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Abstract: We describe an infant female with a syndromic neurodevelopmental clinical phenotype
and increased chromosome instability as cellular phenotype. Genotype characterization revealed
heterozygous variants in genes directly or indirectly linked to DNA repair: a de novo X-linked
HDAC8 pathogenic variant, a paternally inherited FANCG pathogenic variant and a maternally
inherited BRCA2 variant of uncertain significance. The full spectrum of the phenotype cannot
be explained by any of the heterozygous variants on their own; thus, a synergic contribution is
proposed. Complementation studies showed that the FANCG gene from the Fanconi Anaemia/BRCA
(FA/BRCA) DNA repair pathway was impaired, indicating that the variant in FANCG contributes
to the cellular phenotype. The patient’s chromosome instability represents the first report where
heterozygous variant(s) in the FA/BRCA pathway are implicated in the cellular phenotype. We
propose that a multigenic contribution of heterozygous variants in HDAC8 and the FA/BRCA
pathway might have a role in the phenotype of this neurodevelopmental disorder. The importance of
these findings may have repercussion in the clinical management of other cases with a similar synergic
contribution of heterozygous variants, allowing the establishment of new genotype–phenotype
correlations and motivating the biochemical study of the underlying mechanisms.
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1. Introduction

Neurodevelopmental disorders (NDDs) are defined as “a group of conditions with
onset in the developmental period [ . . . ] characterized by developmental deficits that
produce impairments of personal, social, academic, or occupational functioning” [1,2].
They represent an important health burden, affecting more than 3% of children world-
wide [3]. Up to 60% of individuals affected with NDDs are carriers of de novo (likely)
pathogenic genetic variants [1]; nevertheless, the majority of NDDs remain molecularly
undiagnosed. Massive parallel sequencing, commonly named next-generation sequencing
(NGS), became a vital methodology in the establishment of the molecular diagnosis, with
especial impact in diseases with high clinical and genetic heterogeneity or nonspecific
phenotypes [4]. One such example is the rare inherited chromosome breakage syndrome,
Fanconi anaemia (FA), characterized by multiple congenital abnormalities, haematological
defects and predisposition to malignancies [5,6]. FA patient cells show an exceptional
sensitivity to DNA cross-linker agents such as mitomycin C (MMC) and dexproxibutane
(DEB) [7]; therefore, the presence of increased chromosome breakage and radial forms on
cytogenetic testing allows the establishment of FA diagnosis. This is also attained when one
of the following is identified upon molecular genetic testing: biallelic pathogenic variants
in one of the 21 autosomal recessive FA genes, a heterozygous variant in RAD51 gene
or a hemizygous pathogenic variant in the X-linked FANCB gene. FA/BRCA pathway
proteins are mostly involved in DNA repair in a genome maintenance process, essential
to DNA-DNA cross-link and DNA double-stand breaks repair mechanisms [8]. In this
process, the FA core complex, composed by FANCA, -B, -C, -E, -F, -G, -L, -M, is responsible
for the monoubiquitination of FANCD2 and FANCI, and the remainder, namely FANCD1
(BRCA2), -J (BRIP1), -N (PALB2), -O (RAD51C), -P (SLX4) and -Q (XPF), act downstream of
this step [9].

NGS also has advanced the identification of multiple variants in more than one gene,
with a combined/cumulative effect. Clinical manifestations resulting from variants in
different genes are increasingly being reported [10,11]. In the digenic diseases database
(DIDA, Available online: http://dida.ibsquare.be (accessed on 13 December 2021) at least
54 diseases, caused by 258 digenic combinations, involving 169 genes and 448 pathogenic
variants, are described [12]. However, experimentally evaluating the combination of these
variants for deleteriousness and causality is currently unworkable given the large amount
of data generated and the number of variants identified in each individual genome.

Herein, we describe an infant female affected with NDD, which we hypothesise
resulted from a synergic contribution of variants in the genes directly or indirectly linked
to DNA repair. This also represents the first report where heterozygous variant(s) in
FA/BRCA repair pathway gene(s) are implicated in an increased chromosome instability.

2. Materials and Methods
2.1. Subjects

Peripheral blood samples from the proband, both parents, a healthy donor (negative
control) and Fanconi anaemia (FA) patients (positive controls) were used in this study.
Confirmation of the FA diagnosis was performed at the Laboratory of Cytogenetics, ICBAS,
UP. Epstein–Barr virus-transformed lymphoblast cell lines (LCLs) were generated from
peripheral blood cells of the proband and a negative control. As positive controls, LCLs
from three FA patients were used. FA LCLs were kindly provided by Dr Juan Bueren’s
Laboratory at the Centro Investigaciones Energéticas, Medioambientales y Tecnológicas
(CIEMAT), Madrid. Primary fibroblasts from the proband were also used in this study.

All procedures were carried out with the informed consent of the participants. This
investigation was approved by the Ethical Committee on Human Research of Centro
Hospitalar Universitário do Porto (CHUPorto.)—REF 2015.196 (168-DEFI/157-CES) and
Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP)—
PROJETO No. 129/2015.

http://dida.ibsquare.be
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2.2. Cell Cultures

Peripheral blood was cultured, for 72 h, in RPMI-1640 (Sigma-Aldrich, St. Louis,
MO, USA), at 37 ◦C in a 5% CO2, humidified atmosphere, supplemented with 15% foetal
bovine serum (FBS; Sigma-Aldrich), 1% of penicillin/streptomycin (Pen/Strep; Lonza,
Basel, Switzerland), 29 mg/mL of L-glutamine (Sigma-Aldrich) and 5 µg/mL of phyto-
hemagglutinin (Gibco, Thermo Fisher Scientific, Waltham, MA, USA), for stimulation of
lymphocytes.

Epstein–Barr virus-transformed lymphoblast cell lines (LCLs) were cultured in RPMI-
1640 (Sigma-Aldrich) supplemented with 15% FBS (Gibco, Thermo Fisher Scientific) and
1% of Pen/Strep (Lonza) at 37 ◦C in a 5% CO2, humidified atmosphere.

The proband’s primary fibroblasts were cultured in Dulbecco’s Modified Eagle’s
Medium (DMEM; Gibco, Thermo Fisher Scientific) supplemented with 15% FBS (Gibco,
Thermo Fisher Scientific) and 1% Pen/Strep (Lonza) at 37 ◦C in a 5% CO2, humidified
atmosphere, until 90–95% confluence.

2.3. Molecular Studies
2.3.1. Exome Sequencing, Variant Filtering and Prioritization, and CNV Calling

Exome Sequencing (ES) analysis was performed on proband’s genomic DNA (gDNA),
obtained from peripheral blood, using salting out methods [13]. Libraries were captured
using a SureSelect V5-post Kit (Agilent Technologies, Santa Clara, CA, USA), and 100 bp
paired-end sequencing was performed using an Illumina HiSeq 2000/2500 (Illumina, San
Diego, CA, USA). The Genome Analysis Toolkit (GATK v3.4.0) was used to assemble
the raw data of FASTQ file format into the University of California Santa Cruz (UCSC)
Genome Browser (Available online: http://genome.uscs.edu/ (accessed on 10 February
2016))—human assembly: February 2009 (hg19—NCBI build GRCh37) and variant alleles
were annotated using SnpEff (SnpEff_v4.1 g).

Variants passing following filters were selected for clinical correlation: (a) frequency
< 1% (dbSNP, GnomAD Browser, and local databases); (b) gene component, that is, exon
and canonical splice acceptor or donor sites; (c) non-synonymous consequence; (d) in silico
deleteriousness and spliceogenic effect predictions, using tools: (i) Combined Annotation
Dependent Depletion scoring (CADD threshold ≥ 15) [14]; (ii) SpliceSiteFinder-like (SSF,
normal score threshold ≥ 70 for SDS and SAS) [15]; (iii) MaxEntScan (MES, normal score
threshold ≥ 0 for SDS and SAS) [16]; (iv) NNSPLICE (NNS, normal score threshold ≥ 0.4
for SDS and SAS) [17]; and (v) GeneSplicer (GS, normal score threshold ≥ 0 for SDS and
SAS) [18]. Variants are described according to Human Genome Variation Society (HGVS)
recommendations [19,20], and classification of clinical significance follows the guidelines of
the American College of Medical Genetics and Genomics and the Association for Molecular
Pathology (ACMG and AMP) [21] (Varsome, Available online: https://varsome.com
(accessed on 28 October 2021) [22] and ClinVar classification [23].

To confirm the presence of the selected variants and further segregation studies, Sanger
sequencing was performed using the primers: (i) gDNA_HDAC8-F 5′-CACTACCCCTAGA
CCAAACTGACC-3′ and gDNA_HDAC8-R 5′-AAAGACACTTGCCAATTCCCAC-3′;
(ii) gDNA_FANCG-F 5′-CTCGAGGCACCTGAAGTAGG-3′ and gDNA_FANCG-R 5′-
GCTTCTCTGCAATGGGGTAG-3′; (iii) gDNA_BRCA2-F 5′-TGATCCACTATTTGGGGAT
TG-3′ and gDNA_BRCA2-R 5′-TCTCTGGACCTCCCAAAAAC-3′. PCR products were pu-
rified using the IllustraTM ExoStarTM 1-Step, (GE Healthcare Life Sciences, Little Chalfont,
UK), sequenced using the BigDye Terminator v3.1 cycle sequencing kit (Applied Biosys-
tems, Foster City, CA, USA) and further analysed with SeqScape Software v2.5 (Applied
Biosystems).

CNV calling based on ES data was performed using CoNIFER (Available online:
http://conifer.sourceforge.net/ (accessed on 28 May 2019)) [24]. CNVs with an absolute
Z-score greater than 1.7 were considered for analysis. All deletions were considered
disruptive, as were duplications in known fully penetrant microdeletion/duplication

http://genome.uscs.edu/
https://varsome.com
http://conifer.sourceforge.net/
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regions and intragenic CNV duplications. CNVs that overlapped known regions of partial
penetrance were considered separately [25].

2.3.2. Transcript Analysis in Proband’s Blood and Fibroblasts

Blood and fibroblast RNA samples were obtained from proband and controls, using
5 PRIME PerfectPure RNA Blood and Tissue Kits, respectively (Thermo Fisher Scientific,
Waltham, MA, USA). HDAC8 exon 8 cDNA was amplified using SuperScript One-Step—RT-
PCR with Platinum Taq kit (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s
instructions, using primers cDNA_HDAC8-F 5′-CAGGTGACGTGTCTGATGTTG-3′ and
cDNA_HDAC8-R 5′-ACCCCGGTCAAGTATGTCC-3′. PCR products were purified using
Illustra ExoStar 1-Step, (GE Healthcare Life Sciences), followed by an asymmetric PCR
using a BigDye Terminator v3.1 cycle sequencing kit (Applied Biosystems).

2.4. Test for Chromosome Instability Evaluation

The DEB test was used for confirmation/exclusion of FA diagnosis. The standard
protocol for the DEB test has been well established at the Laboratory of Cytogenetics,
ICBAS, UP. In summary, lymphocyte cultures were treated with DEB (Sigma-Aldrich) at
0.05 µg/mL and 0.1 µg/mL during 48 h at 37 ◦C in a 5% CO2 humidified atmosphere.
Metaphase arrest was obtained after a treatment with colcemid (Gibco, Thermo Fisher
Scientific) for 1 h at 37 ◦C in a 5% CO2 in a humidified atmosphere, following hypotonic
solution (KCl, 0.75 M) (Merck, Kenilworth, NJ, USA) treatment. After fixation with a 3:1
ice-cold solution of methanol (Thermo Fisher Scientific) and acetic acid (Thermo Fisher
Scientific), the cell suspension was dropped onto a properly-labelled microscope slide.
Slides were left to air dry for approximately 24 h (room temperature and 50–60% humidity)
and stained with 4% Giemsa (Merck) for 4 min. Using the Olympus CX31 microscope,
metapahases were selected with a 100X objective lens and captured using an Olympus
EP50 camera.

For each lymphocyte culture, 100 metaphases were analysed in a blinded fashion.
Each cell was scored for chromosome number, and the number and the types of structural
abnormalities: breaks (achromatic areas wider than a chromatid), fragments (also scored as
breaks), dicentric chromosomes, ring chromosomes and chromatid exchange configurations
(triradial and tetraradial figures), the last three being scored as rearrangements and consid-
ered as two breaks. The chromosome instability parameters evaluated were percentage of
aberrant cells and mean number of breaks per cell. Reference values for FA classification
were established according to Auerbach et al. [26]. The mean number of breaks per cell, in
cultures with DEB concentration of 0.05 µg/mL, is the diagnostic discriminative parameter,
because there is no overlap of values between AF (DEB positive) and non-AF/control (DEB
negative) groups (Table 1).

Table 1. Established reference values for chromosome instability in DEB-treated peripheral blood
lymphocytes (adapted from Auerbach et al. [26]).

Parameters Group Mean Min Max

Nr breaks/cell
FA 8.96 1.30 23.90

Non-FA/control 0.06 0.00 0.36

% ab cells
FA 85.15 12.60 100.00

Non-FA/control 5.12 0.00 22.00

Difference between FA and non-FA/control groups for the two parameters: number of breaks per
cell (Nr breaks/cell) and percentage of aberrant cell, i.e., cells with breaks (% ab cells).

Min—minimum; Max—maximum; Nr—number; ab—aberrant; FA—Fanconi anaemia.

2.5. Mitomycin C Sensitility Test

To challenge the FA/BRCA pathway, LCLs were submitted to increased concentrations
of MMC (0–1000 nM, M0503, Sigma-Aldrich) in fresh medium for a period of 120 h.
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After this period, cells were resuspended in phophate-buffered saline (PBS)–bovine serum
albumin (BSA; 0.05%) containing 0.5 mg/mL propidium iodide (P-4864, Sigma-Aldrich)
and incubated for 10 min at 4 ◦C. Cell viability was determined by flow cytometry based
on the PI exclusion test. The analysis was carried out, taking into account the viability of
the 0–3 nM cells as a reference in each cell type condition. All the doublets were discarded
from the analysis. Flow cytometry analysis was performed on an FACS Calibur (Becton-
Dickinson, San Jose, USA). As internal controls, a healthy donor (normal control) was used
in each assay, along with three FA patients (positive controls in one of the experiments
(kindly provided by Dr Juan Bueren´s laboratory).

2.6. Complementation with Retroviral Vectors Expressing Functional FANCG

To investigate whether FANCG-expressing vectors could restore the phenotype of
proband’s cells, LCLs were transduced with vectors expressing FANCG protein
(LGEG11) [27,28]. In all instances, vectors were packaged in PG13 cells, and titers of
0.5–5 × 106 infective particles/mL were routinely obtained. To transduce LCLs, cell culture
plates were pre-treated in a plasma chamber (Diener Electronics, Ebhausen, Germany) for
2 min and subsequently coated with fibronectin (2 mg/cm2, reference F1141, Sigma-
Aldrich). Wells were preloaded twice with 1 mL of retroviral supernatants for 30 min
at 37 ◦C. After virus preloading, 3 × 105 cells in 2 mL of supplemented RPMI were seeded
to the wells. After three weeks, sufficient cells were obtained in all the conditions, and the
mitomycin C (MMC, 0–1000 nM) sensibility test was performed.

3. Results
3.1. Clinical Case

A six-month-old girl, the second child of a non-consanguineous couple, was referred
for genetic consultation due to global developmental delay, Pierre-Robbin sequence and
failure to thrive. Intrauterine growth restriction was noticed at 20 weeks of gestation.
She was born by caesarean section at 38 weeks with an Apgar index of 7/8, weight and
length below the 5th percentile and an occipital frontal circumference (OFC) at the 5th
percentile. At 8.5 months of age, her weight, height and OFC were below the 5th percentile.
She had a global developmental delay, including absent speech. At physical examination,
she had craniofacial dysmorphisms (Figure 1), including lacrimal duct obstruction and
cleft palate; digital abnormalities including short 5th metacarpal, low-set thumb, broad
hallux, hypoplastic nails of the fifth toes; limited hips abduction; scoliosis; hirsutism; and
hypopigmentation spots. Additionally, axial hypotonia with peripheral hypertonia was
identified. Gastro-esophageal reflux was also diagnosed. At the age of 6.8 years, she has
low weight (−5.7 SD), short stature (−3.8 SD) and microcephaly (−5.6 SD). After intensive
speech and language therapy, she uses sign language to communicate.

Bilateral hearing loss was confirmed by auditory evoked potentials (bilateral elec-
trophysiological limits of 80 dB). An echocardiogram, performed at four months of age,
showed patent foramen ovale and persistent left superior vena cava. Brain MRI at the age
of three months revealed (i) large sylvian fissures, especially on the left, suggesting delayed
“operculation”; (ii) a retrocerebelar paramedian right space dilation, likely corresponding
to an arachnoid cyst; (iii) a shaped, although apparently well-formed, inferior side of
the cerebellar vermis; (iv) prominent cortical sulci; (v) a thin corpus callosum; (vi) a less
prominent brain stem; (vii) persistence of small germinolytic cysts; and (viii) an adequate
myelination pattern for that age. She presented recurrent haematological anomalies, such
as monocytosis and thrombocytosis.

Initial genetic and metabolic investigations were normal:important karyotype, fluo-
rescence in situ hybridisation (FISH) of 22q11.2, microarray-based comparative genomic
hybridisation (aCGH), NIPBL gene sequencing, new-born metabolic screening [29] and
reducing sugars in urine. Furthermore, TORCH congenital infections were excluded.
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Figure 1. Craniofacial, hand and foot dysmorphisms at nine months old (A) and five years and
seven months (B). (i)—Facial dysmorphic features: broad nasal bridge and thin upper lip. (ii)—
Micrognathia, low-set, posteriorly rotated, dysmorphic ears. (iii)—Short 5th metacarpal. (iv)—Broad
hallux and hypoplastic nails of the fifth toes.

3.2. Exome Sequencing Analysis

Heterozygous variants in genes associated with known autosomal dominant NDDs
were first prioritized due to the high incidence rate of de novo variants in Western countries
and the absence of consanguinity in this family. However, this approach failed to identify
strong candidate variants as well as relevant CNVs. A promising heterozyguos candidate
variant was identified in the HDAC8 gene (Xq13.1; OMIM*300269), NM_018486.2:c.793G>A,
p.(Gly265Arg), which, after confirmation by Sanger sequencing and segregation studies,
proved to be de novo (Figure 2).
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Figure 2. HDAC8 variant segregation. Partial HDAC8 exon 8 electropherogram, showing the het-
erozygous variant NM_018486.2:c.793G>A (*) in the proband and its absence in the parents’ samples.

Transcript analysis revealed differences between different tissues: in blood, the normal
allele was expressed exclusively, whereas in cultured fibroblasts a weak expression of the
mutant allele was observed (Figure 3).
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Figure 3. HDAC8 transcript analysis in blood and fibroblasts. Partial HDAC8 exon 8 electropherogram
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Unavailability of other tissues, namely brain, hampers the assessment of the likely
pathogenic HDAC8 heterozygous variant involvement in the phenotype. A revision of
45 females affected with HDAC8 variants was performed (Table S1). Despite overlap with
some of the proband’s clinical features, such as short stature, low weight, psychomotor
delay, poor speech, hypotonia, dysmorphic features and other complications including
feeding problems, gastroesophageal reflux, cardiovascular defects, hearing loss and lacrimal
duct obstruction [30–35], the HDAC8 variant does not fully explain the phenotype of this
infant female.

3.3. Chromosome Instability Evaluation

The presence of haematological abnormalities, together with mild digital defects, led
to chromosome instability studies (DEB test) in order to confirm/exclude an FA cellular
phenotype. As shown in Table 2, the diagnostic parameter number of breaks per cell (DEB
concentration of 0.05 µg/mL) classifies the proband as DEB negative. Therefore, an FA
cellular phenotype was excluded. However, both the number of breaks per cell and the per-
centage of aberrant cells were above the normal values. In cultures exposed to DEB at the
concentration of 0.1 µg/mL, increments 3.5-fold and 2.2-fold were observed in the number
of breaks per cell and percentage of aberrant cells, respectively. Additionally, some of the
aberrant cells showed multiple chromosome breaks and multiple radial figures (Figure 4),
which are not found in DEB-induced cells from normal controls. In the corresponding
cultures from the negative control, these increments were not observed. These results
suggest that the cells from the proband have a hypersensitivity to the clastogenic effect
of DEB. In DEB-induced lymphocyte cultures from both parents, the values of percent-
age aberrant cells and the mean numbers of breaks per cell, both with 0.05 µg/mL and
0.1 µg/mL concentrations, were within the normal range.

The increased level of chromosome instability in the proband’s cells prompted ES data
reanalysis focusing on variants in DNA repair genes.

3.4. Mitomycin C Sensitivity Test of Proband’s Cells

A concentration-dependent hypersensitivity to MMC was observed in the proband’s
LCLs, with a cellular survival rate around 63.1 % ± 2.2 % (n = 5) at MMC 33 nM, in contrast
to the healthy donor (normal control), 89.8 % ± 2.1 % (n = 5) and three FA patients (positive
controls) presenting different hipersensitivities (15.1 %; 52.4 %; 37.7 %) (Figure 5).

3.5. Reanalysis of ES Data Focusing on DNA Repair Genes

A heterozygous pathogenic variant NM_004629.1:c.1433+1G>A, p.(?) in the FANCG
gene, which codes for an FA core complex protein, was identified. Segregation stud-
ies revealed that this variant was paternally inherited. A second hetrozygous variant,
NM_000059.3:c.8293T>C, p.(Cys2765Arg) in the BRCA2 gene, maternally inherited with an
uncertain clinical significance, was also identified.
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3.6. Complementation Studies with Retroviral Vectors Expressing Functional FANCG

To assess the involvement of the FA/BRCA pathway in the instability, FANCG vectors
were used in complementation studies. In the proband’s LCLs, complementation with
retroviral vectors expressing functional FANCG rescued the cellular phenotype to normal
control values (Figure 6).

Table 2. Evaluation of DEB-induced chromosome instability (CI) in primary lymphocytes from the
proband and parents. Parallel CI evaluations in primary lymphocytes from a healthy donor and a
Fanconi anaemia (FA) patient were used as negative and positive controls, respectively. For each
sample, evaluation of CI was performed in a total of 100 metaphases. The classification of the proband
as FA (DEB positive) or non-FA (DEB negative) was performed according to the reference values
indicated in Table 1.

DEB-Induced CI
DEB Concentration: 0.05 µg/mL

(Diagnostic Discriminative Parameters to
Compare with Reference Values in Table 1)

DEB Concentration 0.1 µg/mL

% ab Cells Nr Breaks/Cell % ab Cells Nr Breaks/Cell

Proband 34 0.54 76 1.88
Mother’s Proband 4 0.06 5 0.05
Father’s Proband 1 0.01 3 0.03
Healthy Donor

(Negative Control) 3 0.04 2 0.02

FA Patient
(Positive Control) 89 5.36 No Metaphases

DEB—diepoxybutane; CI—chromosome instability; FA—Fanconi anaemia; ab—aberrant; Nr—number.
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Figure 6. Complementation studies. Genetic complementation of the proband’s LCLs with a retroviral
vector expressing a functional FANCG protein (LGEG11). Two different and independent experiments
are shown (A,B). A reversion in the MMC hypersensitivity of the proband’s LCLs after retroviral-
mediated gene transfer was observed. The differential concentration (33 nM) is highlighted in
grey.

4. Discussion

The proband described herein carries the de novo variant NM_018486.2:c.793G>A,
p.(Gly265Arg) in the HDAC8 gene, with a CADD score of 27.8, not annotated in the gno-
mAD database and classified as likely pathogenic according ACMG/AMP guidelines (Var-
some) and ClinVar (RCV000680270.1). HDAC8 belongs to the histone deacetylase (HDACs)
family of enzymes participating in key biological processes such as gene expression regula-
tion, stress response and DNA repair [36], and it is also implicated in the cohesinopathy
Cornelia de Lange Syndrome, type 5 (CdLS-5; OMIM#300882) [31] and Wilson-Turner-like
phenotypes [30]. Classically, hemizygous HDAC8 males are more severally affected than
females, who show a variable but less severe phenotype [30,31]. This variability is usually
assumed to be caused by the presence of distinct patterns of X-chromosome inactivation
(XCI), as seen in other X-linked disorders such as Borjeson–Forssman–Lehmann, Chris-
tianson, Fragile X and Opitz–Kaveggia syndromes, among others (reviewed by Migeon
et al.) [37]. Transcript analysis in the proband’s blood revealed the exclusive expression
of the normal allele. Although the possibility of an amplification bias cannot be ruled
out, we hypothesise a complete skewing of the XCI pattern, in line with previous stud-
ies [31,33,34]. The severe neurodevelopmental syndromic phenotype, together with lack of
CdLS-5 pathognomonic facial dysmorphisms, suggest that the HDAC8 variant alone does
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not fully explain the phenotype of this infant female, namely the haematologic anomalies
(Table S1).

A differential diagnosis was performed with a DNA repair disorder associated with
haematological abnormalities, the well-known FA, where the cellular hypersensitivity to
DNA cross-linking agents, such as DEB or MMC, is the hallmark for the diagnosis [26].
In FA cells, defects in DNA double-strand-break repair mechanisms lead to chromosome
instability, due to biallelic pathogenic variants in any of the genes from the FA/BRCA
pathway [26,38]. DEB sensitivity studies in primary lymphocytes from the proband indi-
cated exclusion of FA, but an increased chromosome instability, compared to the normal
control, which prompted ES data reanalysis. The paternal inherited heterozygous FANCG
variant NM_004629.1:c.1433+1G>A, p.(?) is not described in gnomAD, is classified as
pathogenic according ACMG/AMP guidelines (Varsome) and is reported in ClinVar as
being of uncertain clinical significance (RCV001194963.1). To the best of our knowledge,
an instability cellular phenotype has never been described in carriers of a heterozygous
variant in FA/BRCA genes (e.g., parents and brothers of FA patients).

Sensitivity to MMC at the differential concentration of 33 nM allows detection of puta-
tive FA patients, where healthy donors present survivals above 75% (the majority higher
than 80%) [27]. The proband´s sensitivity to MMC was not as high as that of an FA patient
but was far from the healthy donor´s values, corroborating the results obtained with the
DEB sensitivity test. To investigate if the heterozygous variant in FANCG was involved in
this phenotype, FANCG complementation studies were performed. Proband’s cells MMC
sensitivity was rescued to values close to those of the healthy donor, indicating a rescue in
the proficiency of the FA/BRCA pathway function. Despite the exclusion of FA diagnosis,
the proband shows some clinical features overlapping with previously reported patients,
such as short stature, low weight, peculiar facies, ear and thumb abnormalities and other
complications including feeding problems, cardiovascular defects and hearing loss [39].
Interestingly, a maternally inherited heterozygous BRCA2 variant NM_000059.3:c.8293T>C,
p.(Cys2765Arg) was also identified. This variant is not reported in gnomAD and is de-
scribed as being of uncertain significance according to ACMG/AMP guidelines (Varsome)
and in ClinVar (RCV000524906.4). A putative role of this variant, in synergy with the other
two, cannot be discarded.

It is plausible to propose a multigenic synergic contribution of the identified variants
towards this unique NDD phenotype. The management of such a complex condition and
proper follow up of this patient and her family is reoriented as new symptoms emerge.
Knowing that chromosome instability can have consequences in human health, particularly
the possible effect on tumour predisposition, we highlight the importance of these studies
in cases with heterozygous variants in DNA repair genes, even though a de novo variant
in other gene(s) (HDAC8 as in this clinical case) might be identified. In fact, it is known
that FA patients naturally tend to decrease the levels of HDAC8 [40], indicating that both
pathways have a natural advantage when downregulated.

5. Final Remark

We raised the hypothesis of a possible synergic contribution linking DNA repair
variants affecting both the FA/BRCA pathway and HDAC family. This had a major impact
in disease prognosis and familial clinical follow-up, with other medical specialities being
involved in personalized healthcare and adapted to the new emerging symptoms. The
identification of other cases with a synergic contribution of heterozygous variants, probably
underdiagnosed, will allow the establishment of new conditions with clinical impact.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/genes13010078/s1, Table S1: Molecular and clinical features of the proband described herein
and previously published HDAC8 females.

https://www.mdpi.com/article/10.3390/genes13010078/s1
https://www.mdpi.com/article/10.3390/genes13010078/s1
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