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Abstract

This study integrates the daily intercity migration data with the classic Susceptible-Exposed-

Infected-Removed (SEIR) model to construct a new model suitable for describing the

dynamics of epidemic spreading of Coronavirus Disease 2019 (COVID-19) in China. Daily

intercity migration data for 367 cities in China were collected from Baidu Migration, a mobile-

app based human migration tracking data system. Early outbreak data of infected, recov-

ered and death cases from official source (from January 24 to February 16, 2020) were

used for model fitting. The set of model parameters obtained from best data fitting using a

constrained nonlinear optimisation procedure was used for estimation of the dynamics of

epidemic spreading in the following months. The work was completed on February 19,

2020. Our results showed that the number of infections in most cities in China would peak

between mid February to early March 2020, with about 0.8%, less than 0.1% and less than

0.01% of the population eventually infected in Wuhan, Hubei Province and the rest of China,

respectively. Moreover, for most cities outside and within Hubei Province (except Wuhan),

the total number of infected individuals is expected to be less than 300 and 4000,

respectively.

1 Introduction

The Novel Coronavirus Disease 2019 (COVID-19) (known earlier as New Coronavirus

Infected Pneumonia) began to spread since December 2019 from Wuhan, which has been

widely regarded as the epicenter of the epidemic, to almost all provinces throughout China

and 200 other countries. Up to July 23, 2020, a total of 15,416,529 cases of COVID-19 infection

have been confirmed in 213 countries, and the death toll has reached 631,177. In the early

phase of the outbreak, China was almost the only country affected by the virus, and on Febru-

ary 19, 2020 (when this work was completed), a total of 74,579 cases were confirmed in China,

and the death toll was 2,119. Moreover, as human-to-human transmission had been found to
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occur in some early Wuhan cases in mid December [1], the high volume and frequency of

movement of people from Wuhan to other cities and between cities was an obvious cause for

the wide and rapid spread of the disease throughout the country. Studies also suggested strong

correlation between the spreading of infectious diseases with intercity travel [2]. The Suscepti-

ble-Exposed-Infected-Removed (SEIR) model has traditionally been used to study epidemic

spreading with various forms of networks of transmission which define the contact topology

[3], such as scalefree networks [4–6], small-world networks [7, 8], Oregon graph [9, 10], and

adaptive networks [11]. Moreover, in most studies, the contact process assumes that the conta-

gion expands at a certain rate from an infected individual to his/her neighbor, and that the

spreading process takes place in a single population (network). The COVID-19 outbreak, how-

ever, began to occur in China and escalated in a special holiday period (about 20 days sur-

rounding the Lunar New Year), during which a huge volume of intercity travel took place,

resulting in outbreaks in multiple regions connected by an active transportation network.

Thus, in order to understand the early transmission process of COVID-19 in China, it was

essential to examine the human migration dynamics, especially between the epicenter Wuhan

and other Chinese cities. Recent studies have also revealed the risk of transmission of the virus

from Wuhan to other cities [12].

In this paper, we utilized the human migration data collected from Baidu Migration [13],

which provided historical indicative daily volume of travellers to/from and between 367 cities

in China [14, 15]. To demonstrate the impact of intercity traffic on the COVID-19 epidemic

spreading, we plot in Fig 1 the number of infected individuals in different cities versus the

inflow traffic volume from Wuhan, which clearly shows that for cities farther away from

Wuhan, the number of infected individuals almost increases linearly with the inflow traffic

from Wuhan. In view of the importance of human migration dynamics to the disease spread-

ing process, we combine, in this study, intercity travel data collected from Baidu Migration

[13] with the traditional SEIR model [3] to build a new dynamic model for the spreading of

COVID-19 in China. Using official historical data of infected, recovered and death cases in

367 cities, we performed fitting of the data to estimate the best set of model parameters, which

were then used to estimate the number of individuals exposed to the virus in each city and to

predict the extent of spreading in the coming months. It should be noted that since January 24,

2020, very strict migration control had been imposed in various provinces and cities to restrict

travel and hence to curb the spreading of the virus. Based on the early data, our study showed

that provided such migration control and other stringent measures continued to be in place,

the number of infected cases in various Chinese cities would peak between mid February to

early March 2020, with about 0.8%, less than 0.1% and less than 0.01% of the population even-

tually infected in Wuhan, Hubei Province, and the rest of China, respectively, and no new

cases to be expected from mid March. Moreover, for most cities in and outside Hubei Province

(except Wuhan), the total number of infected individuals would be less than 4000 and 300,

respectively. Finally, as the effectiveness of treatment improved, the recovery rate should

increase and the epidemic in China was expected to end by June 2020. It should be stressed

that our prediction, completed on February 19, 2020, used the early and relatively small

amount of data, and thus verified effectiveness of the model using limited initial outbreak data

in predicting pandemic progression.

In the remainder of the paper, we first introduce the official daily infection data and the

intercity migration data used in this study. The SEIR model is modified to incorporate the

human migration dynamics, giving a realistic model suitable for studying the COVID-19 epi-

demic spreading dynamics. Historical data of infected, recovered and death cases from official

source and data of daily intercity traffic (number of travellers between cities) extracted from

Baidu Migration were used to generate the model parameters, which then enabled estimation
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of the propagation of the epidemic in the following months. We will conclude with a brief dis-

cussion of our estimation of the propagation and the reasonableness of our estimation in view

of the measures taken by the Chinese authorities in controlling the spreading of this new

disease.

2 Data

2.1 Official data of COVID-19 cases

The availability of official data of infected cases in China varies from city to city. Wuhan, being

the epicenter, had the first officially confirmed case of COVID-19 infection in China on

December 8, 2019 [1]. Most other cities in China began to report cases of COVID-19 infec-

tions around mid January 2020. Our data of daily infected and recovered cases, and death tolls,

were based on the official data released by the National Health Commission of China, and the

daily data used in our study were from January 24, 2020, to February 16, 2020, including the

daily total number of confirmed cases in each city, daily total cumulative number of confirmed

cases in each city, daily cumulative number of recovered cases in each city, and daily cumula-

tive death toll in each city. It should be emphasized that the official data may not be the actual

(true) data. Although the earliest confirmed case in China appeared on December 8, 2019, sub-

sequent missing cases were expected to be significant in Hubei Province in the early stage of

the epidemic outbreak. Systematic updates of infection data in other cities began after January

Fig 1. Number of infected individuals in various cities on February 13, 2020 versus the city’s inflow traffic from

Wuhan. Inflow traffic of each city from Wuhan is quantified by migration strength from Wuhan extracted from Baidu

Migration data.

https://doi.org/10.1371/journal.pone.0241171.g001
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17, 2020. Fig 2 shows the number of confirmed infected cases, recovered cases and death tolls

of six major Chinese cities.

2.2 Intercity travel data

As human-to-human transmission had been confirmed to occur in the spreading of COVID-

19, gatherings of people and intercity travel of infected and exposed individuals within China

were identified as the main drives that escalated the spreading of the virus. The period (around

20 days) surrounding the Lunar New Year (mid January to early February in 2020) was the

most important holiday period in China. Migrant workers and students traveled from major

cities to country towns for family reunions, and returned to the cities at the end of the holiday

period. Holiday goers also traveled to and from tourist cities. China’s Ministry of Transport

estimated around 3 billion trips to be taken during this period. Wuhan, being a major trans-

port hub and having a large number of higher education institutions as well as manufacturing

plants, was among the cities with the largest outflow and inflow traffic before and after the Chi-

nese New Year festival. Our study aimed to incorporate these important human migration

dynamics in the construction of the spreading model. We collected daily intercity travel data

in China from Baidu Migration, which was a mobile-app based big data system recording

movements of mobile phone users. Specifically, we collected Baidu Migration data for 367 cit-

ies (or administrative regions) in China over the period of January 1, 2020, to February 13,

2020. Moreover, Baidu Migration data were expected to be inexact and only indicative of the

relative volume of movement of people from one city to another. Thus, the migration strengths

of cities served as indicative measures of the human traffic volume moving in and out of indi-

vidual cities and administrative regions, as depicted by the inflow and outflow networks

Fig 2. Daily data of COVID-19 infections in six Chinese cities from December 8, 2019 to February 13, 2020. (a)

Wuhan (available from December 8, 2019); (b) Beijing (available from January 20, 2020); (c) Chongqing (available

from January 20, 2020); (d) Shenzhen (available from January 19, 2020); (e) Guangzhou (available from January 21,

2020); (f) Tianjin (available from January 21, 2020).

https://doi.org/10.1371/journal.pone.0241171.g002
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shown in Fig 3. Based on the collected data, we construct the migration matrix, i.e.,

MðtÞ ¼

m11ðtÞ m12ðtÞ � � � m1KðtÞ

m21ðtÞ m22ðtÞ � � � m2KðtÞ

..

. ..
. . .

. ..
.

mN1ðtÞ mN2ðtÞ � � � mKKðtÞ

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; ð1Þ

where K is the number of the cities or administrative regions (K = 367 in this study), and mij(t)
is the migrant volume from city i to city j at time t. Migration matrix M thus effectively

describes the network of cities with human movement constituting the links of the network. as

shown in Fig 3. Several properties of M are worth noting:

• M records migration from one city to another. Movement within a city is not counted, i.e.,

mii(t) = 0 for all i.

• M is non-symmetric as traffic from one city to another is not necessarily reciprocal at any

given time, i.e., mij(t) 6¼mji(t).

• Number of outflow migrants of city i at time t is

mðoutÞi ðtÞ ¼
XK

i¼j

mijðtÞ: ð2Þ

• Number of inflow migrants of city i at time t is

mðinÞi ðtÞ ¼
XK

j¼1

mjiðtÞ: ð3Þ

Fig 3. Inflow and outflow data of each city with individual cities collected using Baidu Migration data. Intercity

migration strengths are used to form mij.

https://doi.org/10.1371/journal.pone.0241171.g003
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The right panels in Fig 3 plot the daily total inflow and outflow migration strengths of

Wuhan, showing the abrupt decrease of migration strengths after the city shut down all

inbound and outbound traffic from January 24, 2020.

3 Method

In the SEIR model, each individual in a population may assume one of four possible states at

any time in the dynamic process of epidemic spreading, namely, susceptible (S), exposed (E),

infected (I) and recovered/removed (R). The dynamics of the epidemic can be described by

the following set of equations:

_SðtÞ ¼ � bSðtÞIðtÞ; _EðtÞ ¼ bSðtÞIðtÞ � kEðtÞ;

_IðtÞ ¼ kEðtÞ � gIðtÞ; and _RðtÞ ¼ gIðtÞ;

where S(t), E(t), I(t) and R(t) are, respectively, the number of people susceptible to the disease,

exposed (being able to infect others but having no symptoms), infected (diagnosed as con-

firmed cases), and recovered (including death cases); β is the exposition rate (infection rate of

susceptible individuals); κ is the infection rate of exposed individuals; and γ is the recovery

rate. For simplicity, recovered individuals include patients recovered from the disease and

death tolls. In discrete form, the SEIR model can be represented by

DSðtÞ ¼ � bSðt � 1ÞIðt � 1Þ;

DEðtÞ ¼ bSðt � 1ÞIðt � 1Þ � kEðt � 1Þ;

DIðtÞ ¼ kEðt � 1Þ � gIðt � 1Þ;

DRðtÞ ¼ gIðt � 1Þ

ð4Þ

where ΔS(t) = S(t) − S(t − 1), ΔE(t) = E(t) − E(t − 1), ΔI(t) = I(t) − I(t − 1), and ΔR(t) = R(t) − R
(t − 1), with t being a daily count. As the incubation period for COVID-19 can be up to 14

days, the number of exposed individuals (who show no symptom but are able to infect others)

plays a crucial role in the spreading of the disease. The state E, which is not available from the

official data, is thus an important state in our model. Furthermore, combining death toll with

the recovered number as state R will simplify the computation without affecting the accuracy

of our data fitting and subsequent estimation.

3.1 Model

Suppose, for city i, the four states are Si(t), Ei(t), Ii(t) and Ri(t), at time t. Here, we also define a

total susceptible population, Ns
i , which is the eventual number of infected individuals in city i.

Thus, Ns
i represents the size of the group of susceptible, infected, exposed and removed indi-

viduals. Moreover, if city i has a population of Pi and the eventual percentage of infection is δi,
then Ns

i ¼ diPi. Thus, we have

Ns
i ðtÞ ¼ SiðtÞ þ EiðtÞ þ IiðtÞ þ RiðtÞ: ð5Þ

The classic SEIR model would give ΔIi as the difference between the number of exposed indi-

viduals who become infected and the number of removed individuals. However, the onset of

the COVID-19 epidemic has occurred in a special period of time in China, during which a

huge migration traffic is being carried among cities, leading to a highly rapid transmission of

the disease throughout the country. In view of this special migration factor, the SEIR model
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should incorporate the human migration dynamics in order to capture the essential features of

the dynamics of the spreading. In particular, for city i, in addition to the abovementioned clas-

sic interpretation, the daily increase in the number of infected cases should also include the

inflow of infected individuals from other cities, less the outflow of removed cases from city i.
In reality, inflow and outflow of exposed individuals to and from the city are also important

and to be estimated in the model. Thus, if mij(t) people move from city i to city j on day t, and

the population of city i is Pi(t), then the number of infected individuals moving from city i to

city j is

DIinij ðtÞ ¼
IiðtÞmijðtÞ

PiðtÞ
: ð6Þ

Also, the number of migrants leaving from city j is
PN

i¼1
mji, and the number of infected cases

that have migrated out of city j is

DIoutj ðtÞ ¼
IjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

; ð7Þ

where Pj(t) is the population of city j on day t. Thus, the increase in infected cases on day t in

city j is given by

DIjðtÞ ¼ kjðtÞEiðtÞ � gðtÞIjðtÞ þ
XN

i¼1

DIinij ðtÞ � DI
out
j ðtÞ

¼ kjðtÞEiðtÞ � gjðtÞIjðtÞ þ
XN

i¼1

IiðtÞmijðtÞ
PiðtÞ

� �

�
IjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

ð8Þ

where ΔIj(t) = Ij(t + 1) − Ij(t) and κj(t) is the infection rate in city j on day t, i.e., the rate at

which exposed individuals become infected. Moreover, infected individuals, once confirmed,

would unlikely be able to migrate to another city. We thus implement this condition by writing

(8) as

DIjðtÞ ¼ kjðtÞEiðtÞ � gjðtÞIjðtÞ

þkI
XN

i¼1

IiðtÞmijðtÞ
PiðtÞ

� �

�
IjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

 !
ð9Þ

where 0< kI� 1 is a constant representing the possibility of an infected individual moving

from one city to another.
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Likewise, incorporating the migrant dynamics, the increase in exposed individuals on day t
in city j is

DEjðtÞ ¼
bjðtÞ
Ns

j ðtÞ
IjðtÞSjðtÞ þ

ajðtÞ
Ns

j ðtÞ
EjðtÞSjðtÞ

� kjðtÞEiðtÞ þ
XN

i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

�
EjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

ð10Þ

where ΔEj(t) = Ej(t + 1) − Ej(t), βj is the infection rate of susceptible individuals in city j, and αj
is the infection rate of exposed individuals in city j. In a likewise fashion, we have

DSjðtÞ ¼ �
bjðtÞ
Ns

j ðtÞ
IjðtÞSjðtÞ �

ajðtÞ
Ns

j ðtÞ
EjðtÞSjðtÞ

þ
XN

i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

�
SjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

ð11Þ

where ΔSj(t) = Sj(t + 1) − Sj(t). Finally, we have

DRjðtÞ ¼ gjðtÞIjðtÞ; ð12Þ

where ΔRj(t) = Rj(t + 1) − Rj(t). In the above derivation, we should note that

• the recovered individuals are assumed to stay in city j;

• the recovery rates in different cities are assumed to be different due to varied quality of treat-

ments and availability of medical facilities;

• the recovery rates increase as time goes, as treatment methods are expected to improve grad-

ually (i.e., taking γj(t) as a monotonically increasing function);

• the eventual recovery rates in all cities will converge to the same constant Γ� 1.

In addition, due to intercity migration, the population of city j on day t would increase or

decrease according to

DPjðtÞ ¼
XN

i¼1

PiðtÞmijðtÞ
PiðtÞ

� �

�
PjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

¼
XN

i¼1

mijðtÞ �
XN

i¼1

mjiðtÞ

ð13Þ
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where ΔPj(t) = Pj(t + 1) − Pj(t). Thus, the total susceptible population should be

DNs
j ðtÞ ¼ kI

XN

i¼1

IiðtÞmijðtÞ
PiðtÞ

� �

�
IjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

 !

þ
XN

i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

�
EjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

þ
XN

i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

�
SjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

ð14Þ

where DNs
j ðtÞ ¼ Ns

j ðt þ 1Þ � Ns
j ðtÞ.

In summary, our modified SEIR model with consideration of human migration dynamics,

for city j, is given by

DIjðtÞ ¼ kjðtÞEiðtÞ � gjðtÞIjðtÞ

þ kI
XN

i¼1

IiðtÞmijðtÞ
PiðtÞ

� �

�
IjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

 !

;

DEjðtÞ ¼
bjðtÞ
Ns

j ðtÞ
IjðtÞSjðtÞ þ

ajðtÞ
Ns

j ðtÞ
EjðtÞSjðtÞ

� kjðtÞEiðtÞ þ
XN

i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

�
EjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

;

DSjðtÞ ¼ �
bjðtÞ
Ns

j ðtÞ
IjðtÞSjðtÞ �

ajðtÞ
Ns

j ðtÞ
EjðtÞSjðtÞ

þ
XN

i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

�
SjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

;

DRjðtÞ ¼ gjðtÞIjðtÞ;

DPjðtÞ ¼
XN

i¼1

mijðtÞ �
XN

i¼1

mjiðtÞ;

DNs
j ðtÞ ¼ kI

XN

i¼1

IiðtÞmijðtÞ
PiðtÞ

� �

�
IjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

 !

þ
XN

i¼1

EiðtÞmijðtÞ
PiðtÞ

� �

�
EjðtÞ �

PN
i¼1

mjiðtÞ
PjðtÞ

þ
XN

i¼1

SiðtÞmijðtÞ
PiðtÞ

� �

�
SjðtÞ

PN
i¼1

mjiðtÞ
PjðtÞ

ð15Þ

where subscript j denotes the city itself, and subscript i denotes another city from/to which

people migrate on day t. Letting Xj(t) be the extended state vector, i.e.,
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XjðtÞ ¼ ½SjðtÞ EjðtÞ IjðtÞ RjðtÞ PjðtÞ Ns
j ðtÞ�

T
, we write the above difference equation as

DXjðtÞ ¼ f ðXj;Xi; miÞ ð16Þ

where f(x) is the right side of (15), and μj is the set of parameters including αj, βj, γj, κj and δj.
For computational convenience, we write (15) as

Xjðt þ 1Þ ¼ XjðtÞ þ f ðXj;Xi; miÞ ð17Þ

In performing the data fitting, we assume αj(t), βj(t), γj(t), κj(t), and δj are constants through-

out the period of spreading, and the spreading begins at t0, at which Ns
j ðt0Þ ¼ djPjðt0Þ.

3.2 Parameter identification

The model represented by (17) describes the dynamics of the epidemic propagation with con-

sideration of human migration dynamics. The parameters in model (17) are unknown and to

be estimated from historical data. We solve this parameter identification problem via con-

strained nonlinear programming (CNLP), with the objective of finding an estimated growth

trajectory that fits the data. An estimated number of infected cases of each city can be gener-

ated from (15) with unknown set θj, i.e.,

yj ¼ faj; bj; gj; kj; dj; Ij;0g ð18Þ

where Ij,0 = Ij(t0) is the initial number of infections in city j, and {αj, βj, γj, κj, δj} are parameters

that determine the rates of spreading and recovery in city j. Then, the unknown set is Θ = {θ1,

θ2, � � �, θK} essentially has 5K unknowns, where K is the number of cities, thus requiring an

enormous effort of computation. Here, to gain computational efficiency, we assume that

• all cities share one parameter set θ = {α, β, κ, γ};

• the numbers of initial infected and exposed individuals in city i are λI Ii(t0) and λE Ii(t0),

respectively, where λI and λE are constant. Here, Ii(t0) represents the actual infected number

at time t0, while λI Ii(t0) represents the initial infection number used in the model;

• each city has an independent δi.

Then, the size of the unknown set becomes computationally manageable, i.e.,

Y ¼ fa;b; k; g; di; lI; lEg:

Finally, the parameter estimation problem can be formulated as the following constrained

nonlinear optimisation problem:

P0 : min
Y

XN

j¼0

kwjðIðtjÞ � ÎðtjÞÞkl

s:t:
ðiÞ x̂ðt þ 1Þ ¼ x̂ðtÞ þ Fðx̂ðtÞÞ;

ðiiÞ YU � Y � YL;

8
<

:

ð19Þ

where F(�) represents model (15) and x̂ðtÞ ¼ ½ÎðtÞ; R̂ðtÞ; EðtÞ; SðtÞ; PðtÞ;NsðtÞ� is the set of esti-

mated variables, with unknown set Θ, which is bounded between ΘL and ΘU. In this work, an

inverse approach is taken to find the unknown parameters and states by solving (19).

The Root Mean Square Percentage Error (RMSPE) is adopted as the criterion, i.e., fitting

error, to measure the difference between the number of infected individuals generated by the
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model and the official daily infection data.

RMSPE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

K

X

i¼1

X

j¼1

Î iðtjÞ � IiðtjÞ
IiðtjÞ

 !2
v
u
u
t � 100%; ð20Þ

where K is the number of cities to be evaluated.

4 Results

We perform data fitting of the model, described by (17), using historical daily infection data

provided by the National Health Commission of China, from January 24, 2020 to February 13,

2020. Our approach, as described in the previous section, is to apply constrained nonlinear

programming to find the best set of estimates for the unknown parameters and states. Data fit-

ting for all 367 cities are performed. Values are updated iteratively in the optimisation process.

Moreover, since all parameters, like infection rates, are to be generated by fitting data with the

model, the integrity of the data becomes crucial. As the official Wuhan data are expected to

deviate from the true values quite significantly during the early outbreak stage due to uncer-

tainty in diagnosis and other issues related to reporting of the epidemic by the local govern-

ment, we have allowed the fitting errors for Wuhan to expand over a reasonable range, while

the fitting errors for most other cities remain small. In addition, as the epidemic propagates in

time, effective control measures and improved public education would reduce the infection

rates for the susceptible and exposed individuals, making these parameters time varying in

reality. Nonetheless, our fitting assumes these parameters being constant during the short fit-

ting period for computational simplicity.

The propagation profiles, in terms of the number of infected individuals and estimated

number of exposed individuals, for all 367 cities are estimated. As limited by space, we only

show in Fig 4 the results for 20 selected cities. This model can also provide projections of the

number of infected and exposed individuals in the next 200 days, as shown in Fig 5, which

clearly show that the daily infection would reach a peak sooner or later. By running the identi-

fication algorithm, we identified the optimal parameter set as α = 0.5869, β = 0.8949, κ =

0.1008, γ = 0.0602, λI = 1.9407, and λE = 1.5144. From the estimated propagation profiles of

the COVID-19 epidemic for all 367 cities, we have the following findings:

1. For most cities, the infection numbers would peak between mid February to early March

2020, as shown in Fig 6(a).

2. The peak number of infected individuals would be between 1,000 to 5,000 for cities in

Hubei, and that outside Hubei would be below 500, as shown in Fig 6(b).

3. At the end, about 0.8%, less than 0.1% and less than 0.01% of the population would get

infected in Wuhan, Hubei Province and the rest of China, respectively, as presented in Fig

6(c). Translating to actual figures, for most cities outside and within Hubei Province (except

Wuhan), the total number of infected individuals was expected to be fewer than 300 and

4000, respectively, as shown in Fig 6(d).

4. For Wuhan, our model showed that the cumulative number of infections was 105,244 (95%

CrI [64297, 146191]), which was consistent with a previous estimation of 75,815 cases (95%

CrI [37304, 130330]) [16].
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Fig 4. Official number of infected individuals and estimated number of infected individuals in 20 selected cities in China (upper), and

estimated number of exposed individuals (lower), while the filled area shows the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0241171.g004
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Fig 5. Prediction of the number of infected (upper) and exposed individuals (lower) in 20 selected cites in China for the next 150 days.

The shaded band is the 95% confidence interval.

https://doi.org/10.1371/journal.pone.0241171.g005

PLOS ONE Modeling and prediction of the 2019 coronavirus disease spreading in China incorporating human migration data

PLOS ONE | https://doi.org/10.1371/journal.pone.0241171 October 27, 2020 13 / 17

https://doi.org/10.1371/journal.pone.0241171.g005
https://doi.org/10.1371/journal.pone.0241171


5 Discussions

Opinions diverged on the estimated extent of the outbreak of the new coronavirus disease

(COVID-19). While there were pure speculations, there were also predictions based on rigor-

ous study of the spreading dynamics. Different models used for prediction and different

assumptions made regarding the transmission process would lead to different results and quite

diverged conclusions. For instance, an AI-powered simulation run had predicted 2.5 billion

people to be infected in 45 days [17]. Academics in Hong Kong expected 1.4 million eventually

infected in the city of 7.5 million people. Our results, however, did not seem to agree with such

predictions. In fact, our results were expected to be optimistic, under normal circumstances, in

the sense that the projected severity and duration of the epidemic were valid provided strin-

gent measures continued to be in place to curb the spreading of the virus, especially before

Fig 6. (a) Distribution of (a) peak time; (b) peak number of infections; (c) proportion of the population eventually infected in a city; (d) total number of the individuals

eventually infected in a city.

https://doi.org/10.1371/journal.pone.0241171.g006
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mid March. Moreover, the effectiveness of medical treatment was expected to improve and the

recovery rate was expected to increase in the following months. As our simulation was based

on the data collected in the early outbreak phase, the recovery rate could be under-estimated.

Should the recovery rate increase by 0.0005 each day, namely, the number of daily recovered

individuals increases by 1% of the total number of infected individuals every 20 days, most cit-

ies in China would have zero infection case by June 2020. However, as the world is connected

and unless strict travel bans were in place (currently most countries still allow their own citi-

zens to return), possibility exists for infected individuals including those who are asymptom-

atic to move from city to city, however small in quantity. Second and third waves of outbreaks

could not be ruled out! A high level of vigilance should be maintained to prevent the continu-

ous spread of the virus, especially via the active transportation network. Furthermore, since

this work was completed on February 19, 2020 (medRxiv 10.1101/2020.02.18.20024570), we

used a short historical epidemic data and migration data to develop the model and the corre-

sponding system identification algorithm. At the time of performing this work, there was no

attempt in combining SEIR model, migration data and system identification techniques to

analyze and predict the spread of COVID-19. The results thus have important indicative values

on the effectiveness of using limited initial outbreak data in predicting pandemic progression.

6 Conclusion

The Novel Coronavirus Disease 2019 (COVID-19) epidemic has initially hit China hard.

While the virus began to spread to other countries from February 2020, the extent of the out-

break in China remained to be severe in comparison to other countries for much of March

and April 2020. Prediction of the severity and duration of the epidemic provided essential

information for illuminating social and non-pharmaceutical interventions. However, predic-

tion with the needed level of accuracy was a non-trivial task. In this work, we employed

human migration data to provide information on intercity travel that was crucial to the trans-

mission of the novel coronavirus disease from its epicenter Wuhan to other parts of China.

The model described in this paper was essentially the classic SEIR model, with intercity travel

data supplying the essential information about the number of infected, exposed and recovered

individuals moving between different cities. All parameters of the model, including infection

rates, recovery rates, and eventual percentage of infected population for 367 cities in China,

were identified by fitting the official data collected up to mid-February with the model using a

constrained nonlinear programming procedure. Using these parameters, predictions of the

number of exposed individuals in 367 cities as well as projections into the next 200 days were

made. Our model, however, did not consider the contact network topology that would be nec-

essary if details of the transmission process, such as superspreading events, were to be cap-

tured. Nonetheless, our model provided a highly consistent estimation of the propagation of

average numbers of exposed, infected and recovered individuals, despite missing details of

fluctuation (e.g., sudden surge due to a superspreading event).

Our prediction in mid February 2020 was that provided stringent control measures includ-

ing travel restriction continue to be in place, the COVID-19 epidemic spreading would peak

between mid February to early March 2020, with about 0.8%, less than 0.1% and less than

0.01% of the population eventually infected in Wuhan, Hubei Province and the rest of China,

respectively. Moreover, as the effectiveness of treatment improved, the COVID-19 epidemic

was expected to end by June 2020. However, possibilities of a second or third wave of out-

breaks may exist as intercity travel is still permitted, e.g., homebound travel from regions

which are still at different stages of the pandemic progression. It is thus advisable to maintain a
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high level of vigilance by the public as well as a high level of preparedness for reactivating strin-

gent control measures by government authorities.
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