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Abstract

Activating mutations in the RAC1 gene have recently been discovered as driver events in 

malignant melanoma. Expression of this gene is associated with melanocyte proliferation, and 

melanoma cells bearing this mutation are insensitive to BRAF inhibitors such as vemurafenib and 

dabrafenib, and also may evade immune surveillance due to enhanced expression of PD-L1. 

Activating mutations in RAC1 are of special interest, as small molecule inhibitors for the RAC 

effector p21-activated kinase (PAK) are in late-stage clinical development and might impede 

oncogenic signaling from mutant RAC1.

In this work, we explore the effects of PAK inhibition on RAC1P29S signaling in zebrafish 

embryonic development, in the proliferation, survival, and motility of RAC1P29S-mutant human 

melanoma cells, and on tumor formation and progression from such cells in mice. We report that 

RAC1P29S evokes a Rasopathy-like phenotype on zebrafish development that can be blocked by 

inhibitors of PAK or MEK. We also found and that RAC1 mutant human melanoma cells are 

resistant to clinical inhibitors of BRAF but are uniquely sensitive to PAK inhibitors. These data 

suggest that suppressing the PAK pathway might be of therapeutic benefit in this type of 

melanoma.
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Introduction

Beginning with the discovery of the causative role of BRAF mutations in a large percentage 

of human melanomas, a variety of additional driver mutations have been identified, 

including recent discoveries of activating mutations in the guanine-nucleotide exchange 

factor PREX2 (~14% of melanomas) and its small GTPase substrate, RAC1 (4–9%). 

Following activating mutations in genes that encode BRAF and NRAS, the RAC1 P29S 

amino acid change represents the next most frequently observed protein-coding hot-spot 

mutation in melanoma.4, 11, 15 Expression of this gene is associated with melanocyte 

proliferation, and melanoma cells bearing this mutation are insensitive to BRAF inhibitors 

such as vemurafenib and dabrafenib,15, 30 and also may evade immune surveillance due to 

enhanced expression of PD-L129. While the P29S RAC1 mutation is most commonly 

encountered in malignant melanoma, P29L is also observed, as well as less frequent 

mutations at additional residues within the switch I and II regions of the RAC1 protein.29. In 

addition, a P29S mutation has also been identified in the RAC2 gene in a patient with 

malignant melanoma.13 Activating mutations in RAC1 are of special interest, as small 

molecule inhibitors for the RAC1 effector p21-activated kinase (PAK) are in late-stage 

clinical development and might be of therapeutic benefit in this setting.

RAC1 is a small GTPase that has key roles in regulating cell shape, motility, survival, and 

division, and is essential for the oncogenic activity of RAS.24 Like its relative RAS, when in 

the GTP-bound state, RAC1 binds to and signals through a variety of effector proteins. The 

best-understood effectors for RAC are the group A PAKs: PAK1, -2, and -3.25 Of these, 

PAK1 is overexpressed in a subset of BRAF WT melanomas due to amplification of the 

PAK1 gene, and such cells are sensitive to PAK inhibitors or siRNA.22 PAKs regulate a 

multitude of cellular processes including transcription, translation, cell motility, survival, 

proliferation, and organization of the cytoskeleton25. Interestingly, among the most firmly 

established substrates of PAK1 are c-RAF and MEK1, and we and others have shown that 

loss of PAK1 activity leads to loss of c-RAF, MEK1, and subsequent ERK activation in 

many cell types25. While PAK1 also has many other substrates besides c-RAF and MEK1 

that mediate its cellular effects, recent genetic and pharmacologic data show that the 

PAK/MEK/ERK signaling axis is essential for RAS-driven transformation in a mouse model 

of skin cancer3.

Because Group A PAKs play such important roles in RAC1 signaling pathways, it is 

reasonable to assume that these kinases might be required for the growth, survival, and/or 

movement of RAC1P29S-mutant melanoma cells. In this work, we explore the effects of PAK 

inhibition on RAC1P29S signaling in zebrafish embryonic development, in the proliferation, 

survival, and motility of RAC1P29S-mutant human melanoma cells, and on tumor formation 

and progression from such cells in mice. We found that, like activated BRAF and KRAS, 

RAC1P29S induces a Rasopathy-like phenotype on zebrafish development that can be 

blocked by inhibitors of PAK or MEK. We also found that human melanoma cells bearing 

activating mutations in RAC1 show elevated ERK activity but are not responsive to clinical 

inhibitors of BRAF; however, such cells are sensitive to inhibitors of PAK and MEK, 

respectively. These data suggest that suppressing the PAK pathway might be of therapeutic 

benefit in RAC1-mutant melanoma.
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Results

Expression of RAC1P29S modifies zebrafish embryonic development and activates ERK 
through Group A PAKs

Expression of Rasopathy genes such as activated BRAF, NRAS, and MEK1 induces 

abnormal development in zebrafish characterized by elongation of the body and aberrant 

development of anterior embryonic structures including the heart and eye.1, 10, 12 These 

changes are accompanied by notable activation of ERK, and can be blocked by inhibiting 

this pathway with small molecule MEK inhibitors.2 As RAC1 activates PAK, which assists 

in the MEK/ERK pathway via phosphorylation of c-RAF and MEK125, we asked if 

activated RAC1 affected embryonic development and if these effects were accompanied by 

PAK and ERK activation. To determine if activated RAC1 affects development, we injected 

1-cell zebrafish embryos with mRNAs encoding either WT or activated (V600E) BRAF, 

activated (G12V) KRAS-4A, or activated (P29S) RAC1, and followed development over a 

12h period. As shown in Fig. 1A, expression of WT BRAF was without effect, but 

expression of activated BRAF, KRAS, or RAC1 all resulted in marked disturbance in body 

axis. These embryos were then analyzed for signal pathway activation. We found that 

embryos injected with BRAF, KRAS, or RAC1 mRNA all showed elevated ERK activity 

(Fig. 1B). PAK activity was also elevated in these embryos, most notably in RAC1 injected 

fish.

As Group I PAKs are key effectors for RAC1, we asked if pharmacologic inhibition of these 

kinases would alter the effects of RAC1P29S in embryo development. Injection of mRNA 

encoding activated RAC1 resulted in abnormal development, characterized by pericardial 

edema, small/absent eyes, and reduced head size, in ~85% of embryos (Fig. 1C and 1D). 

These abnormalities were partly prevented by incubation of RAC1P29S-injected embryos 

with the RAC inhibitor NSC23766, and almost completely prevented by the group A PAK 

inhibitor Frax-1036 (one of the most specific PAK inhibitors known)23, 27 or the MEK 

inhibitor PD325901. In contrast, the BRAF inhibitor vemurafenib did not prevent 

developmental abnormalities induced by RAC1P29S. It should be noted that for these and 

subsequent experiments, the signaling inhibitors were added for during a 1h window 

between 4.5–5.5hpf and then removed, as prolonged exposure to inhibitors of ERK 

activation causes severe axis, heart and craniofacial developmental abnormalities.1, 8

PAK inhibitors block effects of RAC1 on zebrafish embryonic development

To further examine the effects of PAK inhibition on RAC1 signaling, we tested the effects of 

additional Pak inhibitors, as well as the MEK inhibitor PD325901, on development in 

embryos expressing activated BRAF, KRAS, or RAC1. As shown in Fig. 2, expression of 

BRAFV600E resulted in abnormal development in almost all (57/60) injected embryos. These 

abnormalities were partly suppressed by the Group I PAK inhibitor Frax-1036 (32/45 

normal, 13/45 abnormal) and the pan-PAK inhibitor PF3758309 (24/39 normal, 15/39 

abnormal), and almost completely suppressed by the MEK inhibitor PD325901. In the case 

of activated KRASG12V, the PAK inhibitors were relatively ineffective, whereas the MEK 

inhibitor was highly effective in blocking abnormal development. When RAC1P29S mRNA 

was injected into zebrafish embryos, all three inhibitors were highly effective in blocking 
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abnormal development. These results suggest that small molecule PAK inhibitors might be 

useful impeding the signaling and functional effects of RAC1P29S.

Response of RAC1-mutant cells to signaling inhibitors

Next, we analyzed the effects of RAC1 mutation in mammalian melanocytes derived from 

patients (Table 1). We obtained four cell lines containing the RAC1P29S mutation, one with 

RAC1P29S alone (YUHEF) and three that also bore co-mutations for NRASQ61K 

(WM1960), KRASG12D (WM1791C), or BRAFV600E (YURIF). Two other cell lines 

contained activating mutations in the RAC guanine-nucleotide exchange factor PREX2, plus 

activating mutations in either NRAS (WM3619) or BRAF (WM3734). Two other melanoma 

cell lines bore mutations in BRAF alone (501mel and 451-Lu), or NRAS alone (YUFIC), 

and one cell line lacked mutation in any of these four oncogenes (YUROB). We found that 

PAK activity was markedly elevated in all cell lines with either PREX2 or RAC1 mutations 

(Fig. 3A), consistent with the idea that the PREX2 and RAC1 proteins are linked in a 

signaling pathway that engages PAK.

We asked if inhibitors of MEK, PAK, or BRAF would differentially affect the proliferation 

of these cells depending on their genotypes. All eight of the cell lines tested had similar 

basal rates of proliferation (Fig. 3B). When treated with a MEK inhibitor, all cell lines 

showed a marked reduction in proliferation (Fig. 3C). Treatment with the Group A PAK 

inhibitor Frax-1036 had little effect on WT, NRAS, or BRAF mutant cells, but nearly 

abolished growth of cell lines bearing RAC1 or RAC1 plus NRAS mutations (Fig. 3D). 

Interestingly, the cell line with mutations in RAC1 and BRAF (YURIF), had an intermediate 

response to the PAK inhibitor. This pattern of response was completely reversed when the 

BRAF inhibitor vemurafenib was used. In this case, the NRAS and the RAC1 mutant cells 

had little response, whereas the BRAF mutant cells were severely impacted by vemurafenib 

(Fig. 3E). The YURIF cell line, with mutations in both RAC1 and BRAF, again showed an 

intermediate response.

We obtained similar results when measuring cell viability. As with proliferation, treatment 

with Frax-1036 was effective only in cells bearing RAC1 mutations (EC50 values ~150 – 

250 nM in RAC1-mutant cells, vs. ~1.2 µM in non-RAC1 mutant cells) (Fig. 4A, 

Supplemental Fig. S1A), whereas the opposite pattern was seen in cells treated with 

vemurafenib, which was effective only for BRAF-mutant cells (Fig. 4B, Supplemental Fig. 

S1B). All cells except WT showed reduced viability when treated with the MEK inhibitor 

PD325901 (Fig. 4C, Supplemental Fig. S1C). We also tested NSC23766, a small molecule 

inhibitor of RAC7 and found that it differentially decreased the viability of all cells bearing 

the RAC1P29S mutation (Fig. 4D, Supplemental Fig. S1D).

As RAC activation is strongly associated with enhanced cell motility, we next tested the 

effects of these small molecule inhibitors on this process. Using a wound-healing model, we 

found that YUHEF (RAC1 mutant) and YURIF (RAC1 plus BRAF mutation) cells were 

exquisitely sensitive to the PAK inhibitor Frax-1036. Other cell lines bearing RAC1 or 

PREX2 mutations, including WM1791C, WM1960, WM3619, and WM3734, showed 

intermediate effects, while the motility of the “pure” BRAF (501mel and 451-Lu), NRAS 
(YUFIC), or WT melanoma cells were not inhibited (Fig. 5A and B). The MEK inhibitor 
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had a more uniformly inhibitory effect across the ten cell lines, though 451-Lu and WT cells 

were only about 25% and 50% inhibited, respectively. Treatment with the BRAF inhibitor 

was effective in all BRAF mutant cell lines, including the RAC1/BRAF double mutant line 

YURIF, but was completely ineffective in all other cell lines tested.

Consequences of small molecule inhibitors on melanoma cell signaling

To determine the effects of PAK, MEK, and RAF inhibitors on signaling in the melanoma 

cell lines, we measured the activity of PAK, ERK, and AKT in untreated and inhibitor-

treated cells. Under basal conditions, all four RAC1-mutant melanoma cell lines showed 

strong PAK activity, as determined by WB with anti-phospho-PAK antibodies (Fig. 6). PAK 

activity was nearly abolished by Frax-1036, and partly inhibited by vemurafenib, but not at 

all by PD325901. ERK activity was suppressed by Frax-1036 in all RAC1-mutant cells, and 

suppressed by vemurafenib in all BRAF-mutant cells. YURIF cells, which are doubly 

mutant for RAC1 and BRAF, showed ERK inhibition when treated with either Frax-1036 or 

vemurafenib. All cells showed ERK inhibition in when treated with PD325901. AKT was 

variably activated among the mutant cell lines, as well as WT YUROB cells. Interestingly, 

this activation was suppressed by all three types of inhibitors, suggesting that AKT is 

activated downstream of ERK in these melanoma cells.

Effects of PAK1 or BRAF pharmaceutical inhibition on melanoma xenograft tumor growth

We chose three cell lines for in vivo xenograft experiments: 501mel (BRAFV600E), YURIF 

(BRAFV600E plus RAC1P29S), and YUHEF (RAC1P29S). These cells were placed in 

subcutaneous xenografts in nude mice and therapy was initiated after establishment of tumor 

(average 25 mm3). Tumor-bearing mice were treated with vehicle, Frax-1036 (30 mg/kg/

day), or vemurafenib (30 mg/kg/day) for a period of 15 days (Fig. 7A). Treatment with 

Frax-1036 slightly attenuated the growth of 501mel xenografts (~1100 mm3 versus ~1500 

mm3 in control group at study termination, p < 0.05), while tumors in mice receiving 

vemurafenib were significantly smaller (~400 mm3, p < 0.01). In YURIF cells, both 

Frax-1036 and vemurafenib had a modest effect, reducing tumor volume by about 50%. 

YUHEF xenograft growth was markedly slowed by Frax-1036 (~400 mm3 versus ~1100 

mm3, p < 0.01) and less so by vemurafenib (~790 mm3 versus ~1100 mm3 p < 0.05). 

Reduction in tumor size was associated with loss of cell proliferation markers (PCNA and 

MCM2) and gain in apoptotic markers (cleaved caspase 3) (Fig. 7B).

While it should be noted that these three cell lines are not isogenic and bear many genetic 

differences besides the status of BRAF and RAC1, these results are consistent with the 

differential sensitivities to targeted inhibitors observed in the zebrafish studies (Figs 1 and 2) 

and also in cell culture studies (Figs 3–6).

Discussion

To date, there are few studies of the molecular mechanisms that explain the contributions of 

RAC1P29S to melanoma. RAC1 mutations occur in 5–7% of sun-exposed skin areas and this 

mutation is most often found in combination with activating mutations in BRAF or NRAS, 

or inactivating mutation in NF1, suggesting an accessory role for this gene in 
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melanomagenesis. In limited studies, the presence of the RAC1 mutation has been shown to 

leads to dependence on this oncogene, as shRNA-mediated knockdown of RAC1P29S slows 

proliferation in such cells.9 At the molecular level, it has been shown that the mutation at 

P29 confers an activated signaling state due to fast exchange of GDP for GTP, leading to 

increased effector engagement and activation4. Limited in vitro studies have shown that 

several human melanoma cell lines bearing this mutation are resistant to commonly used 

signaling agents such as BRAF inhibitors and MEK inhibitors,16, 30 but exceptions to this 

behavior have also been found, suggesting that there is not a simple relationship between 

RAC1 mutational status and drug sensitivity.9 In addition, Vu et al. reported that RAC1 
mutant melanoma cells express high levels of PD-L1, suggesting an ability to evade immune 

surveillance29. However, no comprehensive evaluation of RAC1P29S induced signaling or 

response to inhibitors has been published to date, nor have any preclinical models been 

described.

In this work, we show that expression of activated RAC1 confers Rasopathy-like effects on 

zebrafish development, characterized by marked body axis elongation during the first 12h of 

development, accompanied by elevated ERK activity. In these embryos, blocking PAK 

activation with either of two small molecule inhibitors prevented abnormal development 

driven by RAC1 and also prevented ERK activation. While both of the PAK inhibitors tested 

have off-target effects, these are largely non-overlapping, indicating that the observed 

cellular and signaing effects are due to inhibition of the catalytic function of group A PAKs.
27 Similar beneficial effects were seen using a MEK inhibitor, consistent with the idea that a 

RAC1/PAK/MEK/ERK signaling module is primarily responsible for the developmental 

phenotype in these animals. These results are in contrast to the more limited role of Group A 

PAKs in RAC1-driven melanoblast migration during mouse embryogenesis, in which other 

RAC effectors appear to play a primary role17.

The RAC1 protein has at least two direct effectors that are attractive candidates for drug 

therapy. The first is phosphoinositol-3 kinase (PI3K) β, which, of the four PI3K isoforms, is 

uniquely linked to RAC signaling6. RAC1, but not RAS, engages PI3Kβ to drive 

chemotaxis, and genetically engineered mice bearing mutations in the RBD of PI3Kβ are 

resistant to bleomycin-induced lung fibrosis6. As specific small molecule inhibitors of 

PI3Kβ have been described, it would be reasonable to ask if blocking this pathway impedes 

RAC1P29S signaling. The Group A PAKs are also plausible targets, as several studies have 

established these kinases as important for RAC1 signaling.25 Other RAC1 effector 

pathways, such as those that regulate actin reorganization, are also possibly relevant, 

especially given the recent description of a melanomagenic GNAQ pathway acting through a 

TRIO/RHO/RAC/actin signaling cassette that converged on the oncogenic transcription 

factor YAP5.

While cell-based models can be useful for determining drug sensitivities and for 

deconstructing cancer signaling pathways, and our work indicates an important role for 

Group A PAKs in RAC1-mediated transformation, the establishment of animal models for 

RAC1P29S-mutant melanoma. Such models will also be useful for determining the linkage, 

if any, between signaling from PREX2 and RAC1. For example, previous studies have 

shown that Nras-mediated melanoma metastasis can be reduced by deletion of the Prex1 
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gene in mice.20 As PREX1 and PREX2 are both exchange factors for RAS, it is tempting to 

speculate that NRAS signals through activated PREX to RAC1. If this is the case, inhibitors 

of RAC1 effectors might have utility in the relatively common NRAS-mutant melanomas as 

well as in the rarer PREX2 and RAC1 mutant forms of this disease.

Materials and Methods

Reagents

Frax-1036 was generously provided by Genentech. Vemurafenib was purchased from 

Selleckchem and NSC23766 and PD325901were purchased from Sigma-Aldrich

Zebrafish Microinjection Experiments

Wild-type AB and transgenic zebrafish lines were maintained in the Zebrafish Core Facility 

of the Fox Chase Cancer Center under standard conditions.14 Tg(cmlc2:EGFP) fish, 

expressing GFP in cardiac tissues, were a generous gift from Rebecca Burdine.28 Embryo 

collection and maintenance was carried out as previously described.26 BRAF (WT or 

V600E), KRAS-4A (G12V), and RAC1 (P29S) cDNAs, respectively, were subcloned into 

the pSGH2 vector. Transcripts were made in vitro for antisense (HindIII and T3 RNA 

polymerase) or sense (SacII and SP6 RNA polymerase) full-length mRNA using the 

mMessage Machine kit (Ambion). Capped mRNA (5 nl) was injected using a nitrogen-

powered Picospritzer III injector (Intracel) conjugated to a Nikon SMZ 1000 

stereomicroscope at a final concentration of 35 ng/µl directly in the cytoplasm of one-cell-

stage wild-type embryos, as described previously.18 To analyze the effects of the small 

molecule inhibitors, mRNA injected 4 hpf embryos were incubated in E3 medium 

containing Frax-1036, vemurafenib, PD325901 or NSC23766 at a final concentration of 1 

µM for 1hr and then washed thoroughly. Control-treated embryos were incubated in E3 with 

DMSO at the same final concentration as the small molecule inhibitors.

For protein extraction, zebrafish embryos were collected at 4hpf and de-yolked as previously 

described.21 For the immunoblott we used 4 hpf embryo’s lysates. To obtain lysates we 

removed E3 buffer, kept them at −80°C and rybolysed for 1 minute in protein extraction 

buffer [2M Tris pH 7.5, 5M NaCl, 1% NP40, Na deoxycholate, 10% SDS, 0.5M NaF, 1M β-

glycosyl phosphate, protease inhibitor cocktail tablet (Roche)]. The protein content was 

measured by Bradford assay and the samples were normalized to protein content. Total 

protein extracts were probed with anti-p-PAK, -p-ERK, and -β-actin (1:1000) (Cell 

Signaling). Secondary antibodies conjugated to horseradish peroxidase were used to detect 

the proteins (1:10,000).

For analysis zebrafish morphology, dechorionated embryos at specified stages were placed 

on a glass depression slide in 1% methylcellose to stabilize embryo. Morphology was 

assessed visually using a light transmission Nikon SMZ 1500, and representative images 

recorded using a Nikon digital sight DS Fi1 camera.
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Cell Lines

Melanoma cell lines were generously provided by Ruth Halaban (Yale University) and 

Meenhard Herlyn (Wistar Institute). YUHEF, YURIF, YUFIC, YUROB and 501mel cells 

were maintained in OptiMEM media (Invitrogen, Carlsbad, CA, USA) supplemented with 

5% FBS and and penicillin/streptomycin. 451-Lu, WM3734, WM3619, WM1791 and 

WM1960 cells were maintained in 80% MCDB153, 20% Leibovitz’s L-15, supplemented 

with 2% FBS, 5 µg/ml insulin, and 1.68 mM CaCl2. All cells were cultured at 37°C in 5% 

CO2. Cells were routinely tested for mycoplasma. Cell line authentication was performed by 

sequencing the BRAF, PREX2, and RAC1 genes. Experiments with these cell lines were 

done within six months of their acquisition and were passaged no more than twelve times 

post thaw.

Proliferation and Survival Assays

Cell proliferation was assessed using E-16-well plates and xCELLigence technology (Acea 

Bioscience, San Diego, CA, USA, distributed by Roche).19 Cell growth was monitored for 

72 h. Microelectrodes, placed on the bottom of plates, were used to detect impedance 

changes proportional to the number of adherent cells and expressed as the cell index. The 

impedance value of each well was automatically monitored by the xCELLigence system and 

expressed as a cell index value. The experiments were conducted in triplicate and repeated 

twice.

For viability assays, melanoma cell lines were plated in 96-well plates at 5000 cells/well in 

complete medium. 24 hours after plating, varied doses of inhibitors were added in triplicate. 

0.1% DMSO was used as negative control. Cell viability was evaluated after 72-hour 

incubation with drugs using Alamar Blue fluorescent assay (Life Technologies).

Immunoblotting

Western blot assays were performed using standard techniques. Primary antibodies used in 

this study were: anti-phospho-PAK1 (pSer144) (#2606), -total PAK1 (#2602), -phospho-

MEK1/2 (pSer217/221) (#9121), -total MEK1/2 (#9122), -phospho-ERK1/2 (pThr202/

pTyr204) (#9101), -total ERK1/2 (#9102), -GPDH (#4138), and -β-actin (#13E5) from Cell 

Signaling Technology, and anti-RAC1 from Millipore (#07-1464).

Wound healing assay

Confluent monolayers of melanoma cells were manually scraped with a 200-µL pipette tip. 

The cells were washed once with growth media, and then grown in fresh growth media for 

24h. Images were acquired at 100× magnification using an EVOS fluorescence microscope 

and analyzed by the number of cells that cross into the wound area from their reference 

point at time zero.

Xenografts

Female 6–7 week old nu/nu mice were injected subcutaneously into the flank with 106 

melanoma cells in 0.1 ml 30% Matrigel (BD Biosciences)/PBS. Upon identification of a 

palpable tumor (minimal volume of 25 mm3), mice were randomly divided into 3 groups (10 
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mice in each group). Frax-1036 was formulated in 20% 2-hydroxypropyl-β-cyclodextrin in 

50 mM citrate buffer (pH 3.0) and administrated by oral gavage at 30 mg/kg/day. 

Vemurafenib was dissolved in 4% DMSO, 30% PEG 300 and 5% Tween 80, followed by 

PBS and then administrated by oral gavage at 30 mg/kg/day. Mice were sacrificed at day 15 

of treatment. Tumors were resected, individual portions of tumors were snap-frozen in liquid 

nitrogen for preparation of protein lysates, and fixed in formalin and paraffin embedded for 

immunohistochemical studies.

All animal procedures were performed in accordance with IACUC guides and regulations.

Statistics

Statistical analysis of all results was carried out using the paired Student’s t-test. All values 

reflect the mean±S.E.M, with a significance cutoff of P<0.05. All statistical analyses were 

completed in GraphPad Prism 6.0 or 7.0 (La Jolla, CA, USA).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. RAC1P29S yields a Rasopathy-like phenotype in zebrafish that requires PAK1 
activation
One-cell embryos were injected with mRNA encoding the indicated genes. A) RNA 

expression of BRAFV600E, KRAS 4AG12V and Rac1P29S produce phenotypes similar to 

Rasopathies at 12hpf in zebrafish embryos. B) Overexpression of proteins increases the 

activity of p-Erk and p-Pak 1/2; β-actin was used as a loading control. Transgenic fish were 

injected with Rac1 mRNA, C) and D) Tg (CMLC:GFP) embryos injected with Rac1P29S 

were treated with 1µM inhibitors of RAC1 (NSC23766), BRAF (Vemurafenib), PAK1 

(Frax-1036) or MEK (PD325901) at 72 hpf. Phase contrast and GFP images are shown in 

panel C, and quantitated in panel D. Embryo phenotypes were scored as mild abnormal if 

elongated (body axis ratio >1.1 but <1.3) and/or small or absent eye development was noted, 

and abnormal if boxy axis ration was >1.3 and/or pericardial edema was also noted.
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Figure 2. PAK and MEK inhibitors block effects of RAC1 on zebrafish embryonic development
One-cell embryos were injected with mRNA encoding the indicated genes. 1 µM inhibitors 

were added to water between 4.5–5.5hpf, then removed and replaced with fresh water. 

Embryo morphology was scored at 12hpf by a blinded observer. A) Morphology at 12hpf. 

B) Quantitation of developmental abnormalities.
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Figure 3. Effects of targeted inhibitors on proliferation of BRAF, NRAS, and RAC1-mutant 
melanoma cell lines
A) Western blots for activated PAK in the indicated cell lines. B) Cells were grown under 

standard conditions or treated with C) the MEK inhibitor PD325901 (100 nM), D) the PAK 

inhibitor Frax-1036 (100 nM), or E) the BRAF inhibitor vemurafenib (100 nM). Cell 

number was measured using an XCELLigence device.
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Figure 4. Effects of targeted inhibitors on viability of BRAF, NRAS, and RAC1-mutant 
melanoma cell lines
Cells were grown under standard conditions and treated with either A) PAK inhibitor 

Frax-1036 (100 nM), B) the BRAF inhibitor vemurafenib (100 nM), C) the MEK inhibitor 

PD325901 (100 nM), or D) the RAC inhibitor NSC23766 (1 µM). Cell viability was 

determined by a redox indicator (Alamar Blue).
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Figure 5. Effects of inhibitors on cell migration
Cell Culture Wound Closure Assay was developed in 6-well confluent plates. After the 

scratch the different cell lines were treated with 100 nM BRAF inhibitor (vemurafenib), 

Pak1 inhibitor (Frax-1036), or MEK inhibitor (PD325901). Snapshot images in an inverted 

microscope were taken after 24h. Migration was quantified by measuring the size of the cell-

free area. % migration for each cell line was measured against control (untreated cells), with 

the latter defined as 100% migration for each cell line. Where significant, p values are 

shown comparing responses of a RAC1-mutant cell line (YUHEF) to a BRAF-mutant cell 

line (501mel).
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Figure 6. Consequences of small molecule inhibitors on melanoma cell signaling
Cells were grown under standard conditions or treated with vehicle (control) or 100 nM of 

the indicated inhibitors for 24h. Lysates were analyzed by Western blot for PAK, ERK, and 

AKT activity.
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Figure 7. Inhibition of xenograft growth by small molecule inhibitors
501mel (BRAF), YURIF (BRAF+RAC1) and YUHEF (RAC1) cells were subcutaneously 

injected into the flanks of Nude mice (cohorts of ten mice/cell line). Ten days post-

inoculation, when the tumors reached a volume of at least 25 mm3, the animals were treated 

by oral gavage with inhibitors for 2 weeks. A) Volumetric changes in tumor size between 

untreated mice (vehicle) and mice treated with inhibitor (vemurafenib or Frax-1036). B) 

Tumor weight was measured after mice were sacrificed. p<0.01 and p<0.05 values were 

determined by Student’s t-test. C) Immunblots for markers of proliferation (PCNA and 

MCM2) and apoptosis (cleaved caspase 3).
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