). To study the comparative interactions between
SRX and the other π-electron acceptors, molecular docking calculations were performed between
SRX and the charge transfer (CT) complexes against three receptors (serotonin, dopamine, and
TrkB kinase receptor). According to molecular docking, the CT complex [(SRX)(TCNQ)] binds with
all three receptors more efficiently than SRX alone, and [(SRX)(TCNQ)]-dopamine (CTcD) has the
highest binding energy value. The results of AutoDock Vina revealed that the molecular dynamics
simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes had a stable
conformation; however, the CTcD complex was more stable. The optimized structure of the CT
complexes was obtained using density functional theory (B-3LYP/6-311G++) and was compared.
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1. Introduction

Depression is the most common mental illness, affecting roughly 322 million people
worldwide [1]. Depression is the main cause of disability and the fourth major contributor
to the global illness burden [2]. Antidepressants are the third most commonly sold class of
therapeutic drugs worldwide [3]. The majority of these treatments are based on chemicals
that target the serotonin (5-hydroxytryptamine (5-HT): a group of G protein-coupled
receptor and ligand-gated ion channels found in the central and peripheral nervous systems)
transporter, a single protein in the brain. Selected serotonin reuptake inhibitors (SSRIs),
which block 5-HT reuptake, account for around 80% of all antidepressants on the market [3].
Other antidepressants, such as serotonin and noradrenaline reuptake inhibitors, as well
as traditional tricyclic antidepressants (e.g., amitryptyline, clomipramine, imipramine),
prevent noradrenaline reuptake. Indeed, compared to tricyclic medicines, the success of
selective serotonin reuptake inhibitors is mostly due to their safety, tolerability, and lack of
severe side effects, which enhances patient compliance and quality of life [3].

Although seproxetine (SRX, also known as S-norfluoxetine) is classified as a selective
serotonin reuptake inhibitor, its inhibitory action extends beyond serotonin transporters to
dopamine transporters (DAT) and 5-HT2A/2C receptors [4]. It is the active N-demethylate
metabolite of the commonly prescribed antidepressant fluoxetine and is deemed more
potent than the parental compound itself [5]. The 5-HT(2A) and 5-HT(2C) receptors belong
to the G-protein-coupled receptor (GPCR) superfamily. GPCRs interact with G-proteins to
transmit extracellular signals to the inside of cells. The 5-HT(2A) and 5-HT(2C) receptors
are involved in the effects of a wide range of drugs on anxiety, sleep patterns, depres-
sion, hallucinations, schizophrenia, dysthymia, eating behavior, and neuro-endocrine
processes [6].

As SRX was found to be a 20 times more potent serotonin inhibitor than its sister
enantiomer R-norfluoxetine, significant research efforts were focused on this drug in the
1990s [7]. However, serious cardiac side effects, such as QT prolongation (a measure
of delayed ventricular repolarisation), halted further development [4,8]. The potency
of SRX as a serotonin inhibitor should not be ignored, and an effort must be taken to
chemically modify (charge–transfer complexation) SRX for a better serotonin inhibitor
while suppressing the drawback.

Charge–transfer (CT) complexation, or electron–donor transfer, is a crucial aspect
of biochemical and biological processes such as drug design, enzyme catalysis, and ion
sensing [9]. The pharmacodynamics and thermodynamics of therapeutic substances and
biological processes in the human body are studied using charge–transfer complexation
interactions [10–14]. In biological systems, charge–transfer complexes may play a crucial
function. Extensive research has been carried out on charge–transfer interactions between
inorganic anions, particularly the iodide ion and pyridinium, and substituted pyridinium
cations, to determine the sensitivity of their charge–transfer absorption to the solvent
environment, as well as the potential role of structures of this type in enzymatic oxidation-
reduction processes [15]. As the charge–transfer complexes are a simpler, cheaper, and
more efficient tool of analysis than the other methods mentioned in the literature, charge–
transfer interactions are an important subject employed in the determination of medicines
in pharmaceutical and pure forms [16].

Many reports stated the interactions, in solution, between flavin mononucleotide,
flavin adenine dinucleotide, or riboflavin and a variety of donors, including hydrocar-
bons [17], indoles [18], NADH [19], NADPH [19], purines and pyrimidines, as well as other
compounds with no obvious donor properties. There is little doubt that complete electron
transfer happens in several of these systems to generate the flavin semiquinone [20]. The
new broad absorption band reported for mixes of the reduced form of flavin mononu-
cleotide (FMNH2) and (FMN) was attributed to the creation of charge–transfer com-
plexes [21]. 2-methyl-1,4-naphthoquinone, also known as vitamin K3, used as a syn-
thetic substitute for K1, o-quinone adrenochrome, and many other biologically important
quinones have substantial electron donor complexing capacity [22].
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Tryptophan appears to be unique among amino acids in its capacity to generate
charge transfer complexes due to the strong donor characteristics of the indole ring. How-
ever, another study has shown that a pyridinium model compound of NAD+ may form
complexes with tyrosine and phenylalanine [23]. Spectral evidence was also found to
produce charge–transfer complexes between NAD+ and model pyridinium compounds
with chymotrypsinogen, a tryptophan-rich protein [24].

Molecular docking (MD) is a computer method for efficiently predicting the non-
covalent binding of macromolecules (receptors) and small molecules (acceptors) based
on their unbound structures, structures generated through MD simulations, homology
modeling, and other methods. The prediction of small molecule binding to proteins is
of particular practical significance since it is used to screen virtual libraries of drug-like
compounds for leads for further drug development. As a result, MD has become an
important method in drug development.

Here, we used the Autodock Vina program to investigate the interactions between the
ligand (SRX and synthesized CT complexes) and receptors (serotonin, dopamine, and TrkB
kinase receptors). In the 1970s and 1980s periods, selective serotonin reuptake inhibitors
(SSRIs) were developed, which are as effective antidepressants as tricyclics but do not have
as many side effects as other antidepressant drugs. Binding energy, along with hydrophobic
properties, ionizability, aromatic, and hydrogen bond surfaces, were also investigated. The
molecular dynamic simulation was achieved at 300 K for 100 ns. The dynamic properties
of the complexes were compared in many characterizations such as residue flexibility,
structural solidity, solvent-accessible surface area, and other measurements. DFT using
the B-3LYP/6-311G++ (basis set) level of theory was employed to obtain an optimized
geometry of the CT complex- [(SRX)(PA}], [(SRX)(DNB)], [(SRX)(p-NBA)], [(SRX)(DCQ)],
[(SRX)(DBQ)], and [(SRX)(TCNQ)] with minimal energy. Different parameters of the
complexes were obtained and compared.

2. Materials and Methods
2.1. Synthesis of [(SRX)(π-Acceptor)] Charge–Transfer Complexes

The charge–transfer complexes [(SRX)(π-acceptor)] where π-acceptor are PA, DNB,
p-NBA, DCQ, DBQ, and TCNQ (Figure 1) were synthesized as 1:1 by the reaction of SRX
donor in a solution (25 mL) of each acceptor [25].
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Figure 1. Speculated molecular structures of (1:1) charge-transfer complexes [(SRX)(π-acceptor)]. 

  

Figure 1. Speculated molecular structures of (1:1) charge-transfer complexes [(SRX)(π-acceptor)].

At room temperature, the mixtures were agitated for about an hour in each case. The
precipitate was filtered and washed with the smallest amount of dichloromethane possible
before being dried under vacuum over anhydrous CaCl2.
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2.2. Instruments and Measurements

With safeguards (platinum pans, nitrogen gas flow, and 30 ◦C min−1 heating rate), ther-
mogravimetric analysis (TGA/DTG) was examined using Shimadzu TGA-50H equipment.
A Perkin–Elmer Precisely Lambda 25 UV/Vis Spectrometer was used to scan the electronic
absorption spectra of the synthesized charge–transfer complexes in the 200–800 nm region.
A Bruker 600 MHz spectrometer was used to measure 1H-NMR spectra in DMSO solvent.

2.3. Molecular Docking

The structures of the SRX drug and CT complexes were handled in PDBQT format via
OpenBabelIGUI software (version 2.4.1) [26]. Then, the PyRx-Python prescription 0.8 and
MMFF94 force field were used to minimize the energy of the structure for 500 steps [27].
The RCSB Protein Data Bank [28] was used to get the 3D crystal structures of the three
receptors. The receptors were arranged using the BIOVIA Discovery Studio Visualizer
(v19.1.0.18287). Kollman charges were also measured with the help of the AutoDock
Tool [29]. The Geistenger method was used to allocate partial charges. The docking
calculations were performed with Autodock Vina [30]. The DS (Discovery Studio) Visualizer
was used to examine the docked poses that resulted.

2.4. Molecular Dynamics (MD) Simulation

The optimal receptor–ligand complex pose for SRX and [(SRX)(TCNQ)] with a max-
imum docking score was acquired through the molecular docking investigation. The
GROMACS package version (2019.2) was used to accomplish MD simulation analysis
via GROMOS96 43a1 force field. The parameter files and topologies were created with
the most recent CGenFF through CHARMM-GUI [31,32]. The SPC water models that
prolonged 10 Å from the receptor were utilized to explain receptor–ligand structures [33].
To neutralize the systems, 59 Na+ and 64 Cl− ions (0.15 M salt) were injected to simulate
physiological salt concentrations (Figure 2).
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Figure 2. Receptor–ligand complex (a) SRXD and (b) CTcD in triclinic box solvated with water
molecules and neutralized with 59 Na+ and 64 Cl− ions (0.15 M salt).

Both systems were exposed to periodic boundary conditions at a continuous tempera-
ture (300 K) and pressure (1.0 bar) for 100 ns simulation time with a Leap-frog MD inte-
grator [34]. To minimize poor contact inside the system, energy reduction with 5000 steps
was performed [35]. The gmx hbond device was used to investigate hydrogen bonding.
The gyration radius was measured using gmx gyrate tool, while the solvent-accessible
surface area was calculated by gmx sasa. The root mean square deviation (RMSD) of the
protein was designed using the gmx rms tools. The GROMACS analytic tools [36] were
used to accomplish trajectory analysis. Grace Software was used to compute the plots,
while PyMol/VMD was utilized to visualize them [37].
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2.5. Computational Structural Analysis

DFT (Density functional theory) computational study was used for structural analy-
sis of CT complexes and optimized geometry with atomic coordinates, strain-free lattice
constants, and ground state minimum energy structure are obtained. Gaussian 09RevD.01
program [38] was used for this study. Gradient corrected correlation was applied with
Pople’s basic set B3LYP/6-311G++ [39]. For visualization of obtained DFT results, Chem-
Craft 1.5 software [40] was used.

3. Results and Discussion
3.1. Preapprehension

The attachment of the receptor to drugs does not affect the efficiency of its work, in fact,
it improves it. However, it should be noted that different drugs have varying efficacy when
they are connected with the receptor’s site [41–45]. Several reports showed differences in
the efficacy of two drugs targeting the same receptor because the activation of the receptor
is dependent on the rate of drug interaction with the receptor [43,44].

This drew pharmacologists’ attention to the importance of knowing the relationship
between drug chemical composition and physiological action. These findings may aid our
understanding of the molecular nature of drug–receptor interactions [43,44].

In many cases, the drug’s binding to the receptor seems to have low energy, certainly
lower than that involved in conventional covalent bonding [45]. Ionic association, par-
ticularly hydrogen bonding, and other weaker forces such as charge–transfer forces, or a
combination of many of these forces, can produce what is termed “receptor-drug complex-
ing”. The capacity of drugs and related compounds to form charge–transfer complexes
with well-defined electron acceptors or electron donors, primarily in non-aqueous circum-
stances, is used as a primary criterion for determining whether charge–transfer forces are
manipulated in any way [46–49].

The λmax of UV–Vis spectra of the synthesized charge–transfer complexes were found
to be at 340 and 436 nm for (SRX)(PA), 351 nm for (SRX)(DNB), 353 nm for (SRX)(pBBA),
528 nm for (SRX)(DCQ), 540 nm for (SRX)(DBQ), and lastly 745 and 833 nm for (SRX)(TCNQ).
According to photometric titration measurements, the produced charge–transfer complexes
between SRX and corresponding π-acceptors had a 1:1 molar ratio. The dative structure
D+–A of charge–transfer complexes in polar solvents were shown to be destabilized by the
dissociation of charge–transfer complexes into D+ and A [50–53].

In pharmacokinetics, examining the physical and chemical properties of pharmacolog-
ical substances in solution, as well as their mechanism of action, is critical. Spectroscopic
and thermodynamic approaches are used to assess the binding strength of pharmaceutical
compounds to other substances in living systems [41]. In biological and bioelectrochem-
ical energy transfer processes, electron acceptor complexes (EDA) are a common occur-
rence [42]. The development of highly colored charge–transfer complexes is often related
to molecular interactions between electron donors and acceptors, which absorb light in the
visible area [48].

Electron acceptor complexes with ionic bands are the most prevalent. Ionic interactions
and structural recognition are two crucial mechanisms in biological systems. For example,
drug action, enzyme activation, and ion transport across lipophilic membranes are all
intricate [45]. Ionic interactions are the fundamental outputs of selectivity, rate control, and
reversibility in many biological systems [46].

The most commonly used procedures for assessing various drugs and sophisticated
charge transfer investigations include UV direct spectrophotometry [47], colorimetry [48],
and HPLC [49]. EDA compounds, as previously reported, have good nonlinear optical
properties and electrical conductivity [54].

The six charge–transfer complexes were expected to have particle sizes of 50 nm for
(SRX)(PA), 25 nm for (SRX)(DNB), 5 nm for (SRX)(pNBA), 10 nm for (SRX)(DCQ), 20 nm
for (SRX)(DBQ), and 5 nm for (SRX)(DBQ) (TCNQ). These findings were based on TEM
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scans, which showed that the particles of the manufactured charge–transfer were nanoscale
in size.

The simultaneous thermal stability on the TG/DTG curves of all charge–transfer
complexes at a heating rate of 10 ◦C/min in a static nitrogen atmosphere are shown in
Figure 3. The overall mass loss from the TGA curves was 78.17% for SRX–PA, 58.38%
for SRX–DNB, 50.45% for SRX-p-NBA, 69.40% for SRX–DCQ, 77.58% for SRX–DBQ, and
75.69% for the SRX–TCNQ complexes. The complexes had mass losses of one to three
maxima peaks. The thermal analysis of the curves of the [(SRX)(π-acceptor)] CT complexes
clearly shows that the maximum DTG peaks are located at 415, 230, 357, 383, 343, and
370 ◦C, respectively.
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The Coats-Readfern and Horowitez-Metzegar methods [55,56] were used to collect the
kinetic thermodynamic data of the maximal DTG peak decomposition steps of all charge–
transfer complexes. The kinetic parameters, E, A, ∆S, ∆H, ∆G, and r were calculated, and
the data are listed in Table 1 and displayed in Figure 4.
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Table 1. Kinetic thermodynamic parameters for the six charge–transfer complexes based on Coats–
Redfern (CR) and Horowitz–Metzger (HM) methods.

Complex Method
Parameter

rE
(kJol−1)

A
(s−1)

∆S
(J mol−1 K−1)

∆H
(kJ mol−1)

∆G
(kJ mol−1)

(SRX)(PA)
CR 11.5 × 104 4.00 × 108 −8.52 × 101 1.12 × 105 1.54 × 105 0.9990

HM 11.2 × 104 5.60 × 109 −6.32 × 101 1.12 × 105 1.50 × 105 0.9989

(SRX)(DNB)
CR 7.80 × 104 1.50 × 105 −1.55 × 102 7.25 × 104 1.47 × 105 0.9980

HM 8.65 × 104 1.34 × 105 −1.30 × 102 8.12 × 104 1.44 × 105 0.9989

(SRX)(pNBA)
CR 6.38 × 104 1.32 × 104 −1.72 × 102 5.90 × 104 1.51 × 105 0.9995

HM 7.23 × 104 1.22 × 104 −1.56 × 102 6.71 × 104 1.54 × 105 0.9985

(SRX)(DCQ)
CR 4.80 × 104 1.25 × 105 −1.45 × 102 4.43 × 104 9.40 × 104 0.9943

HM 5.22 × 104 1.85 × 106 −1.32 × 102 4.68 × 104 9.22 × 104 0.9987

(SRX)(DBQ)
CR 5.77 × 104 5.12 × 103 −1.85 × 102 5.22 × 104 1.45 × 105 0.9890

HM 6.35 × 104 2.75 × 104 −1.72 × 102 5.90 × 104 1.40 × 105 0.9994

(SRX)(TCNQ)
CR 11.1 × 104 6.22 × 108 −8.14 × 101 9.72 × 104 1.33 × 105 0.9984

HM 11.8 × 104 5.50 × 109 −6.35 × 101 1.12 × 105 1.42 × 105 0.9996
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The activation energies of the [(SRX)(π–acceptor)] CT complexes in the case of the
maximum DTG peak decomposition step were as follows:

(SRX)(TCNQ) > (SRX)(PA) > (SRX)(DNB) > (SRX)(pNBA) > (SRX)(DBQ) > (SRX)(DCQ).

Among the six π–acceptors, it was found that the SRX–TCNQ and SRX–PA complexes
had greater activation energies than the other charge–transfer complexes. This is owing to
the presence of cyano and nitro groups in the TCNQ and PA acceptors [57].

3.2. UV–Vis Spectra and Photometric Titration

The UV-Vis spectra of the six charge–transfer complexes in methanol solvent were
investigated in the 200–900 nm range (Figure 5) [4]. These charge–transfer complexes
are formed by combining 1.00 mL of 0.5 mM from the SRX drug donor with different
volumes of the six π-electron acceptors to reach a final concentration of 0.5 mM. With
methanol as the solvent, each charge–transfer system had a total volume of 5 mL. Absorp-
tion bands for [(SRX)(PA), [(SRX)(DNB)], [(SRX)(p-NBA)], [(SRX)(DCQ)], [(SRX)(DBQ)],
and [(SRX)(TCNQ)] donor–acceptor interaction systems appeared at λmax of 436 nm,
351 nm, 353 nm, 528 nm, 540 nm, and 745 nm, respectively. At 25 ◦C, photometric titrations
were performed with the SRX medication as an electron donor and the six π–electron
acceptors. The molar ratio of the produced charge–transfer complexes between SRX and
the corresponding π–electron was 1:1. The photometric titration curves for the maximal
charge–transfer absorption bands (λmax) are shown in Figure 6 [4].
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The photometric titration findings were obtained by graphing the absorbance (Y-axis)
against the ratio of indicated acceptors (X-axis) using established procedures [4].

The molar ratio of the produced charge–transfer complexes between SRX medication
and identified–acceptors is 1:1 (Figure 6).

3.3. 1H-NMR Spectra

The 1H-NMR spectra of all six π-acceptors complexes are investigated (Figure 7); while
the 1H-NMR spectra of SRX only were cited previously [58]. The NH2 protons of the SRX
amino group are downfield displaced by 6.87–6.98 ppm as a result of the involvement of one
pair of electrons on the amino group towards the six electron π-acceptors. The peaks of other
aromatic and methylene protons are similarly pushed downfield to higher ppm values, indi-
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cating the formation of six charge–transfer complexes (Supplementary Material Figure S1).

Molecules 2022, 27, x 9 of 21 
 

 

 
Figure 6. Photometric titration curves of the SRX with the six π–acceptors complex [4]. 

3.3. 1H-NMR Spectra 

The 1H-NMR spectra of all six π-acceptors complexes are investigated (Figure 7); 
while the 1H-NMR spectra of SRX only were cited previously [58]. The NH2 protons of 
the SRX amino group are downfield displaced by 6.87–6.98 ppm as a result of the involve-
ment of one pair of electrons on the amino group towards the six electron π-acceptors. 
The peaks of other aromatic and methylene protons are similarly pushed downfield to 
higher ppm values, indicating the formation of six charge–transfer complexes (Supple-
mentary Material Figure S1). 

 

Figure 6. Photometric titration curves of the SRX with the six π–acceptors complex [4].

Molecules 2022, 27, x 9 of 21 
 

 

 
Figure 6. Photometric titration curves of the SRX with the six π–acceptors complex [4]. 

3.3. 1H-NMR Spectra 

The 1H-NMR spectra of all six π-acceptors complexes are investigated (Figure 7); 
while the 1H-NMR spectra of SRX only were cited previously [58]. The NH2 protons of 
the SRX amino group are downfield displaced by 6.87–6.98 ppm as a result of the involve-
ment of one pair of electrons on the amino group towards the six electron π-acceptors. 
The peaks of other aromatic and methylene protons are similarly pushed downfield to 
higher ppm values, indicating the formation of six charge–transfer complexes (Supple-
mentary Material Figure S1). 

 

Figure 7. Best docking pose showing a helical model of dopamine docked with (a) [(SRX)(TCNQ)]
and (b) [SRX].

3.4. Molecular Docking Studies

To find the optimal docking pose, the six CT complexes were docked against three
protein receptors: serotonin, dopamine, and TrkB kinase. For comparison, the SRX drug
(donor moiety) was employed as a control. The potential binding energy of CT complexes
was higher than that of SRX in all receptors, according to the molecular docking of these
six complexes (Table 2).
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Table 2. The docking score of six synthesized CT complexes docked with three receptors [serotonin
(PDB ID: 6BQH), dopamine (PDB ID: 6CM4), and TrkB kinase (PDB ID: 4ASZ)].

Receptor
Binding Free Energy (kcal/mol)

6BQH 6CM4 4ASZ

SRX-PA −7.8 −9.2 −8.4
SRX-DNB −6.8 −8.3 −6.5

SRX-pNBA −8.7 −7.8 −7.0
SRX-DCQ −7.5 −9.5 −7.4
SRX-DBQ −7.9 −8.1 −7.5

SRX-TCNQ −9.4 −9.9 −8.2
SRX −7.4 −7.3 −6.0

Of the six CT complexes studied, [(SRX)(TCNQ)] exhibited the highest docking energy
values. [(SRX)(TCNQ)] had predicted binding energies of −9.3, −9.9, and −8.2 kcal/mol
with serotonin, dopamine, and TrkB kinase receptors, respectively. The binding energy
of [(SRX)(TCNQ)]-dopamine (CTcD) is higher than that of serotonin and the TrkB kinase
receptors, indicating a stronger link. The optimal docking pose of (CTcD) is shown in
Figure 5, and the docking data are listed in Table 3.

Table 3. The interactions of SRX-TCNQ and SRX with dopamine (6CM4).

Receptor Binding Free Energy (kcal/mol) Interactions
H-Bond Others

SRX-TCNQ −9.9 Tyr416 and Trp413 Leu94, Trp100 (π-Alkyl); Phe189 (π-Sigma);
Asp114 (π-Anion); Ile184 (Halogen-Fluorine)

SRX −7.3 Ser409 and Thr412 Tpr100, Val91 (π-Alkyl); Tyr416 (π-Sigma)

The [(SRX)(TCNQ)]-dopamine (CTcD) shows that the amino acid residues, includ-
ing Tyr416 and Trp413, formed hydrogen bond interactions (Figure 8a). There are other
interactions between Leu94, Trp100 (π-Alkyl), Phe189 (π-Sigma), Asp114 (π-Anion), and
Ile184 (halogen-fluorine) [59]. The theoretical binding energies of SRX with the serotonin,
dopamine and TrkB kinase receptors were −7.3, −7.4, and −6.0 kcal/mol, respectively,
after molecular docking. The [SRX]-dopamine (SRXD) receptor had a stronger connection
than the serotonin and TrkB kinase receptors due to its greater binding energy value.
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The interaction between SRX and dopamine is illustrated in Figure 8b. The amino acid
residues, including Ser409 and Thr412, formed hydrogen bond connections between SRX
and dopamine. There were also interactions between Tpr100, Val91 (π-alkyl), and Tyr416
(π-sigma). These data indicate that the [(SRX)(TCNQ)] complex binds to the three protein
receptors more efficiently than the reactant donor (SRX) alone and that the CTcD has the
highest binding energy value. TNCQ is a powerful electron acceptor that forms charge
transferring chains due to the existence of its four cyano groups and π-conjugation bonds.
This facilities the increase in interactions (such as H-bond, π-Alkyl, π-Sigma, π-Anion,
along with SRX) with receptors.

Given the growing evidence that DA transmission assists antidepressant therapeutic
goals [60], this augmentation of transmission could have clinical implications. This is
because the majority of modern antidepressants do not boost dopamine neurotransmis-
sion [60]. One reason for DA’s significance is that it regulates motivation, concentration, and
pleasure [60]. Figure 9 shows two-dimensional depictions of ligand–receptor interactions.
Figure 10 and Figure S2 show the hydrophobic, ionizability, aromatic, and hydrogen bond
surfaces at the interaction location of [(SRX)(TCNQ)] and dopamine, respectively.
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3.5. Molecular Dynamics Simulation

For the 100 ns simulation run, the best-docking position for SRXD and CTcD with the
highest docking score was used. The RMSD of molecular dynamics data was calculated
to investigate structural stability. After 45 ns and 60 ns, respectively, SRXD and CTcD
established constant conformation with an appropriate RMSD value of 2.85 and 3.56,
respectively (Figure 11).
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As indicated previously, <3.0 Å is the most acceptable RMSD value range, which
indicates better system stability [61]. This finding shows that the CTcD develops a more
stable combination. The findings revealed that ligand-receptor interactions bring protein
chains closer and reduce the gap between them, as shown in Figure 12 [62].
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The average distance and standard deviation for all amino acid pairs between two
conformations were calculated using RR distance maps [63]. In Figure 13, the patterns of
spatial interactions are depicted using the RR distance maps [64].
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On the map, the white oblique represents the zero distance between two amino acid
residues, whereas the red and blue elements depict residue pairs with the biggest distance
deviations between the two forms. The average radius of gyration (Rg) value of 28.75 and
28.52 Å was observed for SRXD and CTcD, respectively. Along the simulation time, Rg
decreased, indicating that the structures became more compact (Figure 14).
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The number of hydrogen bond interactions between ligand and receptor combinations
(SRXD and CTcD) were displayed against time using a grid search on a 15 × 20 × 27 grid
with a rcut = 0.35 value (Figure 15).

The hydrogen bonds between SRX and dopamine were at 33 and 1356 atoms, respec-
tively. While they were between 56 and 5109 atoms for the CT complex and dopamine.
However, there were 709 donors for both (SRXD and CTcD), 1356 acceptors for SRXD, and
1426 acceptors for CTcD. For SRXD and CTcD, the average number of hydrogen bonds per
time was found to be 0.065 and 0.144 out of 480,702 possible.

Overall, these findings suggest that the receptor–protein interaction increased the
number of hydrogen bonds by a significant amount in CTcD. As the ligand attached to
the receptor, the values of the solvent-accessible surface area (SASA) changed (Figure 16).
When the receptor interacts with the ligand, the SASA is lowered, indicating a change in
protein structure and a smaller pocket size with increased hydrophobicity.
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3.6. Theoretical Structural Analysis

Density functional theory (DFT) using B-3LYP/6-311G++ (basis set) level of theory
and optimized geometry of the CT complexes- [(SRX)(PA}], [(SRX)(DNB), [(SRX)(p-NBA)],
[(SRX)(DCQ)], [(SRX)(DBQ)], and [(SRX)(TCNQ)] with atomic coordinates, strain-free lat-
tice constants and ground state minimum energy structure are obtained. The optimized
structures of all the CT complexes with the Mulliken numbering scheme are shown in
Figure 17. The minimum SCF energy of obtained for [(SRX)(PA}], [(SRX)(DNB), [(SRX)(p-
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NBA)], [(SRX)(DCQ)], [(SRX)(DBQ)], and [(SRX)(TCNQ)] is−1958.944644 to,−1689.608194,
−1673.728419, −2788.736562, −7011.542112, and −1726.964350 a.u in 87, 90, 38, 176, 34,
and 91 steps, respectively (Figure 18). Based on the optimized structure, some molecu-
lar parameters (SCF minimum energies, dipole moments, and Electronic spatial extent)
were calculated in the gas phase (Table 4). The HOMO–LUMO gap (∆E) for [(SRX)(PA}],
[(SRX)(DNB), [(SRX)(p-NBA)], [(SRX)(DCQ)], [(SRX)(DBQ)], and [(SRX)(TCNQ)] was cal-
culated as 2.78, 3.44, 3.31, 2.29, 2.43, and 1.89 eV, respectively. The overall order of the
chemical reactivity of the CT complexes on the bases of ∆E is as follows- [(SRX)(TCNQ)] >
[(SRX)(DCQ)] > [(SRX)(DBQ)] > [(SRX)(PA}] > [(SRX)(p-NBA)] > [(SRX)(DNB)].
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Figure 18. Optimization step graph for (a) [(SRX)(PA}], (b) [(SRX)(DNB), (c) [(SRX)(p-NBA)],
(d) [(SRX)(DCQ)], (e) [(SRX)(DBQ)], and (f) [(SRX)(TCNQ)].

Table 4. Theoretical molecular parameters of the CT complexes obtained through DFT.

CT Complex Minimum SCF
Energy (a.u.)

Dipole Moment
(Debye)

Electronic
Spatial Extent

(a.u.)
∆E (eV)

[(SRX)(PA}] −1958.944644 10.500053 33,762.8991 2.7845

[(SRX)(DNB)] −1689.608194 9.644797 20,168.3034 3.4449

[(SRX)(p-NBA)] −1673.728419 11.524028 26,521.9908 3.3189

[(SRX)(DCQ)] −2788.736562 5.693616 19,344.1851 2.3924

[(SRX)(DBQ)] −7011.542112 5.965700 18,542.9710 2.4310

[(SRX)(TCNQ)] −1726.964350 5.607618 35,156.4199 1.8942

4. Conclusions

The charge transfer complexes between the seproxetine as a donor and picric acid, dini-
trobenzene, p-nitrobenzoic acid, 2,6-dichloroquinone-4-chloroimide, 2,6-dibromoquinone-
4-chloroimide, and 7,7′,8,8′-tetracyanoquinodi methane as π-electron acceptors were char-
acterized and studied for interaction with three receptors (serotonin, dopamine, and TrkB
kinase receptor). The spectrophotometric analysis confirmed that the charge–transfer in-
teractions between the electrons of the donor and acceptors were 1:1 (SRX: π–acceptor).
Molecular docking revealed that the CT complex [(SRX)(TCNQ)] interacted with all three re-
ceptors more efficiently than the reactant donor (SRX); among all, [(SRX)(TCNQ)]-dopamine
(CTcD) had the highest binding energy value. Using AutoDock Vina, the molecular dynam-
ics simulation of the 100 ns run revealed that both the SRX-dopamine and CTcD complexes
had a stable conformation; however, the CTcD complex was more stable. DFT calculations
provided the optimized geometries of the CT complexes. In the context of mounting
evidence for the role of DA transmission, such transmission enhancement might be of
potential research and clinical benefit.
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