
����������
�������

Citation: Gupta, A.; Singh, U.B.;

Sahu, P.K.; Paul, S.; Kumar, A.;

Malviya, D.; Singh, S.; Kuppusamy,

P.; Singh, P.; Paul, D.; et al. Linking

Soil Microbial Diversity to Modern

Agriculture Practices: A Review. Int.

J. Environ. Res. Public Health 2022, 19,

3141. https://doi.org/10.3390/

ijerph19053141

Academic Editor: Nikolay Bojkov

Vassilev

Received: 29 January 2022

Accepted: 4 March 2022

Published: 7 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

International  Journal  of

Environmental Research

and Public Health

Review

Linking Soil Microbial Diversity to Modern Agriculture
Practices: A Review
Amrita Gupta 1,†, Udai B. Singh 1,† , Pramod K. Sahu 1,‡ , Surinder Paul 1,‡ , Adarsh Kumar 1, Deepti Malviya 1,
Shailendra Singh 1 , Pandiyan Kuppusamy 2, Prakash Singh 3 , Diby Paul 4 , Jai P. Rai 5,* , Harsh V. Singh 1,
Madhab C. Manna 6, Theodore C. Crusberg 7, Arun Kumar 8 and Anil K. Saxena 1

1 Plant-Microbe Interaction and Rhizosphere Biology Lab, ICAR-National Bureau of Agriculturally Important
Microorganisms, Maunath Bhanjan 275103, India; amritasoni90@gmail.com (A.G.);
udaiars.nbaim@gmail.com (U.B.S.); pramod15589@gmail.com (P.K.S.); surinderpaulsandhu@gmail.com (S.P.);
adarsh20149@gmail.com (A.K.); deeptimalviya77@gmail.com (D.M.); singh.shailendra512@gmail.com (S.S.);
drharsh2006@rediffmail.com (H.V.S.); saxena461@yahoo.com (A.K.S.)

2 ICAR-Central Institute for Research on Cotton Technology, Ginning Training Centre, Nagpur 440023, India;
pandiannkl@gmail.com

3 Department of Plant Breeding and Genetics, Veer Kunwar Singh College of Agriculture, Bihar Agricultural
University, Dumraon 802136, India; prakash201288@gmail.com

4 Pilgram Marpeck School of Science, Technology, Engineering and Mathematics, Truett McConnel University,
100 Alumni Dr., Cleveland, GA 30528, USA; dpaul@truett.edu

5 Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University,
Varanasi 221005, India

6 Soil Biology Division, ICAR-Indian Institute of Soil Science, Nabibagh, Berasia Road, Bhopal 462038, India;
madhabcm@gmail.com

7 Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01605, USA;
crusberg@wpi.edu

8 Department of Agronomy, Bihar Agricultural University, Sabour, Bhagalpur 813210, India;
arunkumar20052@yahoo.co.in

* Correspondence: drjaibhu@gmail.com
† These authors contributed equally to this work and commonly share first authorship.
‡ These authors contributed equally to this work.

Abstract: Agriculture is a multifarious interface between plants and associated microorganisms. In
contemporary agriculture, emphasis is being given to environmentally friendly approaches, particu-
larly in developing countries, to enhance sustainability of the system with the least negative effects
on produce quality and quantity. Modern agricultural practices such as extensive tillage, the use of
harmful agrochemicals, mono-cropping, etc. have been found to influence soil microbial commu-
nity structure and soil sustainability. On the other hand, the question of feeding the ever-growing
global population while ensuring system sustainability largely remains unanswered. Agriculturally
important microorganisms are envisaged to play important roles in various measures to raise a
healthy and remunerative crop, including integrated nutrient management, as well as disease and
pest management to cut down agrochemicals without compromising the agricultural production.
These beneficial microorganisms seem to have every potential to provide an alternative opportunity
to overcome the ill effects of various components of traditional agriculture being practiced by and
large. Despite an increased awareness of the importance of organically produced food, farmers in
developing countries still tend to apply inorganic chemical fertilizers and toxic chemical pesticides
beyond the recommended doses. Nutrient uptake enhancement, biocontrol of pests and diseases
using microbial inoculants may replace/reduce agrochemicals in agricultural production system.
The present review aims to examine and discuss the shift in microbial population structure due to
current agricultural practices and focuses on the development of a sustainable agricultural system
employing the tremendous untapped potential of the microbial world.

Keywords: agricultural sustainability; soil microbial diversity; agriculture practices; tillage practices;
microbial recruitment; pesticide effects
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1. Introduction

Agriculture is the oldest profession of mankind, being practiced for centuries. To meet
the ever-growing demand for food of the burgeoning human population at its present
growth rate, the need to produce more food from ever-limiting resources is of genuine
concern. Such a demand under the prevailing state of resources can only be met through
increasing crop production with simultaneous decrease in the rate of diminution of avail-
able resources and utilizing them in a more sustainable manner. For example, the green
revolution launched in India during the 1960s proposed yield enhancements through the
use of agrochemicals, combining high-yielding (yet high nutrient-demanding) cultivars,
the use of inorganic fertilizers to meet the crop nutrient demand. On account of these
cultivars being sensitive to the onslaught of pathogens and insect pests, chemical pesti-
cides have been used for plant protection, which resulted in an impressive increase in
crop productivity [1,2] coupled with more or less a decrease in the quality of associated
natural resources. The total outcome was greater than expected, and the country of India,
once hunger-stricken, became a food grain exporter. The fear and pain of hunger was so
deep that in the propensity to increase yields we, as a society, ignored the ill effects of
many practices in the package of the green revolution on soil and human health. As a
result, most of the natural resources, i.e., soil, water, and the environment itself, became
polluted with agrochemicals owing to their excessive and injudicious application. The
lack of local soil testing facilities led to blanket recommendations for crop nutrition in a
blind race to increase yields. Inorganic fertilizers were used in amounts in excess to what
was really needed. The application of agrochemicals, particularly chemical pesticides, for
plant protection posed numerous threats to human health and life as whole. Pesticide
residues have great impacts not only on the site of their application but also have reached
environments far from where they were used [3]. This issue is especially of concern in
developing countries, where large populations live in close proximity to farm land, often
leading to direct exposure and causes severe health issues in humans [4]. Several improved
agricultural technologies have been adopted for enhancing productivity without taking
the sustainability of the system into account. Now that the ill-effects of injudicious use
of agrochemicals have become rampant, we have begun to realize the need of ensuring
long-term sustainability with optimal resource use and without negative effects in the
restricted land available for agricultural cultivation. This has led to the emergence of a
variety of beneficial management practices [5]. The availability and productivity of agricul-
tural resources including water, energy, and land varies enormously between regions and
production systems, and competition for efficient and judicious use of these resources will
further intensify. Application and modification of different agricultural practices coupled
with high inputs of agrochemicals can alter the soil microbial communities in general and
functional communities in particular.

There is urgent need for ecologically sound agricultural advancement, which apart
from being eco-friendly should also enable us to feed the ever-increasing population against
the backdrop of ever-changing climatic conditions. It is evident from the fact that conser-
vation of the environment and natural resources has become important considerations in
agriculture today. In traditional agriculture, more tillage is preferred for better harvest,
but in modern agriculture, no tillage or zero tillage with better residue management is
preferred, as this seems to be one of the most important factors for long-term sustainability
of agricultural ecosystem. Conservation agriculture-based farm practices advocate use of
organic inputs and minimal tillage, whereas traditional production systems lay emphasis on
maximizing yields using inorganic fertilizers and chemical pesticides with enhanced tillage.
Such practices have led to deterioration of biological and physicochemical properties of
soil and associated ecological systems.

With modernization of civilization, different developmental activities have brought
much change in land utilization. Different anthropological activities have obligated changes
in agricultural practices, which have led to shifts in soil microbial community structure
altering physicobiochemical properties of soil [6]. Commonly used organic and inorganic
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agricultural inputs, following agricultural interventions, have a significant impact on soil
microflora [7] and have a great role in determining the microbial community structure
in the soil. It has been recognized that tillage may alter the physical structure, moisture,
soil temperature, aeration, and rate of crop residue degradation [8] and decreases soil
macroaggregation [9]. Minimal soil disturbance through adaptation of zero tillage or no
till practices causing minimum soil disturbance is, therefore, preferred over conventional
tillage in order to maintain sustainable soil health and crop productivity. The success of
crop rotation depends largely on efficient recycling of nutrients, which is chiefly controlled
by microorganisms and enzymes produced by them in the soil environment [10]. A rather
high microbial activity is found in the surface layer of soils under no tillage systems with
crop residue mulch as compared to conventional tillage without mulching.

Monoculture system of agriculture may change soil parameters, particularly species
richness, microbial activity, and community structure. Changes in land use patterns have
been reported to significantly affect the microbial population dynamics in soil [11]. Along
with tillage, poor residue management and non-scientific cultivation practices in this regard
have their own impacts, not only on soil biological activities, but also on the whole process
of residue degradation [12]. The influence of agricultural residues on the microbial diversity
of soil is well documented [13]. Crop diversification, however, is being recommended
and to a great extent is being used for enhancing land productivity. Beyond a certain
point, crop diversification also influences microbial diversity. Different plants release
varied root exudates, a wide range of compounds, which, in turn, determine the microbial
community structure [14]. Furthermore, crop diversification leads to diversity in carbon-
rich compounds present in the rhizosphere, which ultimately influence the diversity of
native microbial species. The fact that stressed or challenged plants secrete a number of
molecules which act as signaling compounds between plants and microorganisms also
becomes relevant in this respect. Soil microorganisms are known to use these chemical-
based messages in order to communicate with plants, and by sensing these molecules, they
contribute to activate defense mechanisms in the plant under stressed conditions [15].

In view of the above, there is an urgent need to understand and quantify the impact of
different agricultural practices on soil microbial communities in general, and on functional
groups in particular. Microorganisms are well-known and useful in reducing some concerns
associated with chemical fertilizer and pesticide applications [16]. The purpose of this
review is to provide an overview and in-depth understanding of the impact of different
agricultural production technologies, including the application of inorganic inputs and
cropping system on changes in soil microbial diversity. This information may be utilized in
developing package of practices and shaping of agricultural policies for greater benefits of
the farming community as well as other stakeholders.

2. Microbial Recruitment in Different Tillage Practices

Agricultural management practices that promote soil organic matter (SOM) accumu-
lation and retention enhance bacterial biodiversity. Tillage has been found to impact soil
bacterial diversity negatively, but it did not affect arbuscular mycorhizal fungi (AMF),
fungal, or functional diversity. However, organic farming did not affect soil biodiversity
as compared to conventional farming [17]. Both species loss and changes in the relative
abundance of species present can affect ecosystem functioning and subsequent ecosystem
services [18]. Wolińska et al. [13] observed a higher number (65) of dominant bacteria
operational taxonomic units (OTUs) in non-cultivated soils than that in cultivated soils
(47). Li et al. [19] reported that a microbial community of Camellia oleifera forest changes
significantly due to different agrofarming activities. Furthermore, Li et al. [19] have also
observed that bacterial community composition, species richness and the fungal commu-
nity significantly differed under different management practices, whereas fungal species
richness remained unaffected [20]. The highest fungal richness was obtained under cover
crop. Shifts in microbial community structure and the abundance of various plant-beneficial
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and detrimental soil microorganisms have been shown to influence the productivity and
stability of the agroecosystems [21].

Tillage has been recognized as the most important driving factor in influencing soil
microbial community in general and bacterial diversity in particular [22]. Different tillage
practices are known to influence soil organic carbon, moisture, and physical properties
by and large. Since soil enzyme activity is greatly influenced by these parameters, the
type of tillage practice has direct impact on soil enzyme activities [23]. Intensive tillage
and application of chemical inputs in higher rates have widely been exploited in conven-
tional agriculture with an aim to increase production to meet the growing food demands
of an ever-increasing human population. As a result, soil binding capacity decreased
to considerable extents and agriculture fields became more prone to erosion by surface
runoff, which led to non-point sources of pollution across the world [24]. The resultant
pollutants including plant nutrients, organic matter, chemical pesticides and soil sediments
are transported through precipitation and irrigation from field to surface water. About one
third of these eroded pollutants flow into rivers and lakes and in addition to pollution of
water bodies, leading to a reduction in volume of top soil and the amount of plant nutrients
applied [25,26]. Amidst increased concern over soil quality and health, an alternate method
termed “conservation agriculture” has gained greater attention in preserving physicochemi-
cal and biological properties of soil [27]. This approach maintains soil stability to effectively
manage surface runoff and minimize the possibilities of pollution as mentioned above.
Conservation agricultural practices such as no-tillage (NT), also referred to as zero-tillage,
and organic farming have improved soil health, namely, soil microbial diversity in general
and soil microbial community stability in particular [28].

2.1. Impact of Conventional Tillage vs. No-Tillage on Soil

Conventional tillage (CT) including disc plough, moldboard plough, and chisel plough,
have resulted in severe land degradation and have posed risks to the concept of sustainable
agriculture [29]. CT practices resulted in disruption of soil aggregates, compactness of
soil, and reduction in spaces between soil particles, which led to alteration in movements
of water and gas into the soil, and thus, eventually affect the soil as a habitat for living
organisms and microbial functional diversity [30,31]. NT practices can minimize such soil
disruption and soil organic C oxidation while enhancing the soil C content, soil aggregation,
and rate of infiltration of water [32] into it. It results in decreased detachment of soil
particles, thereby decreasing both soil erosion and transport of pollutants [33]. It was
reported that about 11% of arable land has adopted no-tillage practices globally and this
has reduced the runoff by 64.9% [34]. NT practices result in a greater content of soil organic
matter, nutrients, and a minimal oxidizing environment with the absence of disruption of
soil layers, which ultimately helps in stabilizing the extracellular enzyme pool [31]. NT is a
more sustainable practice for improving soil health and microbial diversity [23]. Irrespective
of nutrient applications, NT practices have shown an increase in the soil enzymatic activity
as compared to CT, which may be attributed to an increase in dehydrogenase and urease
activities [35]. Furthermore, NT treatments showed significant increases in extractable
soil nutrients, such as calcium (Ca) and magnesium (Mg), than conventional tillage [36],
which might directly/indirectly influence the structural and functional community of
soil microorganisms.

2.2. Soil Microbial Diversity in Different Tillage Practices

Minimum tillage (MT) in combination with organic farming seems to be an effective
strategy to enhance soil microbial biomass and abundance [37]. The microbial community
structure shifts towards bacteria under organic farming, as bacteria respond more strongly
to agricultural practices than other microbial groups [38]. NT in combination with organic
farming enhanced soil microbial properties more than either of individual practice and
CT [28]. NT together with cover crops increased substrate diversity and thereby influence
the soil microbial enzymes production [6,35]. This is because of greater utilization of
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carbohydrates in the top soil (0–10 cm), which contains rich organic matter and sugars
released from decomposition of agricultural residues. Furthermore, carbohydrates have
also been found to maintain and stimulate the soil microbial activity in rhizosphere as
compared to non-rhizosphere soil [39].

Sun et al. [37] evaluated the effect of long-term practice of organic farming and MT
on microbial community structure and microbial diversity. The results showed a positive
influence on soil microbial biomass, total phospho-lipid fatty acids (PLFA), Gram-positive
bacteria, Gram-negative bacteria, and mycorrhiza. The increase in the Gram-positive
bacterial population was reflected by an increased content of bacterial muramic acid. MT
had significantly increased microbial biomass N and fungal PLFA. Nivelle et al. studied the
combined effect of NT with cover crops under N-fertilization over a period of five years in
cereals (wheat and corn) and legume (pea and flax) crops rotation influence the microbial
activity in the soil [35]. It increased the total nitrogen and total organic carbon coupled with
an increased soil microbial functional activity and their diversity when a cover crop was
associated with NT. CT, on the other hand, showed a negative impact on soil C and soil N
availability and enzyme activity. The incorporation of only wheat straw resulted in high
C:N ratio, which was not compensated in conventional tillage [35]. An increase in soil C and
N by 19% and 10% was observed, respectively, under minimum tillage with N-fixing cover
crop systems than with conventional tillage without using any cover crop [36]. Most of the
studies assessing impact of tillage on microbial community were carried out focusing on
(a) soil properties (physicochemical and biological) under different tillage practices, (b) no-
tillage (NT) with an eye on increase in microbial diversity and richness, and (c) significance
of relationship between soil C and N with microbial community composition [23,35].
Moreover, long-term application of NT resulted in significant increase in unique OTUs,
species richness, and evenness and higher Shannon index, while lower Simpson index
was observed as compared to CT. This is attributed to greater availability of substrate due
to higher soil organic C as food, which ultimately increased the bacterial diversity [23].
Legrand et al. [40] observed 1822 OTUs representing 85 genera under CT while 1720 OTUs
representing 105 genera under MT, which indicated the increase in species richness despite
less OTUs under MT. They also reported a lower α-diversity with higher β-diversity in soil
under CT than MT. CT negatively affected the soil fertility or soil nutrient availability which
resulted in reduced microbial diversity [40]. In contrast, some recent studies reported a
higher microbial diversity in conventional tillage [41,42]. However, functional microbial
diversity was always higher under NT or MT practices when compared to CT. These
discrepancies may be attributed to variations in carbon and nitrogen inputs, soil pH, and
temperature [35]. Furthermore, higher diversity and biomass of soil microorganisms, such
as bacteria (both Gram +ve and Gram –ve), fungi, and actinomycetes, were observed in
no-tillage systems compared with conventional tillage systems [28].

2.2.1. Bacterial Diversity

Proteobacteria (α, β and γ), Actinobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi are
the five major phyla representing more than 80% of the bacterial diversity under both NT
and CT systems in a winter wheat crop. NT practices harbored relatively higher abundance
of Proteobacteria, Actinobacteria, and Bacteroidetes and lower abundance of Acidobacteria
than CT. At genera level, Arthrobacter and Streptomyces were predominant in both systems.
However, NT had a higher abundance of Sphingomonas and Pseudomonas while CT had a
higher abundance of Acidobacteria and Chloroflexi. The predominance of Streptomyces (Acti-
nobacteria) in both NT and CT may be due to their ability to produce spores, which might
have helped them to survive under both conditions [23]. The predominance of Bacteroidetes
under NT is attributed to their ability to rapidly utilize bio-available organic matter and
copiotrophic characteristics, which occur in soils with high carbon availability [23,43]. No
significant difference in Arthrobacter was observed in either system. This suggested that
Arthrobacter was an oligotroph and is able to degrade extremely recalcitrant substrates
with slow growth [23]. A lower abundance of Acidobacterium in an NT system compared
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with a CT system suggests their wider tolerance to nutrient-poor habitats [44] and is also
indicative of the fact that external disturbances did not significantly affect them [23].

2.2.2. Fungal Diversity

The fungal population is expected to be higher under minimal tillage (MT) or no-
tillage (NT) conditions due to minimal disruption of the hyphal network of fungi and
greater resistance to degradation of their chitinonus cell wall [45,46]. The higher ratio of
fungi to bacteria indicated the stable ecosystem in NT soil, which was more similar to an
undisturbed soil microbial community. The fungal hyphal network can be better established
under an NT system as compared to the CT system as the mechanical disturbance is
greater in the CT system. These hyphal networks can effectively translocate nutrients to
the plants [45]. Fungi also have an added advantage of adaptation to cooler and moist
environments prevalent in NT systems [45]. Some reports, however, indicate deviation from
this fact [36,45]. FAME analysis revealed that Actinomycetes and Mycorrhizal fungi were
abundant in NT treatments, while saprophytic fungi were abundant in CT treatments [36].
Mycorrhizal fungi play a vital role in protecting soil organic carbon by facilitating formation
of macro-aggregates and its stabilization in addition to mobilization of nutrients. The effects
of these mycorrhizal fungi could be affected due to interruption of their hyphal network
during tillage [47]. Mycorrhizal fungi are enriched under NT conditions in most cropping
systems [28,36].

2.3. Other Properties

The extent of soil disturbances can be measured by different indicators, which include
microbial, enzymatic, and metabolic activities. The increased activity of soil enzymes such
as β-glucosidase, β-glucoaminidase, and phosphodiesterase under NT treatments was
attributed to greater accumulation of plant residues over many years [48]. Soil microbial
diversity and community are closely associated with quality and quantity of soil nutrients
and soil C content. Therefore, these parameters may act as a sensitive indicator to predict
the prevalence of the soil biological community [49]. Generally, soil microbial biomass
(SMB) is used as an important parameter for determining soil quality and is expected to be
greater under MT or NT in most of the cropping systems [50]. However, it is not always the
same and sometimes no significant changes in SMB are observed, which suggests that SMB
alone may not be a good indicator in determining soil quality, particularly in low residue
cropping systems such as cotton [36].

Fluorescein diacetate (FDA) is predominantly used as an indicator for soil health since it
can be hydrolyzed by non-specific esterases, proteases, and lipases. Rincon-Florez et al. [51]
evaluated the impact of occasional strategic tillage (ST) on microbial communities using
two tillage systems and two stubble management practices. They reported that no signifi-
cant effect of ST on biological attributes was observed except for total enzymatic activity.
The enzymatic activity was increased significantly in CT-SR (conventional tillage-stubble
retention) as compared to NT-SR. This difference may be characterized by a significant
increase in the bulk density under CT-SR treatments. The absence of changes in microbial
diversity may be related to high resistance and/or resilience of soil microbial communities.
The results of PCA analysis with the study in which two factors tillage (tillage vs. no-tillage)
and fertilizer input (chemical vs. organic) were taken, which clearly indicate the divergence
in microbial community due to long-term following of different agricultural practices [28].

Higher P, Ca, and Mg were observed under NT treatments which may be attributed
to perpetual increase of soil organic matter as it acts as a source of nutrients through
mineralization and releases organic acids which chelate available nutrients in soil. Levels
of these nutritional elements decreased with increased N, which also results in decreased
soil pH. Long-term application of N-based fertilizers such as ammonium nitrate resulted in
increased acid production by ammonia oxidizing bacteria. This led to increased soil acidity,
which, in turn, reduced the availability of other nutrients, such as P, Ca, and Mg [36].
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Despite the undisputed role played by soil microbial communities in maintaining soil
health and enhancing crop productivity, an understanding of their response to long-term
agricultural practices is still limited [28]. The advent of high throughput sequencing helped
us to detect even less abundant microbes, which was not possible earlier [52]. Still, the
response of soil microorganisms to different farming practices is poorly understood [35].
An extensive study on impacts of various tillage practices [23] and inputs (chemical and or-
ganic) on microbial communities is needed if we are to attain a decent level of sustainability
in soil health and in agriculture overall.

3. Microbial Recruitment Affected by Crop Cultivar Rhizosphere

The plant rhizosphere is inhabited by the highly diverse microbiota and can hold up
to 1×1011 microbial cells per gram of plant root [53]. More than 30,000 prokaryotic species
have been reported so far [54], which indicates the magnitude of microbial diversity. The
collective genome (the rhizosphere microbiome) of this diverse microbial population is
very large in comparison to the host plant genome and is supposed to play a very crucial
role in the host survival. Thus, being crucial for plant health, it is also expressed as the
plant’s second genome [55]. The plant rhizosphere associated microbial communities
also plays a central role in carbon sequestration, proper functioning of ecosystem as a
whole, and regulation of nutrient cycling in natural as well as agricultural and forest
ecosystems [56]. Diversity of microbes inhabiting the plant rhizosphere and their complex
interactions with the host plant significantly affect plant morphology, physiology, plant
growth, development, and health [57]. Each plant has various biochemical processes
ongoing, which culminate in specific micro-environmental conditions in the rhizosphere
that seem to provide a dwelling ground for the specific microbial population subset with
distinct functional capabilities [58]. Any factor that changes the microbial community
structure, composition, or its activities has marked effects on the normal growth and
development of the plant in a particular environment. Thus, in order to understand the
composition of microbial community structure in the rhizosphere of a particular plant
and its complex plant–microbe interactions, it is very important to explore the various
environmental and physiological factors which play crucial roles in this complex and
dynamic process.

3.1. Factors Affecting Rhizosphere Microbial Population
3.1.1. Soil Type

Many factors, namely the soil physiochemical profile, the environment as well as
the type and developmental stage of the particular crop/cultivar, formed a specific niche
with the unique micro-environment, and altogether play important roles in shaping and
determining the microbial community structure and composition in the rhizosphere of
the plant [59,60]. As soil is the ultimate source of all the nutrients needed for the develop-
ment of a plant, the soil type, its chemical and physical composition, as well as nutrient
profile has a huge effect on the plant physiological process [61,62]. İnceoğlu et al. [63]
proposed and confirmed that soil type plays the most significant role in determining the
structural and functional community structure of the potato rhizosphere-associated bacte-
ria. İnceoğlu et al. [63] also confirmed that the same potato cultivars grown in two different
soils had different rhizosphere inhabiting microbes with different functional capabilities.
Breidenbach et al. [64] also studied the dynamics of rhizospheric microbiota of rice plants
and further confirmed that community structure is greatly affected by the specific soil
type and the environment (i.e., rhizosphere versus bulk soil) than did time (e.g., plant
growth stage).

3.1.2. Crop Cultivar

Researchers have shown that different plant species growing in the same soil type
can have a totally different rhizosphere-associated microbial population structure [65–67].
However, some plant species can recruit similar microbiota even in different soils [68].
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Reports also demonstrated that even within species, different genotypes can have distinct
rhizosphere microbial communities [69]. All these reports further suggest that the host
plant plays a very crucial role in shaping microbial community structure associated with its
rhizosphere. Researchers have proven that the rhizosphere-associated microbial population
composition is also dependent on the host plant genotype (cultivar) [70]. This is termed
the “rhizosphere effect”, which describes that the root-associated microbiota community
structure often remarkably varies not only across host plant species but also among different
genotypes within a single species [55,71,72]. Jiang et al. [73] revealed that blueberry
host cultivars exerted substantial effects on the root-associated bacterial diversity along
with complex co-occurrence networks and that host genotype directly influenced the
microbiota profiles.

3.1.3. Composition of Root Exudates

Root exudates of plants are known to consist of compounds acting as attractants for
the specific microbial community to which these exudates provide nutrition, and thus, may
play key roles in the determination of microbial population dynamics in the rhizosphere
of the plant [74]. The active root secretions or root exudates comprise a diverse range of
low molecular weight compounds released by the host plant which enable it to modulate
(stimulate or suppress) the growth and colonization of selected species of rhizosphere-
associated microbes [75]. The root exudates are composed of various ions, enzymes, free
oxygen and water, mucilage, and a diverse set of primary and secondary metabolites, which
are utilized by the microbes as a source of carbon [76,77]. Furthermore, root exudates can
broadly be divided into two classes of compounds: (a) a low molecular weight fraction
which is highly diverse and is composed of amino acids, organic acids, sugars, phenolics,
and other secondary metabolites, and (b) a second class composed mainly of mucilage
(polysaccharides) and proteins, but in a less diverse high molecular weight fraction [77].
Some root exudates also contain chelating agents which form complexes with metallic
micronutrients including iron, zinc, manganese, and copper and, thus, affect the nutrient
availability in rhizosphere soil [78].

The amount and composition of the root exudates has also been found to be affected
by nutrient availability, soil type, physiology, growth, and developmental stage of the
plant [79]. The root exudates from plants in certain sets of conditions can favor the estab-
lishment of a distinct rhizosphere microbial community by providing wide yet specific
varieties of carbon sources [57]. Root exudate components such as carbohydrates and amino
acids act as stimulants and help plant growth promoting bacteria (PGPB) colonization
through chemotaxis [80], a well-known mechanism for the establishment of interactions
between soil microbiota and host plants within the rhizosphere [81]. Weert et al. [82]
reported the chemotactic effect of root exudate components on the flagella driven motility
of Pseudomonas fluorescens and elucidated its role in tomato root colonization. Flagella
driven motility in microbes is considered an important trait which can significantly affect
the population structure of competitive pathogens and beneficial microbes in the plant rhi-
zosphere and thus facilitate various microbe–microbe and plant–microbe interactions [83].
Early host recognition by bacteria is also mediated by the bacterial Major Outer Membrane
Protein (MOMP). Azospirillum brasilense MOMP exhibiting stronger adhesion to membrane-
immobilized root extracts of cereals as compared to legumes and tomato extracts, one
example which suggests that MOMP may act as an adhesion factor, playing a key role
in bacteria-to-root adsorption and cell aggregation by the bacteria allowing colonization
within a specific host plant rhizosphere [84].

Root exudates are known to influence and maintain rhizosphere-associated core and
cultivar-specific microbiota [73]. Secondary metabolites representing the specific subclass
of flavonoids are known to play an important role in the very specific plant–microbe in-
teractions between legumes and nitrogen fixing rhizobacteria. These interactions further
enable a specific strain of rhizobacteria to form nodules within cells of its specific legu-
minous plant host [85,86]. Peters et al. [85] established that isoflavonoids are specifically
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produced only by leguminous plants and they are known to regulate the expression of
nod genes in specific nitrogen fixing microbes. Apparently, flavonoids are perceived as
aglycones by the rhizobacteria, and interact with the nodD protein (a LysR-type regula-
tor) and alter its conformation to facilitate binding to nod box elements in the promoter
regions of the nod genes, inducing expression of nod genes to synthesize Nod factor
molecules [86]. Chemically, Nod factors are lipochitooligosaccharides, usually consisting of
four or five β-1,4 N-acetylglucosamines, with the terminal nonreducing sugar N-acylated
by a 16–18 carbon fatty acid. Nod factors may also contain acetate, sulfate, or carbamoyl
groups, or different sugars, such as arabinose, fructose, and substituted fructose. All these
chemical modifications form the basis of host specific recognition of a specific nod factor in
legumes. For instance, daidzein and genistein, isoflavonoids produced by soybean (Glycine
max), positively regulate nod gene expression in Bradyrhizobium japonicum, but negatively
regulate nod gene expression in Sinorhizobium meliloti. The nod gene expression in S. meliloti
is instead found to be specifically induced by luteolin [85].

In plant–mycorrhiza interactions, signaling molecules known as ‘branch-inducing
factors’ present in the root exudates of plants critically help mycorrhizal fungi in hy-
phal branching, root colonization, and in establishing a symbiotic relationship with the
host [87–89]. Akiyama et al. [90] have isolated a ‘branch-inducing factor’ chemically iden-
tified as 5-deoxy-strigol, a strigolactone, from the root exudates of Lotus japonicus, which
at very low concentrations induced extensive hyphal branching in germinating spores
of the arbuscular mycorrhizal fungus, Gigaspora margarita. Nutrient availability to plant
hosts has also been reported to affect the production and/or exudation of ‘branch-inducing
factor’ in its root exudates. Nagahashi and Douds [91] reported that root exudates from
plants growing in phosphate (P)-limited conditions had high activity of branching factor
compared with plants growing in phosphate (P)-sufficient conditions.

Secondary metabolites in plant root secretions also inhibit the growth of particu-
lar microbes [92] and, thus, influence the microbial population dynamics in the rhizo-
sphere. Bais et al. [93] reported the secretion of rosmarinic acid in the hairy root cultures of
Ocimum basilicum and its role in exhibiting specific antimicrobial activities. A benzoxazi-
noid, 2,4-dihydroxy7-methoxy-2H-1,4-benzoxazin-3(4H)-one (DIMBOA), present in large
quantities in Zea mays root exudates is reported to exhibit potential antimicrobial activity as
well as to act as selective chemotactical attractant for the plant beneficial rhizobacterium,
Pseudomonas putida KT2440 [94]. Plant secondary metabolites are also reported to interfere
positively or negatively with ‘quorum sensing’ (QS)-regulated responses by altering the
expression of several QS-related genes in bacteria. As QS is very important for cell-to-cell
communication and colonization in bacteria, these metabolites may influence the pop-
ulation structure of microflora in the rhizosphere. Several compounds interfering with
plant-bacterial association have been reported in many important crops, including pea
(Pisum sativum), rice (Oryza sativa), and Medicago truncatula [95–97].

It is very clear that the plant–microbe interactions in the rhizosphere are influenced
by several factors and our present knowledge is not sufficient to fully understand these
complex interactions. As several studies have established that the rhizosphere microbiome
composition greatly affects the plant health and, thus, the plant employs several mech-
anisms to recruit its specific microflora. Recent omics-based studies on next generation
sequencing techniques are able to unravel the complex mechanisms employed by the plant
to recruit its specific microflora, establishment of microbial communities in the rhizosphere,
and finally its overall impact on plant health. This knowledge can further be utilized to
increase crop quality and productivity in the changing climate scenario.

4. Impact of Organic Farming on Soil Biodiversity

Organic farming, mainly agriculture involving carbon-based amendments and various
cover crops and avoiding the use of chemical fertilizers and pesticides, is a more sustain-
able practice in conservation agriculture. It is estimated that about 4.4 × 107 ha of farm
land is under organic agriculture across the world. Organic farming has been shown to
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positively influence the soil properties by improving the status of soil organic matter and
soil nutrients with simultaneous reduction in soil erosion [21–98]. Microbial community
structure, microbial biomass, soil carbon, and nitrogen are greatly influenced by changes in
soil organic matter (SOM) and nitrate present in the soil. Hence, improvement in SOM and
soil microbial activity (SMA) are better indicators for good soil health and quality under
conservation agriculture [36,47,99]. In organic farming systems, the soil carbon is higher,
which, in turn, provides more carbon-to-soil microbial community as a substrate that leads
to changes in the soil microbial diversity [100]. Agricultural practices, such as MT, cover
crops, and fertilization under conservation agriculture, are playing a vital role in microbial
activity and biomass, leading to improvements in soil quality [36].

4.1. Cover Crops

Cover crop composition plays a key role in determining soil benefits, particularly
when this is enriched with leguminous species, since they improve soil N status through
fixation of nitrogen [36]. Cover crops especially hairy vetch (Vicia villosa) showed significant
improvement in soil microbial biomass N (SMBN) and greater abundance of Gram-positive
bacteria but lower abundance of mycorrhizal fungi than wheat and no-cover crops [36].
The higher abundance of actinomycetes and Gram-positive bacteria was attributed to the
presence of higher aromatic carbon contents and anaerobic conditions in the soil [100].
Recently, cover crops have been used to control weeds in organic farming and the soil
microbial communities have responded differently to different cover crop species. The
effects of mixed species cover crop communities have been reported by Wortman et al. [101].
A total of 17 FAME biomarkers were influenced by cover crops in which 10, 5, and 2 FAME
biomarkers were associated with bacterial, actinomycetes, and mycorrhizal functional
groups, respectively. The abundance of these biomarkers was reduced significantly under
weedy treatment as compared to cover crops [101].

4.2. Organic Amendments

Use of organic amendments is an important factor in organic farming where the crop
productivity depends on the supply of soil nutrients, the production and composition
of which is mediated through microbial decomposition of organic residues [102]. The
type and amounts of organic substrate have been noted to have a significant influence on
the abundance of the resident microbial community and its functional diversity [103,104].
Long-term application of organic wastes, such as animal waste, poultry litter, etc., has been
reported to improve soil properties and increase diversity of bacterial community, particu-
larly Bacteroidetes. Organic fertilization is reported to promote soil microbial diversity [28],
while an increase in soil pH was observed along with an enrichment of Acidobacteria and
depletion of α-Proteobacteria [105]. Dumontet et al. [106] compared the effects of differ-
ent organic amendments on soil microbial metabolic activities. The results revealed that
amendments with biochar resulted in greater diversity of cellulose-degrading bacteria.

5. Effect of Pesticides on Microbial Diversity

Commercial cultivation has enhanced the use of plant protection chemicals. Since
they are active chemicals, they are bound to affect the soil microbiota strongly. Although
some of the reports suggest that pesticides at their recommended doses have minor or
transient effects [107,108] on soil microbiota in general, there is still a need of more specific
studies as much as their effects on rhizospheric soil microbial structure as far as specific
plant species are concerned. However, a clear description of the effects and side effects of
pesticides on soil microbial diversity is also available [109,110]. Pesticides may have two
kinds of effects on microbial diversity, the first being ‘immediate displacement’ of microbial
communities due to pesticide toxicity, and the second, ‘long-term effects’ on microbial
processes caused by succession of microbial communities. In both the cases, the microbial
community structure shift may affect soil fertility [111]. Sun et al. [112], using multivariate
regression tree analysis, reported that organochlorine pesticide levels are a second most
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important factor after the type of vegetation which, affects soil microbial diversity in
pesticide contaminated soils. Diverse microbes play crucial roles in nutrient cycling and
organic matter decomposition in soil [109]. A shift in the community composition due to
external pressure (pesticides) may alter these activities. As we are aware of the fact that
changes in land use from grassland to agriculture affects the community structure [113],
use of agrochemicals could be one of the important factors behind it.

5.1. Microbial Metabolism of Pesticides

A few microbial groups use pesticides as a source of energy and nutrients, while
others are affected by its toxicity. When a microbial community is affected, it disturbs the
interwoven network of different trophic levels, leading to various indirect effects on soil
microbial processes. Tables 1–4 shows different chemical pesticides and their effects on
microorganisms. For example, the herbicide sulphonylurea targets the synthesis of valine,
leucine, and isoleucine, whereas, glyphosate stimulates C and N mineralization, indicating
higher soil microbial activity and no effect on soil microbial biomass (Table 1) [114], but at
higher doses, it reduces microbial biomass (3.84 L ha−1) [115]. Other herbicides, such as
atrazine and paraquat, decrease dehydrogenase activity; however, paraquat persists for
relatively longer times (up to 13 years) than atrazine (up to 100 days). The fungicide captan
inhibits the activity of denitrifying bacteria, whereas fenpropimorph targets ergosterol
biosynthesis as designed for leaf fungi (Table 2). Bjourland et al. [116], however, showed
that this compound has no immediate toxic effects on bacteria, fungi, and protozoa of
soil. The insecticide cypermethrin affects enzyme activities (namely, β-glucosidase, urease,
acid-phosphatase, and dehydrogenase) [117] and has slight toxicity on soil biomass and
other physiological activities for a short period (Table 3). On the other hand, the insec-
ticide acetamiprid has a strong negative effect on soil respiration and was also found to
affect phosphatase activity [118]. Soil fumigants also have deleterious effects on microbial
activity (Table 4).

Some of the studies indicated that CO2 emission increases with pesticide application.
This may be due to enhanced energy use to carry out cellular processes or due to the
enhanced population of pesticide degrading microbial communities. In the latter case,
the balance of diversity needs to be assessed. The rate of adaptation of microorganisms
to pesticides may be considered important in maintaining equilibrium upon addition of
agrochemicals, as there is an increase in the population of microbes able to degrade the
agrochemical. Some of the microbial genes responsible for pesticide degradation have been
identified, e.g., linA and linB genes have a role in the degradation of different forms of
hydrocarbons along with their degradation intermediates [119–121].

Table 1. Different herbicides with their reported effects on soil microorganisms and biochemical reactions.

Herbicides Effects on Microorganism and Associated Process References

2,4-D Adversely affects the activities of Rhizobium sp. [122]

2,4-D Reduces nitrogenase, phosphatase, and hydrogen photoproduction
activities of purple non-sulfur bacteria. [123]

2,4-D and 2,4,5-T
Adversely affects node-expression disrupting plant Rhizobium signaling.
2,4-D also reduces fixation by blue-green algae and nitrifying process
impacting Nitrosomonas and Nitrobacter sp.

[124]

2,4-D, Agroxone, and Atranex Inhibits activities of Rhizobium phaseoli and Azotobacter vinelandii
(most sensitive). [122]

2,4-D, Bromoxynil, and Methomyl Reduces CH4 oxidation to CO2. [125]
Bensulfuron methyl and
Metsulfuron-methyl Decreases N-mineralization. [126]

Bentazone, Prometryn,
Simazine, and Terbutryn

Inhibits N-fixation and decreases the number of nodules and N
content overall. [127]

Isoproturon, Triclopyr Adversely impacts Nitrosomonas, Nitrobacter, urea hydrolyzing bacteria,
nitrate reductase activity, and growth of actinomycetes and fungi. [128]
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Table 1. Cont.

Herbicides Effects on Microorganism and Associated Process References

Linuron, Terbutryn, and
Methabenzthiazuron

Adversely impacts nitrogenase activity and nodulation at the
pre-emergence application. [129]

Glyphosate Suppresses phosphatase activity. [130]
Glyphosate Reduces the growth and activity of Azotobacter. [131]
Metribuzin At lower doses, no effects on AM fungi in maize and barley. [132]

Butachlor Butachlor (20 µg/g) reduced the population of Azospirillum and anerobic
nitrogen fixers in a non-flooded alluvial soil. [133]

Metsulfuron-methyl, Chlorsulfuron,
Thifensulfuron methyl Reduced the growth of fluorescent psendomonads (77 strains). [134]

Diuron, Linuron, Chlorotoluron Negatively affect the microbial community structures. [135]

Propanil, Prometryne Propanil did not affect soil bacteria in general.
Prometryne persisted in soil longer than propanil. [136]

Glyphosate Glyphosate produces a non-specific, short-term stimulation of bacteria at
a high concentration. [137]

Isoproturon Affects the proliferation of Sphingomonas spp. [138]

Butachlor Negatively affects the general bacterial communities; the diversities
ranged from 28% to 52%. [139]

Diuron or Linuron Removal of dominant acidobacterium. [135]
Glyphosate Increased relative abundance of β-Proteobacteria (Burkholderia). [140]

Napropramide Initial decrease in bacterial and fungal abundance followed by an
increase in abundance of Gram-negative bacteria and fungi. [141]

Pretilachlor Decreased activity of phosphatase, urease, and dehydrogenase [111]

Mesotrione
No response of the soil microbial communities in soil spread with field
rate applications.
Soil microbial activity stimulated by 100× FRA of pure Mesotrione.

[142]

Isoproturon Treatment-induced changes in community composition [109]

Imazetapir Decreases nitrogenase activity in Rhizobium leguminosarum. R. trifolii,
Bradyrhizobium sp., and Sinorhizobium meliloti. [143]

Table 2. Different fungicides with their reported effects on soil microorganisms and biochemical reactions.

Fungicides Effects on Microorganism and Associated Process References

Fenpropimorph Fenpropimorph inhabited the growth of active fungi and calculable bacteria. [144]

Iprodione Affects the soil bacterial communities. [145]

Apron, Arrest, and Captan Reduces viable counts of Rhizobium cicero. [146]

Benomyl Impacts mycorrhizal associations and nitrifying bacteria. [147]

Benomyl, Mancozeb Arrests activity of dehydrogenase, urease, and phosphatase. [148]

Captan Inhibits aerobic N-fixing, nitrifying, denitrifying bacteria, nitrogenase activity,
phosphate solubilization, and other fungi. [149]

Captan and Thiram Decreases cell growth and nitrogenase activity in Azospirillum brasilense. [150]

Captan and Carbendazim Decreases the activity of nitrogenase enzyme. [123]

Captan, Carboxin, Thiram Inhibits the activity of bacteria responsible for denitrification. [151]

Carbendazin and Thiram Inhibits nodulation in legumes and thus N-fixation process. [143]

Chlorothalonil Affects bacteria associated with nitrogen cycling. [147]

Chlorothalonil, Azoxystrobin Affects biocontrol agent(s) used against Fusarium wilt. [152]

Copper fungicides Decreases population of bacteria, cellulolytic fungi, and Streptomycetes. [153]

Dimethomorph Inhibits nitrification and ammonification process. [154]

Dinocap Inhibits the activity of ammonifying bacteria. [155]

Dithianon Destroys bacterial diversity. [156]
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Table 2. Cont.

Fungicides Effects on Microorganism and Associated Process References

Fenpropimorph Slows down bacterial activity. [151]

Fludioxonil Toxic to algal activities. [157]

Funaben, Baytan, Oxafun Inhibits nitrogenase activity of methylotrophic bacteria. [158]

Hexaconazole Impacts bacteria involved in N cycling. [159]

Mancozeb Impacts on bacteria involved in the N & C cycle. [155]

Mancozeb, Chlorothalonil,
Metal dithiocarbamates Reduces nitrification process. [160]

Metalaxyl Reduces urease activity continuously while phosphatase activity seems stimulated
but then reduces. [161]

Metalaxyl Disturbs activity of ammonifying and nitrifying bacteria. [162]

Oxytetracycline Acts as bactericide. [163]

Pencycuron Short-term impact on metabolically active soil bacteria. [164]

Propiconazole Retards PGP effects of Azospirillum brasilense on its host plant. [165]

Triadimefon Deleterious to long-term soil bacterial community. [166]

Triarimol and Captan Reduces frequency of Aspergillus sp. [167]

Azoxystrobin,
Chlorothalonil,
Tebuconazole

None of the fungicides affected bacterial community structure.
Chlorothalonil negatively affect the ciliate protozoan Arcuospathidium sp., or
Bresslaua vorax. Azoxystrobin affect the Flagellate protozoan Paraflabellula hoguae,
while ascomycete fungus Cladosporium tenuissimum was affected by tebuconazole.

[162]

Cobber
Bioavailable Cu positively correlated with relative abundances of phylums
Acidobacteria and negatively correlated with the phylums Proteobacteria and
Bacteroidetes.

[168]

Cobber Decrease in abundance of acidobacteria and increase of Firmicutes.
Bacillus community highly resistant to high cobber concentrations. [169]

Mancozeb Enhanced activity of alkaline phosphatase, protease, amidase. Decreased activity
of urease and asparaginase [170]

Propiconazole Decreased activity of phosphatase, urease, and dehydrogenase. [111]

Chlorothalonil More transient and weaker negative effects on soil micro-organisms. [171]

Thiram Diversity decrease at 200 mg kg−1. [172]

Tebuconazole, Metalaxyl Perturbation of bacterial community structure compared to control. [173]

Carbendazim, Thiram Decreases nitrogenase activity in Rhizobium leguminosarum. R. trifolii,
Bradyrhizobium sp., and Sinorhizobium meliloti. [143]

Metalaxyl and Mefenoxam Decreases nitrogen-fixing bacteria and microbial biomass. [174]

Table 3. Different insecticides with their reported effects on soil microorganisms and biochemical
reactions.

Insecticides Effects on Microorganism and Associated Process References

Cypermethrin Increase in Gram-negative bacteria and decrease in firmicutes. [175]

Amitraz, Aztec, Cyfluthrin,
Imidachlorpid, and Tebupirimphos Reduces activities of urease and phosphatase enzymes. [176]

Arsenic, DDT, and Lindane Decreases microbial biomass and microbial and enzymatic activities. [177]

Bensulfuron methyl and
Metsulfuron-methyl Reduces soil microbial biomass. [178]
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Table 3. Cont.

Insecticides Effects on Microorganism and Associated Process References

Carbamate Inhibits several soil microorganisms, enzymes, and nitrogenase activity
of Azospirillum. [130,179]

Carbofuran, Ethion Inhibits nitrogenase activity of Anabaena doliolum. [180]

Chlorinated hydrocarbons Inhibits methanogenesis. [181]

Chlorpyrifos, Dichlorvos, Phorate,
Monocrotophos, Methyl parathion,
Cypermethrin, Fenvalerate,
Methomyl and Quinalphos

Increases phosphatase activity initially and later reduces gradually. Phorate
reduces the total bacterial population and N-fixing bacteria. [182]

Chlorpyrifos, Profenofos,
Pyrethrins, and Methylpyrimifos

Reduces the population of aerobic N-fixing, nitrifying and denitrifying
bacteria, and several fungi. Profenofos and Pyrethrins decrease the activity
of urease enzyme and nitrate reductase.

[183]

Chlorpyrifos, Quinalphos Reduces the ammonification process. [182]

Cyfluthrin, Fenpropimorph,
and Imidacloprid

Decreases the nitrification and denitrification process.
Stimulates sulfur oxidation. [176]

Diazinon and Imidacloprid Inhibits a urease-producing bacterium (Proteus vulgaris). [184]

Lindane, Malathion, Diazinon,
and Imidacloprid

Lindane inhibit state of nitrification, N-availability, P-solubilization, and
activity of phosphomonoesterase enzyme, while the opposite effect is
observed in the case of Diazinon and Imidacloprid.

[177]

Methamidophos Reduces microbial biomass by 41–83%. [185]

Neemix-4E Reduces urease enzyme activity. [186]

Organophosphate insecticide Impacts the activity of soil enzymes, several beneficial soil bacteria, and
fungal population and reduces N-mineralization rate. [179]

Pentachlorophenol Reduces nitrification. [187]

Quinalphos Reduces activity of phosphomonoesterase. [188]

Diflubenzuron Diflubenzuron (100–500 µg/g) stimulates dinitrogen-fixing bacteria
(Azotobacter vinelandii). [189]

Methylpyrimifos,
Chlorpyrifos

Methylpyrimifos (100–300 µg/g) or chlorpyrifos (10–300 µg/g) significantly
decreased aerobic dinitrogen-fixing bacteria.
Fungal populations and denitrifying bacteria were not affected.

[190]

Fenamiphos Not toxic to dehydrogenase or urease activities, but likely to be detrimental
to the nitrification in the soil. [191]

Methamidophos

High concentrations of methamidophos (250 mg/kg) stimulate fungal
populations. DGGE fingerprinting patterns showed a significant difference
between the responses of culturable and total fungi communities under the
stress of methamidophos.

[192]

Methamidophos Methamidophos at 0.031 g/pot/week and 0.31 g/pot/week significantly
decreases microbial biomass by 41–83% compared with the control. [185]

Methylparathion Induced the community of γ-porteobacteria (Pseudomonas stutzeri and
Pseudomonas putida). [193]

Carbaryl,
Carbofuran

Carbary (10 µg/g) had almost no effect on nitrogenise; however, carbofuran
(2 µg/g) reduced the population of Azospirillum and anerobic nitrogen fixers.
Carbofuran (4 µg/g) stimulated the population of Azospirillum and other
anaerobic nitrogen fixers.

[133]

Profenofos Decreased activity of phosphatase, urease, and dehydrogenase [189]

Higher activities at lower dosage, greater toxic effects at higher dosage. [194]
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Table 4. Different soil fumigants with their reported effects on soil microorganisms and biochemi-
cal reactions.

Soil Fumigants Effects on Microorganism and Associated Process References

Metam sodium Dose-dependent shift in community structure (after 5 weeks). [195]
Methyl Bromide Increased abundance of Gram-positive bacteria. [196]
Methyl isothiocyanate Increased abundance of Gram-positive bacteria. [196]
Metam sodium Inhibitory effect on Gram-negative bacteria and fungi in both field and laboratory studies. [197]

1,3-dichloropropene Initial inhibition of dehydrogenase activity (at 500 mg kg−1).
Bacterial community diversity decreased with higher concentration.

[126]

5.2. Deleterious Effects on Microbial Community

Prior to granting approval to a pesticide compound, its effects on microbial processes
are assessed [198] by measuring microbial activities in soil [199]. The effect of pesticides
on carbon and nitrogen metabolism after adding organic substrates to the soil was also
assessed. The transformation of compounds such as nitrate, nitrite, ammonium, oxygen,
and carbon dioxide are used to study the effects of pesticide on soil environment, the delete-
rious effects of which must be below 25% for approval in the United States of America [199].
However, even a great shift in bacterial community structure may not always result in
any significant change in overall nitrogen and carbon metabolism. Some other species
which could metabolize the pesticides pre-dominate the scenario, suppressing those which
are sensitive to the effects of the pesticide in question. The effects of pesticides on the
overall dynamics of microbial diversity can be influenced by the fact that some microbial
communities may be able to use the pesticide as a source of energy and nutrients, while
others are affected by its toxic effects. Metagenomic-based studies indicated abundance of
the bacterial genera Pseudomonas, Sphingomonas, Novosphingobium, Sphingopyxis, Marinobac-
ter, Chromohalobacter, Halomonas, and Alcanivorus at a dumpsite of hexachlorocyclohexane
(HCH) [119]. Johnsen et al. [111] discusses the consequences that the shift in microbial
community structure experiences due to a vacant ecological niche created by suppression
of one microbial community, and how this succession leads to altered ecological activities
in due course of time. Therefore, it is important that the effects of pesticides on microbial
diversity at different levels should be assessed in both immediate and long-term studies.
Metagenomic studies in this respect could be more useful.

Several ecological indicators have been worked out to assess the impact of pesticides
on soil microbial activity. They range from assessing microbes as a whole to soil microbial
biomass [200], enzyme activity [170,201], mineralization rate [202,203], community-based
profiling (physiological profiling) [204], DNA based profiling [205], and fatty acid-based
profiling [206] (to assess the community shift), and meta-omic approaches [119]. All these
techniques warrant different degrees of accuracy and relationship with soil biogeochemical
processes. Meta-omic approaches were able to decipher the phenomenon at the level of
genes responsible for degradation of target pesticides [207–209] which could further give
clues to expedite the process of residue clean-up from agricultural lands.

5.3. Methods of Detecting Effects of Pesticides on Microbial Community Structure

The methods and basis used for detecting effects of pesticides on microbial diver-
sity are of paramount importance, because what is going to be measured should be a
true indicator of what is actually happening in the ecosystem. In an aquatic ecosystem,
Widenfalk et al. [109] reported that community level end points (measuring microbial
activity and biomass) did not become affected by pesticide exposure, but on the other
hand, subcommunity level endpoints (16s rRNA-based genotyping, T-RFLP, and PLFA
composition) were affected by pesticide exposure, thus being better indicators to detect
the changes in the resident microbial community caused by pesticides. One of the reasons
for observing no effects on community level end points is compensatory mechanisms. In
lower doses of pesticides, the microbial activity becomes affected but only with higher
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doses is the inhibition of bacterial activity observed. Widenfalk et al. [210] suggested that
some microbial groups were favored by high pesticide exposure and masked the overall
impact on microbial activity and biomass. Similar microbial community shifts in soil have
been reported by El fantruossi et al. [135]. Following pesticide application, some of the
microbial communities capable of degrading pesticides [211] are increased in number in the
total microbial population. For subcommunity level end points, traditional culture-based
diversity studies could not reveal a complete picture of change in populations as they
represent only less than a percent of total soil microbiota; therefore, meta-omics-based
studies could provide a more complete understanding of the change in diversity of the
resident microbiota.

In a more conclusive way, gene expression as affected by pesticide application was
studied by several workers. Expression of the amoA gene, which is involved in ammonia
oxidation, was found to be decreased in a soil microcosm exposed to dazomet and man-
cozeb using reverse-transcription qPCR. Additionally, bacterial diversity analysis using
16S ribosomal RNA sequencing is also affected by pesticides. Long-term inhibition was
observed in bacterial and archeal amoA transcript numbers by two log units for more than
28 days by dazomet, whereas mancozeb inhibited amoA transcripts transiently. The inhibi-
tion of total bacterial numbers by one log unit was observed in 12 days by dazomet but
was later restored. However, firmicutes and proteobacteria were dominating classes on day
twelve, indicating a halt in early opportunists’ growth and the initiation of re-establishment
of a diverse population. On the other hand, no effect of mancozeb on bacterial diversity
was observed.

6. Effect of Moisture Levels on Soil Microbial Biodiversity

Microbial diversity of soil is an important soil health index. Ecosystem biodiversity
is positively related to its resilience and stability [61,212]. Any harm to the ecosystem
negatively impacts its biodiversity [61,213]. Soil moisture content is one of the most im-
portant factors that affect the microbial diversity, as it affects the availability of free water
connecting soil particles, which are crucial for microbial life. Zhou et al. [214] found that the
bacterial diversities are reduced in water-saturated soil. Complete flooding eventually leads
to anoxic conditions and has a significant impact not only on soil properties but also on the
complete soil ecosystem [215]. According to Denef et al. [216], anoxic conditions created by
alternating wetting and draining of the soil disturbed the normal soil microbial population
structure by favoring or suppressing the growth of particular microbial communities. Wet-
ting and drying state cycling negatively influences the population of obligate aerobes and
anaerobes, but will support the growth of microorganisms tolerant to both the conditions.
Soil microbial population is also influenced by the flood duration as a result of a decrease
in the rate of change in redox potential in anaerobic conditions [217], and thus, the rate of
denitrification, reduction of iron and sulfur, and methanogenesis [218] might be affected.
During the dry period, nitrification and denitrification rates slow down but resume after
rewetting of soil [219]. Conrad [220] reported that anaerobic soils may contain methane
producing microorganism, especially Archaea, which under strict anaerobic conditions
produce methane gas (having a high global warming potential). Short-term drainage of
floods in rice field significantly reduced methane emission [221,222]. This was expected as
methanogens can only thrive in very low levels of oxygen [220].

Some facultative anaerobic bacteria, such as Methylosinus trichosporium and Mycobac-
terium smegmatis could survive under temporary hypoxic conditions [223]. Growth of
these microbes is negatively influenced by frequent wetting and drying. However, radi-
cal changes in the community dynamics of soil bacteria were observed when dry lands
were transformed into agricultural land [224]. Conversion from hyper-arid deserts to
agricultural land resulted in an increased bacterial diversity [224]. Since soil water content
plays a crucial role in regulating oxygen diffusion, the moisture levels between 50–70% of
water-holding capacity exhibit maximum aerobic microbial activity [100,225], and thus, can
be considered as optimum for normal microbial growth and development. Excess moisture
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levels also decrease the rates of organic matter decomposition due to restricted oxygen
availability. On the other hand, low soil moisture content results in reduced microbial
and soluble substrates mobility along with cellular water potential, thus affecting activ-
ities of the soil microflora negatively [214,226]. Geyer et al. [227] indicated that in polar
desert soils the population of several bacterial genera was significantly dependent on soil
moisture levels.

Bacterial communities are rather stable with a change in the soil moisture content as
compared to fungal communities [228]. Among the bacteria, the population of Proteobacte-
ria is significantly affected by a change in the soil moisture content [229]. Along with the
moisture level, soil temperature also influences microbe–microbe interaction and diversity
as a whole. This signifies the role of soil nutrient and water use efficiency for a healthy
population structure of microbes in the soil [230]. The soil moisture content also affects
rhizosphere colonization [231] as it is crucial for the mobility of bacteria. Bachar et al. [232]
reported that precipitation has more significant effects on abundance of bacteria rather than
on its diversity. Decreased soil moisture content as a result of global warming will likely
limit survival, dispersal, and colonization ability of microorganisms in soil spaces [233],
and thus, it might have a role in modification of the rhizosphere microbiome structure.
Therefore, modulation in the soil moisture content along with other agricultural practices
could enhance the soil microbial diversity, which can be utilized further for sustainable
crop production in the changing environmental scenario.

7. Microbial Inputs: A Way Out for Sustainable Crop Production

An active and diverse soil biota is important for maintaining crop productivity and
quality, and preservation of these traits is a major goal of sustainable farming. Agriculture
is an age-old practice, being followed over thousands of years and never leaving any kind
of ill effects on soil, human health, and even on the environment until comparatively very
recently, after the introduction of inorganic agrochemicals. Agriculture, being the main
source of income and employment in the country, is rightly considered the backbone of
the Indian economy. Within the last fifty to sixty years, as a result of the adoption of many
faulty agricultural practices, the sustainability of the entire agricultural industry has become
debatable. India is an agriculture-based country where more than 50% of its population
depends on an agricultural economy. Toxic or ill effects of agrochemicals incorporated
in soil knowingly or unknowingly in the course of various crop management practices
can be remediated through application of potentially beneficial soil microorganisms. Soil
microorganisms having different agriculturally important traits may be used for different
agriculturally beneficial activities, i.e., bioremediation, nutrient cycling, nutrient acquisition,
making suppressive soils, biological control, etc.

Agricultural intensification may alter soil biodiversity in a manner that affects the
overall ecosystem function. Soil microbial communities are strongly affected by different
agricultural practices, especially the application of organic amendments [234]. To maintain
healthy environments, new technologies need to be applied, including microbial inocula-
tions into the soils. There are a number of approaches, which can be used, on a sustainable
basis, to meet food requirements without compromising environmental health. Among
these, the use of microbial products is pivotal to ensuring food security in a changing
climate [235]. The fact that microbial approaches can successfully be used for sustainable
agricultural development has well been established and proven by a number of examples.
Several microbial formulations provide alternatives to the two most important categories of
toxic agrochemicals/soil pollutants, namely, inorganic fertilizers and chemical pesticides,
are available on the market which are being used effectively by farming communities to
enhance crop production without any ill effects on local natural resources including soil,
water, and even on the environment. Rhizosphere engineering through the manipulation of
effective microorganisms and agricultural management practices, such as cropping pattern
adaptation, intercultural applications, irrigation scheduling, crop geometry, etc., may be
other potential alternatives for bringing sustainability in agriculture [234,235].
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Farmers are advocated and forced to apply advanced and new agricultural tech-
nologies to increase production/yield, and in this process, they are likely to apply more
agrochemical-based inorganic fertilizers and chemical pesticides. This trend is predomi-
nately seen in the agriculture policies of developing countries. Industrialization and other
anthropogenic activities, especially those considered essential by developing countries,
result in the production of pollutants, which accumulate continuously over time in soils
dedicated to agricultural use, and also in aquatic environments and contaminating them
likewise. Plants are entirely dependent upon native microorganisms to utilize soils as
a growth medium, and the synergy between both is important for their survival. The
main challenge in current agricultural research is to meet sustainable environmental and
economic issues without compromising yields and produce quality. Looking at the present
context, exploiting the agroecosystem services of soil microbial communities appears a
promisingly effective approach to meet this challenge. Nowadays, emphases are being
given to develop green technologies that can degrade toxic pollutants already incorporated
into nature in order to bring their levels down to what we consider “safe”. One suitable
eco-friendly alternative approach is exploiting the role of soil microbial communities for
sustainable and healthy crop production, while preserving the biosphere. Indeed, soil
microorganisms play fundamental roles in agriculture by being pivotal to a number of
processes that may lead to various direct and indirect beneficial effects for crop plants, i.e.,
crop-residue decomposition and nutrient cycling, improving plant nutrition and health,
as well as soil quality as substrates for plant growth. Hence, several strategies for more
effective exploitation of beneficial microbial services, well-recognized low-input biotech-
nology to help sustain environmentally friendly agrotechnological practices have been,
and are being, advocated. These recommended agricultural practices aim to optimize the
role of root-associated microbiome in crop production by nutrient supply and plant protec-
tion exploiting biological activities. Since the interactions between microbial communities
and crops are influenced by diverse ecological factors and agronomic management, the
impact of environmental stress factors with various crop-microbe interactions needs to
be considered, particularly in the current global climate change scenario. Diverse types
of stress situations are generated by intensive agricultural practices, and all of them are
affecting the functionality/productivity of both agricultural systems and natural ecosys-
tems, and therefore, restrict various ecosystem services. A number of stress factors still
prevail and these include salinity, drought, nutrient deficits, contamination, soil erosion,
diseases, pests, invasive plants, etc. Besides creating hazards, agrochemical application
for crop production and protection provokes environmental contamination and may still
pose threats to human health. Most of these microbes remain in the rhizospheric soil or
rhizo-plane, but a small subpopulation of them, designated as “endophytes”, are able
to penetrate and live within plant tissues. These little friends of agriculture also have
several beneficial effects on plant growth and its overall performance without showing
their presence. Endophytes are known to have plant growth promoting, nutrient fortifying,
and biotic and abiotic stress alleviating potential for different crop plants and have greater
potential to be used as microbial inoculants [236–239]. In a similar way, plant growth
promoting rhizobacteria is reported to influence plant growth and protect plants from
various biotic and abiotic stresses along with biofertilization and biofortification in crops of
nutritional importance [240–242].

8. Conclusions and Future Prospects

Increasing and diversifying global food demands are mounting pressures on agricul-
tural production, and hence, are becoming major challenges to contemporary agriculture.
To meet the food requirement of a burgeoning population, especially in developing coun-
tries, agricultural intensification has become inevitable. The surging demand for food can
justifiably be fulfilled only through increased crop production, while utilizing available
resources in a sustainable way. The increasing rate of urbanization coupled with rising
income and changing dietary patterns in the wake of growing health awareness among the
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population are leading to an increase in demand for different types and varieties of food.
The need for a high-quality diet and the rising popularity of organic produce are going
to require additional resources for crop production in the days to come. All these factors
eventually put significant pressure on the agricultural system, in general, and on microbial
diversity, in particular. Now, as we realize the need of ensuring long-term sustainability
with optimal resource use efficiency and that too without negative effects in the restricted
land whatsoever available for agricultural cultivation, a variety of management practices
are being developed. Manipulating the rhizosphere with desirable changes in soil microbial
diversity could improve plant performance by influencing water dynamics and enzyme
activities. Agricultural management practices that promote soil organic matter (SOM)
accumulation and retention enhance microbial biodiversity of soil in general and the plant
rhizosphere in particular. To maintain a healthy soil environment, new technologies need
to be applied, including microbial inoculations and measures to ensure their retention in
the system for the desired periods. There are a number of approaches which can be used
on a sustainable basis to meet food requirements without compromising environmental
health. Among these, use of microbial products is becoming pivotal to ensuring food
security in a changing climate. Rhizosphere engineering through manipulation of effective
microorganisms and agricultural management practices, such as crops and cropping pat-
tern adaptation, intercultural applications, irrigation scheduling, crop geometry, etc., may
be the alternatives that can be integrated suitably for system sustainability. Looking into
the present context, exploiting the agroecosystem services of soil microbial communities
appears to be a promisingly effective approach to agriculture in the days to come. One of
the suitable and eco-friendly alternative approaches is exploiting the role of soil microbial
communities for sustainable and healthy crop production. Therefore, several strategies for
more effective exploitation of beneficial microbial services and low-input biotechnology
may be coupled to develop environmentally friendly agrotechnological practices. This
can be propagated and advocated among large farming communities. Potential of endo-
phytes can also be explored for restoring soil system sustainability. Despite considerable
advancements in DNA sequencing technologies, the knowledge of the effect of different
tillage practices on taxonomy and phylogenetic composition of microbial communities is
still limited. The effects of different tillage practices under various soil types and climatic
conditions on soil microbial diversity need to be studied in detail for better understanding
of the system. In a nutshell, it can be concluded that although there have been remarkable
achievements in agriculture with the application of microbial biotechnology, opportunities
still need to be explored based on specific agricultural practices and soil microbial inter-
actions for sustainable agricultural development in the future. This knowledge based on
specific agricultural practices and soil microbiology can be exploited for the identification of
indicators not for soil health only but also for agricultural health in toto. There is an urgent
need of emphasizing the adoption of newer techniques in agriculture which may ensure
ecosystem sustainability while simultaneously maintaining food security and quality for
the ever-increasing population.
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