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Voltage-gated sodium (NaV) channels are critical molecular determinants of action potential
generation and propagation in excitable cells. Normal NaV channel function disruption can affect
physiological neuronal signaling and lead to increased sensitivity to pain, congenital indifference
to pain, uncoordinatedmovement, seizures, or paralysis. Human genetic studies have identified
human NaV1.7 (hNaV1.7), hNaV1.8, and hNaV1.9 channel subtypes as crucial players in pain
signaling. The premise that subtype selective NaV inhibitors can reduce pain has been
reinforced through intensive target validation and therapeutic development efforts. However,
an ideal therapeutic has yet to emerge. This review is focused on recent progress, current
challenges, and future opportunities to develop NaV channel targeting small molecules and
peptides as non-addictive therapeutics to treat pain.
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INTRODUCTION

Voltage-gated sodium (NaV) channels play vital roles in initiating and propagating action potentials in
excitable cells, conduct pain signals in primary afferents, and emerged as attractive targets for developing
non-addictive pain therapeutics (Mulcahy et al., 2019; Alsaloum et al., 2020). The human genome contains
nine NaV channel subtypes expressed in various cell types and tissues (NaV1.1 to NaV1.9) (Catterall et al.,
2005). NaV1.7, NaV1.8, and NaV1.9 channels are predominantly expressed in the peripheral nervous
system and linked to various pain disorders in humans (Cheng et al., 2021). Genetic and functional studies
have identified and validated NaV1.7, NaV1.8, and NaV1.9 channels as targets for pain treatment. This
review briefly summarizes the recent progress, current challenges, and discusses the potential use of
advanced computational methods for structure-guided development of selective NaV channel inhibitors as
therapeutics to treat pain.

CURRENT EFFORTS IN THE DEVELOPMENT OF PAIN
THERAPEUTICS TARGETING SPECIFIC BINDING SITES ON NAV

CHANNELS
The structure of eukaryotic NaV channel α subunit comprises four homologous domains I, II, III, IV, each
containing six transmembrane segments S1 to S6. The segments S1 to S4 form four distinct voltage sensor
domains (VSD I, VSD II, VSD III, and VSD IV) that sense membrane voltage and trigger conformational
changes (Ahern et al., 2016) that couple to the pore, which is formed by the segments S5 and S6 from each

Edited by:
Tamer M. Gamal El-Din,

University of Washington,
United States

Reviewed by:
Mark R. Estacion,

Yale University, United States

*Correspondence:
Vladimir Yarov-Yarovoy
yarovoy@ucdavis.edu

Specialty section:
This article was submitted to

Pharmacology of Ion Channels and
Channelopathies,

a section of the journal
Frontiers in Pharmacology

Received: 23 December 2021
Accepted: 12 January 2022
Published: 27 January 2022

Citation:
Nguyen PT and Yarov-Yarovoy V
(2022) Towards Structure-Guided
Development of Pain Therapeutics

Targeting Voltage-Gated
Sodium Channels.

Front. Pharmacol. 13:842032.
doi: 10.3389/fphar.2022.842032

Frontiers in Pharmacology | www.frontiersin.org January 2022 | Volume 13 | Article 8420321

MINI REVIEW
published: 27 January 2022

doi: 10.3389/fphar.2022.842032

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.842032&domain=pdf&date_stamp=2022-01-27
https://www.frontiersin.org/articles/10.3389/fphar.2022.842032/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.842032/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.842032/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.842032/full
http://creativecommons.org/licenses/by/4.0/
mailto:yarovoy@ucdavis.edu
https://doi.org/10.3389/fphar.2022.842032
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.842032


FIGURE 1 | Notable pharmacological binding sites on NaV channels. The top panel shows the transmembrane topology of a eukaryotic NaV channel with four
homologous domains and six transmembrane segments S1 to S6. The bottom panel shows a structure of a NaV channel (colored ribbons) with four common
pharmacological binding sites (labeled) embedded in a lipid patch (gray blobs).

FIGURE 2 | Example structures of small molecules and peptide toxins binding to the four common pharmacological binding sites. (A), rat NaV1.5 channel in
complex with antiarrhythmic drug flecainide (pdb: 6uz0) (Jiang et al., 2020). (B), human NaV1.7 channel in complex with saxitoxin STX (pdb: 6j8h) (Shen et al., 2019). (C),
bacterial NaVAb/human NaV1.7(VSDII) chimeric channel in complex with protoxin II (pdb: 6n4r) (Xu et al., 2019). (D), bacterial NaVAb/human NaV1.7(VSDIV) chimeric
channel in complex with investigational compound GX-936 (pdb: 5ek0) (Ahuja et al., 2015).
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domain. The membrane depolarization activates VSD I, VSD II, and
VSD III to open the channel pore and the subsequent activation of
VSD IV leads to the fast inactivation of the channel (Ahern et al.,
2016). Biophysical and pharmacological characterization identified
multiple binding sites for neurotoxins and drugs on NaV channels
(Stevens et al., 2011). Grouping them by location and conformational
state, there are four binding sites that have attracted significant
interests in the development of pain therapeutics: the central pore
cavity, the upper selectivity filter, the resting VSD II, and the activated
VSD IV (Figure 1).

The Central Pore Cavity
The central pore cavity binding site is formed by transmembrane
segments S5 and S6 (Figure 1). Drugs are thought to access this
binding site either from the intracellular side via the S6 gate or
from the lipid membrane through inter-domain fenestrations
(Hille, 1977), although recent evidence has suggested direct access
from the extracellular side is possible (Lee et al., 2019; Nguyen
et al., 2019). This location is a hub of channel interactions with
drugs and neurotoxins. Notably, local anesthetics, such as
flecainide (see Figure 2A) and lidocaine, bind to this region
and directly block ion conduction or trap the channel in non-
conducting states (Hille, 1977). Neurotoxins such as
batrachotoxin and veratridine could engage in an interesting
dual-action mechanism that can stabilize the open state while
partially blocking ion conduction (Wang et al., 2007), (Craig et al.,
2020). Binding at this location often exhibits state-dependent and
use-dependent effects in which binding affinity is highly
dependent on the membrane potentials and frequencies of
stimulation protocols.

This binding site has drawn significant interest due to the
clinical use of broad-spectrum small molecule sodium channel
inhibitors like local anesthetics, antiarrhythmics, and
antiepileptics without adverse effects. For example, FDA has
approved lacosamide for partial-onset seizures (Lattanzi et al.,
2015), lamotrigine for epilepsy (Nolan et al., 2016), and
carbamazepine for the treatment of trigeminal neuralgia
(Cruccu et al., 2008). Because these compounds are non-
selective, the use cases are limited, highlighting the need for
improved therapeutics. However, the high sequence homology
among NaV isoforms in the central pore cavity has created
challenges for developing selective compounds targeting this
site. Investigational compounds such as Vixotrigine
(Convergence/Biogen) targeting NaV1.7 (Hinckley et al., 2021),
currently in phase II clinical trials for trigeminal neuralgia and
small fiber neuropathy or PF-01247324 (Pfizer) (Payne et al.,
2015), PF-04531083 (Pfizer) (Bagal et al., 2014) targeting NaV1.8
are non-selective or have modest selectivity against the on-target
channel. Another NaV1.8 targeting compound, A-803467
(Abbott/Icagen) also binds to the T-type calcium channel in
low micromolar affinity, within the range of therapeutic
concentration (Bladen and Zamponi, 2012). Nevertheless, the
central pore cavity binding site is still a tractable target even
though achieving subtype selectivity could be challenging.
Perhaps, this is because broad-spectrum and state-dependent
compounds could still be effective and safe for local
administrations or conditions with elevated neural activities

such as neuropathic pain, as demonstrated by previously
approved NaV inhibitor drugs.

The Upper Selectivity Filter Binding Site
This binding site is located at the entrance of the selectivity filter,
mainly formed by residues from the P2 helices in each NaV
channel domain (Figure 1). The binding site is well-known for
different classes of marine toxins such as tetrodotoxin (TTX),
saxitoxin (STX) (see Figure 2B), and μ-conotoxin (Stevens et al.,
2011) that directly block sodium ions from passing through the
channel. TTX has classically been used to classify NaV channels
based on their sensitivity to the toxin: NaV1.5, NaV1.8, NaV1.9 are
TTX resistant (TTX-R) while the others are TTX sensitive (TTX-
S). Because this binding site is broadly accessible at all membrane
potentials, toxin binding here exhibits minimal state-dependent
effect, distinguishing this site from all other binding sites
mentioned. Mutagenesis and structural studies showed TTX
and STX are located deeper in the selectivity filter while μ-
conotoxins interact more dominantly with residues at the
entrance of the selectivity filter and the extracellular loops of
the pore (Walker et al., 2012; Pan et al., 2019). Interestingly, two
residues near the binding site for these toxins located on the
NaV1.7 DIII P2 helix, T1398/I1399 (hNaV1.7 numbering), are
unique among human NaV channels making this site attractive
for subtype selectivity optimization targeting NaV1.7.

The development of selective inhibitors for this binding site
has been pioneered by SiteOne Therapeutics. Using
structure–activity relationship (SAR) study interrogating the
T1398/I1399 positions, SiteOne Therapeutics first obtained
several selective STX analogs that have >1,000-fold selectivity
for NaV1.7 over NaV1.4 and NaV1.6 (Mulcahy et al., 2018).
Recently, a compound named ST-2262 was reported to be
potent (IC50 = 72 nM) with >200-fold subtype selectivity over
hNaV1.6 and >900-fold over all other hNaV isoforms (except for
hNaV1.9, which was not tested) (Pajouhesh et al., 2020). ST-2262
was tested on non-human primate pain models and exhibited
reduced sensitivity to noxious heat. More recently, the company
disclosed another saxitoxin analog named ST-2530 that is potent
(IC50 = 25 nM) and highly selective with >500-fold over
hNaV1.1—hNaV1.6 and hNaV1.8 (Beckley et al., 2021). Testing
in mice, the ST-2530 was analgesic in acute pain models using
noxious thermal, mechanical, and chemical stimuli when
administered subcutaneously. The compound also showed
reversal of thermal hypersensitivity after a surgical incision on
the plantar surface of the hind paw and transiently reversed
mechanical allodynia in the spared nerve injury model of
neuropathic pain. Another compound from SiteOne
Therapeutics, ST-2427 is currently in Phase I clinical trial.

The Resting VSD II
The resting VSD II binding site is formed by the extracellular S1-
S2 and S3-S4 regions on VSD II (Figure 1). Notably, this site is
well-known for binding of several cysteine knot spider toxins,
including ProTx-II (see Figure 2C), ProTx-III, HwTx-IV, GpTx-
1, and JzTx-V (Schmalhofer et al., 2008; Xiao et al., 2008; Cardoso
et al., 2015; Murray et al., 2016; Moyer et al., 2018). These peptide
toxins bind with a higher affinity to the resting state of VSD II and
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can bind with a lower affinity to the activated state of VSD II.
High-affinity binding to the resting state of VSD II prevents the
voltage sensor from activation upon depolarization and traps the
channel in a closed state.

Several peptide toxins targeting resting VSD II binding site are
at least partially NaV1.7 selective, making them attractive for pain
therapeutic developments. However, several reports have pointed
out that they have limited analgesic efficacy in animal pain
models, likely caused by a narrow therapeutic window
(Schmalhofer et al., 2008; Liu et al., 2014; Deuis et al., 2017).
The development of pain therapeutics for this binding site focuses
on engineering peptides to enhance subtype selectivity targeting
NaV1.7. Using SAR and multiattribute positional scan (MAPS),
Amgen used GpTx-1, a 34-residue tarantula peptide toxin that
has potent activity on NaV1.7 (IC50 = 10 nM) and promising
selectivity against important off-target NaV subtypes (20-fold
over NaV1.4 (skeletal muscle) and 1,000-fold over NaV1.5
(cardiac)) to engineer a GpTx-1 analog (named compound 71)
that is nearly 10-fold more potent than the wild-type GpTx-1
(IC50 = 1.6 nM) and has >1,000-fold selectivity over NaV1.4 and
NaV1.5 (Murray et al., 2015). However, Amgen did not advance
this compound for further evaluation in vivo. Amgen also used
another tarantula peptide toxin, 29-residue JzTx-V, to engineer
several highly selective analogs (Wu et al., 2018). The final lead
peptide (named compound AM-6120) has six modifications from
the wild-type toxin, including three non-canonical amino acids.
AM-6120 is highly potent (IC50 = 0.8 nM), has ~ 100 folds
selectivity over NaV1.4 and >750 folds over NaV1.5, NaV1.6
and NaV1.8. Testing in animal pain models showed that the
compound robustly blocked histamine-induced scratching in
mice after subcutaneous administration. Notably, high plasma
drug concentration (100-fold over the in vitro IC50) was essential
to establish the pharmacological effect. Additionally, AM-6120
had no effect in a capsaicin-induced nociception pain model. The
developers suggested that AM-6120 may need high exposure in
plasma to achieve effective target entanglement, a problem that
has been previously characterized for NaV1.7 small molecule
inhibitors. Amgen has filed related patents for GpTx-1 and
JzTx-V analogs, but no further development has been disclosed.

Using a thorough positional scanning approach, Janssen
produced a library of 1,500 analogs of ProTx-II, a highly
potent tarantula toxin (IC50 < 1 nM) and NaV1.7 selective (
>30 folds) to identify the lead compound JNJ63955918
(Flinspach et al., 2017). The compound is less potent (IC50 ~
10 nM) than the wild-type but has a better selectivity profile, with
100- to >1,000-fold selectivity over NaV1.1, NaV1.2, NaV1.4,
NaV1.5, and NaV1.6. In animal models, central and peripheral
administration of JNJ63955918 not only cause a pharmacological
insensitivity to chemical and thermal pain and induces itch,
which resemble behaviors observed in NaV1.7 knock-out in
adult mice (Gingras et al., 2014). Janssen has filed a patent for
ProTx-II analogs but no further development has been disclosed.

The efforts by Amgen and Janssen were mainly performed
with limited structural guidance. Recently, Genentech solved the
structure of NaV1.7/NaVAb chimera in complex with ProTx-II in
resting and activated VSD II states, revealing structural
determinants of toxin binding at this site (Xu et al., 2019)

(Figure 2C). The structure has revealed the channel–toxin
interactions in detail and confirmed the role of F813
(hNaV1.7) in the S3 segment of VSD II as important
determinant of hNaV1.7 selectivity (Schmalhofer et al., 2008).
It also revealed a minimum contribution of the S1-S2 region to
the interaction with ProTx-II, leaving room for future
optimization of peptides targeting this region for subtype
selectivity.

The Activated VSD IV
The activated VSD IV binding site is formed by the extracellular
S1-S2 and S3-S4 regions on VSD IV (Figure 1). A considerable
development in recent years is the discovery of sulfonamide-
based small molecule compounds binding to this site that have
resulted in multiple selective inhibitors against NaV1.7. These
compounds bind to activated conformations of VSD IV and trap
the channel in an inactivated state. Since the activation of VSD IV
is required, this binding site is available at depolarized membrane
potentials, thus creating state-dependent effects of binding.

Pfizer and Icagen first discovered the binding site in the effort
that led to the development of selective sulfonamide compounds
ICA-121431 and PF-04856264 targeting NaV1.3 and NaV1.7,
respectively (McCormack et al., 2013). PF-04856264 is a state-
dependent modulator of NaV1.7 with a binding preference for an
inactivated state. The potency of PF-04856264 measured with
protocols favoring inactivated states was 28 nM for hNaV1.7 and
>10 μM for NaV1.3 and NaV1.5, showing promise of this binding
site for NaV channel subtype selectivity optimization
(McCormack et al., 2013). Pfizer later advanced a subsequently
optimized version of PF-04856264 named PF-05089771 into
clinical trials. The potency of PF-05089771 was 15 nM for
hNaV1.7 with >600 fold selectivity over NaV1.3, NaV1.4,
NaV1.5, NaV1.8, and modest selectivity over NaV1.2 ( ~ 8
folds) and NaV1.6 ( ~ 11 folds) (Swain et al., 2017). PF-
05089771 was studied most extensively with multiple clinical
trials completed (Mulcahy et al., 2019). Notably, in a phase II
randomized, double-blind study for diabetic peripheral
neuropathy, PF-05089771 was less effective than the control
using pregabalin, a common drug used for the disease and did
not show a significant difference to the placebo (McDonnell et al.,
2018). In another phase II study to assess the efficacy of increasing
oral daily doses of PF-05089771 for the treatment of
postoperative dental pain, the compound did not show
superiority over ibuprofen which used as a control although
adverse effects were similar (US National Library of Medicine,
2021). The predefined efficacy criteria were not meet and these
studies did not proceed further. Several studies on similar
compounds including PF-06456384 (Pfizer) and AMG8379
(Amgen) suggested that the lack of efficacy is possibly from
high binding to plasma proteins, thus leading to low
concentrations at the target binding site. Specifically, high
unbound plasma exposure relative to in vitro potency against
NaV1.7 was necessary to achieve pharmacodynamic effects in
these studies (Kornecook et al., 2017; Pero et al., 2017; Storer
et al., 2017; Sun et al., 2019).

More recently, Genentech developed and optimized other
sulfonamide compounds to target NaV1.7. Notably, Genentech
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captured the X-ray structure of a NaV1.7/NaVAb chimera in
complex with sulfonamide, GX-936, revealing the structural basis
for sulfonamide interaction with the activated VSD IV binding
site (Ahuja et al., 2015) (Figure 2D). The NaV1.7/NaVAb—GX-
936 structure complex, together with physiological
characterizations of another sibling compound, GX-674 on
NaV1.7 VSD IV, revealed critical roles of R4 gating charge on
S4 and YWxxV motif on S2 for potency and selectivity,
respectively. Genentech in collaboration with Xenon
Pharmaceuticals then advanced two highly potent acyl
sulfonamide candidates targeting NaV1.7, GDC-0276 (IC50 =
0.4 nM) and GDC-0310 (IC50 = 0.6 nM) for clinical
developments (Safina et al., 2021). GDC-0276has > 21 folds
selectivity over hNaV1.1, hNaV1.2, hNaV1.4, hNaV1.5, hNaV1.6
with the highest selectivity against hNaV1.6 ( ~ 1,200 fold) and the
lowest selectivity against hNaV1.4 ( ~ 21 fold). GDC-0310has > 63
fold selectivity over hNaV1.1, hNaV1.2, hNaV1.5, ~ 330 fold over
NaV1.6 but only a modest ~ 6 folds selectivity over hNaV1.4
(Safina et al., 2021). Xenon Pharmaceuticals and Genentech have
stopped the development of GDC-0276 and GDC-0310 after
Phase I trials for non-disclosed reasons.

We are not aware of any related compounds currently in
clinical trials, although improvements in minimizing plasma
binding have been observed in a next-generation sulfonamide
compound such as AMG8379 (Kornecook et al., 2017). Whether
optimizing sulfonamide compounds is still a good strategy for
developing pain therapeutics remains to be seen. The activated
VSD IV binding site, however, has demonstrated promise for
developing subtype selective NaV channel inhibitors.

Undisclosed Binding Site
It is worth to mention that Vertex has developed a series of
pyridone amide-based compounds that are selective against
NaV1.8. The compound VX-150 achieved >400-fold selectivity
over other NaV channels (Hijma et al., 2021). Another Vertex
compound VX-548 is currently in phase II clinical trials for acute
pain after a bunionectomy. However, binding sites for these small
molecules have not been revealed yet.

POTENTIAL USE OF ROSETTA IN
STRUCTURAL GUIDED DEVELOPMENT OF
PAIN THERAPEUTICS
Designing selective NaV inhibitors as therapeutics to treat pain
has been extremely challenging. Only several highly selective
compounds have been identified or created by the massive
efforts from the biopharmaceutical industry. However, it is
noted that a majority of the approach utilized extensive SAR
studies in combination with positional scanning and high-
throughput testing, whereas high-resolution structural
information remains largely unexplored. Since then, many of
NaV structures have been solved at high resolution, including in
complexes with is small molecules and peptide toxins, providing a
better understanding, both structurally and mechanistically of
NaV inhibitors at their pharmacological binding sites. Advanced
computational methods can take advantage of atomic scale

structural information for design and optimization of novel
compounds. For example, molecular docking with high-
resolution structures led to the identifications of highly
selective D4 dopamine receptor agonists (Wang et al., 2017)
and M3R muscarinic acetylcholine receptor antagonists (Liu
et al., 2018). Virtual screening of 490 million virtual molecules
discovered selective ligands for sigma 2 receptor (σ2R) that
showed analgesic effects in animal models for neuropathic
pain (Alon et al., 2021). De novo protein design functionalities
in Rosetta allowed the design of highly potent and selective
cytokine mimics (Silva et al., 2019) and picomolar affinity
SARS-CoV-2 miniprotein inhibitors (Cao et al., 2020). We
expect that high-resolution structures and advanced
computational methods will further drive the development of
therapeutics targeting NaV channels to treat pain.

Several tools in the Rosetta computational modeling suite may
offer promising strategies for the structure-guided approach, both
for small molecule and peptide design and optimization. For
example, RosettaLigand has been reliable in docking small
molecule ligands and is highly suitable for SAR study (Davis
and Baker, 2009). The recent integration of the BCL
Cheminformatics package (Brown et al., 2021) will soon allow
virtual screening and fragment-based design of small molecules
in RosettaLigand. Alternatively, a newly developed application for
small molecule docking named Rosetta GALigandDock utilizing
a fast genetic algorithm would be suited for the virtual screening
of small molecule libraries (Park et al., 2021). Rosetta has
demonstrated excellent potential to design novel proteins. A
large population of peptide inhibitors of ion channels is from
natural toxins such as cysteine knot peptides which can now be
designed computationally using Rosetta to access more diverse
shapes and sizes (Bhardwaj et al., 2016). Such a library of de novo
designed peptides can then be incorporated with a binding motif
on a NaV structure—toxin complex using MotifGraft or
FunFolDes (Silva et al., 2016) followed by a sequence design
step to achieve novel peptide binders. Additionally, Rosetta also
allows the design of peptides with cyclic topologies and with non-
canonical amino acids such as macrocycles (Hosseinzadeh et al.,
2017). Such approaches would significantly expand peptide
compounds’ structural and chemical space to increase the
chances of achieving potent and selective inhibitors.

CONCLUSION

Human NaV channel subtypes NaV1.7, NaV1.8, and NaV1.9 have
emerged as viable targets for developing novel therapeutics to treat
pain. Previous efforts by academia and industry have identified small
molecules and peptides targeting NaV1.7 ad NaV1.8 as potential
preclinical leads, with several compounds entering clinical trials. We
have categorically grouped these efforts into four pharmacological
binding sites; each has distinct characteristics that have attracted
developments in the biopharmaceutical industry. We envision
computational structural biology approaches, such as Rosetta
(Baek et al., 2021), AlphaFold (Tunyasuvunakool et al., 2021) and
others will be guiding the future design of highly potent and selective
NaV inhibitors.
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Additionally, advanced mathematical modeling and machine
learning methods for absorption, distribution, metabolism, and
excretion assessment will further guide the development of next-
generation investigational compounds for pain therapeutics.
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