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Editorial on the Research Topic

Molecular Role of Lipids in Aging

Lipids are one of the most understudied groups of biomolecules in the body. Despite their high
abundance and important role as a building blocks, metabolites, signalling intermediates, and energy
sources, their molecular role is still poorly understood. Different types of lipids (fatty acids,
glycerides, nonglyceride, and complex lipids) are supported by a plethora of enzymes, receptors,
transporters, and other functional proteins. Destabilization of these processes has important
consequences for cell and organismal health. There is a long history of work seeking to identify
correlations between the composition of different lipid components and the progression of aging
across many tissues. The main hindrance in understanding these processes was the lack of adequate
methods of detection and analysis. With the recent progress in analytic and high throughput
technologies, we have begun to understand the contribution of lipids to human health. Genome-wide
association studies have found several lipid-related genomic variants to be associated with age-
related diseases, provoking molecular studies aimed to decipher the extent of the biological role of
lipids in normal and pathological aging. Also, aging is associated with an increased risk of lipid-
related disorders. Altogether, these findings have propelled interest in lipid biology and the changes
in metabolism of lipids in aging. There is now a concerted effort to understand better the molecular
role of lipids in health and disease. These studies have spanned a variety model organisms and
systems. For example, lipid supplementation studies in multiple model organisms have revealed
important functions of lipids in aging including extension of healthspan. Pioneering studies on non-
vertebrates (e.g., C. elegans and D. melanogaster) stimulated the development of the field and
encouraged the use of rodents and other animals in understanding the role of lipids in aging. The
field is constantly growing, and thanks to the concerted efforts of labs all over the world, we begin to
understand the association between lipids, aging, and age-associated diseases.

Lipid biology is intricately linked to several different hallmarks of the aging process. Potent aging
interventions, such as dietary interventions have been shown to modulate lipid composition. The
next years will see an increase in research that aims at understanding the connection between lipids
and individual age-related pathways. One such connection that warrants further investigation, is the
link between lipid biosynthetic pathways, lipid composition and epigenetic mechanisms. The
epigenome is an important contributor to the regulation of gene expression and the
maintenance of cellular states and has been implicated as a major contributor to aging. Over
recent years it has become apparent that the writing and removal of epigenetic marks is intricately
linked with metabolic processes (Etchegaray and Mostoslavsky, 2016). This process is well
understood in the case of histone acylation, particularly in the case of acetyl-CoA. Here, acetyl-
CoA as a central metabolite serves as a donor for the modification of lysine residues within histones.
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Acetyl-CoA can be derived either from acetate (a preferred
pathway in Sacharomyces cerevisiae (Takahashi et al., 2006)),
glucose (Wellen et al., 2009) or via the breakdown of fatty acids
(McDonnell et al., 2016). These processes directly couple the
nutritional status of cells to chromatin states and gene regulation.
Importantly, excess of lipid-derived acetyl-CoA can trigger
different transcriptional programs than glucose-derived acetyl-
CoA (McDonnell et al., 2016). However, how this specificity is
achieved remains unclear, but might be linked to specific
transcription factors that mediate the gene expression
program. Next to acetyl-CoA, short-chain fatty acids, such as
propionyl-, butyryl- or crotonyl-CoA can also be used by histone
acetyl transferases are to modify histone lysine sidechains (Sabari
et al., 2017), further expanding the epigenetic modification
landscape and adjusting the cellular response to environmental
conditions. Furthermore, lipids and chromatin modifications
share another common precursor, S-adenosyl methionine
(SAM) (Ye et al., 2017). SAM is the universal methyl donor
for all cellular methylation reactions, such as lipid, histone and
DNA methylations. In yeast, loss of phospholipid methylation
leads to an increase in histone methylation on several lysine side
chains, likely because more SAM is available for histone
methylation (Ye et al., 2017). Thus, lipid metabolism might
directly regulate histone marks by changing metabolite
availability and thus influence gene expression programs. In
summary, we now know that lipid metabolic pathways directly
impinge on chromatin and gene regulation. How this interplay is
connected to complex physiological processes, such as
neurodegeneration and/or aging is still largely unexplored, but
certainly an exciting research area for the years to come.

Next to the more indirect influence on chromatin via post-
translational modifications, lipids have been implicated in a more
direct role on chromatin architecture. Several studies have
identified lipids to be constituent of chromatin, including
phospholipids, cholesterol and phosphatidylcholines
(Fernandes et al., 2018). Recently, biophysical studies showed
that cholesterol can assist in chromatin folding in vitro (Silva
et al., 2017). A direct impact of lipids on chromatin architecture
and hence, on gene regulation would be an additional route by
which metabolic states and epigenome would be coupled. Such a
link would certainly be important to understand in the case of
aging and/or pathophysiological conditions, in which lipid
compositions were altered. However, as the role of lipid-
chromatin interaction is currently restricted to observations,
more mechanistic studies are required to establish a direct role
of lipids on chromatin states.

More traditionally, lipids are perceived as main component of
the cell membrane and subcellular structures. Not surprisingly,
alterations in membrane lipid composition influence membrane
structure and properties. Age-dependent changes in lipid
compositions have long been observed, both in total lipid
abundance and region-dependent lipid composition but little
is known about the mechanism of these changes as well what
are the exact consequences of lipid-induced changes in
membrane structure in aging-related phenotypes. Lipid
composition has been long correlated with membrane fluidity,
therefore changes of lipid content, length of chain or saturation of

side chains that happen with aging are predicted to affect the
homeostasis of the lipid bilayer. For example, “rigid” cholesterol,
sphingolipids, and saturated FAs acyl chain were noticed to be
accumulated in aging brain (Cutler et al., 2004), liver (Seo et al.,
2019) and eyes (Deeley et al., 2010), while flexible,
polyunsaturated fatty acids (PUFAs) have generally been
observed to drop in CNS during aging (Joffre et al., 2020).
Manipulation of membrane phospholipids and PUFAs by n-3
PUFA or n-6 PUFA rich diet showed augmented
intramitochondrial Ca2+-dependent process with low cardiac
mito membrane n-3/n-6 PUFA ratio (Pepe et al., 1999). In the
CNS, changes in lipid composition also influence the intercellular
signaling and the survival of nerve cells. For example, VLC-SFAs,
which are incorporated in sphingolipids that are enriched in
synaptic vesicles and regulate synaptic release kinetics and
epileptogenesis (Hopiavuori et al., 2018). VLC-PUFAs are
critical to photoreceptor survival (Bennett et al., 2014). Finally,
the oxidation of PUFAs in aging also alters membrane structure
and function (De La Paz and Robert, 1992). Altogether, age-
related changes in lipids have profound impact on cellular
homeostasis.

Many late-onset neurodegenerative diseases like Alzheimer’s
disease (AD), Dementia with Lewy Bodies (DLB),
Frontotemporal Dementia (FTD) and Parkinson’s disease (PD)
have traditionally been viewed as proteinopathies since the
presence of protein aggregates is a primary pathological
hallmark (Soto and Lisbell, 2008). However, recent genetic and
functional studies have revealed that the disruption of lipid
homeostasis can underlie risk for sporadic forms of these
diseases (Yadav and Neeraj, 2014; Fanning et al., 2020; Farmer
et al., 2020). Over the past decade, genome wide association
studies exploring risk for AD, DLB, and PD as well as other
neurodegenerative diseases, have all implicated polymorphisms
in genes that encode proteins involved in lipid binding and
metabolism (Geiger et al., 2016; Nalls et al., 2019; Bellenguez
et al., 2022). For example, these include secreted lipoproteins like
Apolipoprotein E (APOE), Clusterin (or Apolipoprotein J, CLU),
lipid transporters like LRP1, enzymes that act on membrane
lipids like Inositol Polyphosphate-5-Phosphatase D and F
(INPP5D and INPP5F), and lysosomal enzymes like
glucocerebrosidase (GBA) and granulin (GRN). In fact,
disrupted lipid accumulation in glia was one of the first
hallmarks identified by Alois Alzheimer in his seminal 1907
case report that first described AD (Alzheimer et al., 1995).
Now with the advent of more lipidomics, the centrality of
lipid disruptions in these diseases has reemerged.

Increased access to lipidomics has enabled large scale studies
of the lipidome in several model systems from cells to animal
models to human post-mortem samples. These omics studies
coupled with functional characterization have revealed the broad
cellular and tissue-level consequences of alterations in key lipid
risk genes like APOE and TREM2 (Nugent et al., 2020). Multiple
studies have revealed that APOE4 alter cellular lipid state, and
that alterations to lipid state can have changes to cell autonomous
or non-autonomous functions (Lin et al., 2018; Farmer et al.,
2019; Ioannou et al., 2019; Blanchard et al., 2020; Sienski et al.,
2021; Victor et al., 2022). These observations have been able to
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transcend disparate model systems from mice to stem-cell
derived brain tissue, to post-mortem human samples (Farmer
et al., 2021; Novotny et al., 2021). With the increasing number of
risk factors still being identified for many of these diseases
(Bellenguez et al., 2022), we expect that similar studies in the
future will be able to enumerate the effects of new polymorphisms
on cellular and organismal lipid state.

Despite the recent boom in interest in lipid biology in
neurodegeneration, multiple opportunities for further growth
remain. Since lipidomics analyses often require large sample
quantities compared to proteomics and transcriptomics, the
development of detection methods that can achieve similar depth
of coverage with smaller samples is crucial. Newmethods like single-
cell metabolomics and spatial metabolomics are now allowing for
greater resolution of metabolite signals from complex environments
(Alexandrov 2020; Seydel 2021). Expansion of use and further
development of these techniques will greatly enable the study of
precious and complex samples. In addition, the ability to faithfully
distinguish signals from similar metabolite species is often
performed or checked manually; new computational tools to
better deconvolve signals will greatly enhance current lipidomics
workflows. The comparison of a growing number of datasets
performed with different standards and protocols and in different
organisms will require further development of computational tools.
In addition, the integration of lipidomics data with proteomics and
transcriptomics through modeling will allow for further
understanding of the underlying biology driving observed lipid
changes.

The fast-growing field of understanding lipids and
neurodegeneration shows much promise for future investigation
and innovation. Many groups have studied the cellular and
organismal consequences of lipid-related neurodegeneration risk
factors for years and identified a panoply of seemingly unrelated
phenotypes (Liu et al., 2013). Given the involvement of lipids in
nearly every cellular process, it is attractive to speculate that these
disparate phenotypesmay all originate fromupstream disruptions to
cellular lipid homeostasis. If we can identify and target these
upstream disruptions, we may be able to address devastating
neurodegenerative diseases therapeutically or preventatively.

In this Research Topic entitled “Molecular Role of Lipids in Aging”,
several studies and reviews explore the consequences of aging on lipid
composition or alterations in lipid metabolic pathways that are
connected to either normal or pathological aging.

Gille et al. review the current literature with respect to age-related
alterations in several lipid classes focusing on the aging brain and the
cardiovascular system. They then move on to discuss the impact of
dietary interventions, such as caloric restriction or intermittent
fasting and the corresponding reduction in the levels of
triacylglycerol, total cholesterol and low-density lipoprotein
cholesterol. Importantly, these lipid classes have been associated
with age-related diseases when levels increase. However, fatty acids
are important for a balanced diet and thus, also supplementation of
lipids to diets can have positive effects on the aging process. The
authors conclude that lipids provide a link between homeostasis and
age-related phenotypes and targeting the lipidome, particularly in a
personalized fashion, might be a potent way to increase life- and
health-span.

In another original research article, Hänschke et al. addressed
the functionality of Lipase 3, a Drosophila homolog of the human
LIPA gene, which hydrolyzes cholesteryl ester and
triacylglycerols. In contrast to human LIPA, Lipase 3 turned
out to be a putative phospholipase as knock-outs led to the
accumulation of phosphatidylinositol. While expressed at fairly
low levels under normal physiological conditions, Lipase 3 is
strongly upregulated in starved larvae and female flies as well as in
aged males. While the mechanism of Lipase 3 upregulation is not
clear, the data indicate that Lipase 3 is involved in the response
upon prolonged nutrient deprivation and/or aging.

The last years have seen the development of age predictors
based on omics data, also commonly referred to as “aging clocks”.
As part of this Research Topic, the group of Unfried et al. added a
LipidClock to this portfolio. Based on lipid composition as
measured by lipidomics, LipidClock predicts the biological age
of wildtype nematodes with a mean absolute error of 1.45 days
and is able to simulate survival curves of known long- and short-
lived C. elegans strains. This proof-of-concept study paves the
way for the future development of similar predictors in mammals
with the potential to provide further insight into lipid related
mechanisms of aging.

A review by Li and Kim centers around a diverse class of
bioactive lipids, sphingolipids. The dysregulation of sphingolipids
has most commonly been associated with a class of rare, deadly,
monogenic diseases occurring early in life. However, advances in
technology to detect, quantify, and manipulate sphingolipids
have helped illuminate their key role in aging and common
age-related diseases. Sphingolipids can modulate central
cellular pathways associated with aging including nutrient
sensing, cellular senescence, and protein homeostasis. Many of
the same pathways that sphingolipids modulate in normal aging
become further dysregulated in age-associated diseases like
Alzheimer’s disease, Parkinson’s disease, and many cancers.
Emerging therapeutics modulating sphingolipid pathways or
using sphingolipids as biomarkers have the potential to
address the adverse effects of aging and age-associated diseases.

One of the challenges in the field is to know the exact spatial tissue
and subcellular localization of different lipid species. Li et al. present
the how one can use the D2O probing and stimulated Raman
scattering (DO-SRS) microscopy to image the de novo lipogenesis in
young and old ovaries. The resolution of the method allows to
visualize subcellular localization of different classes of lipids, an
important achievement in the field of lipidomics.

All the analysis described above would not be possible without
the sophisticated technologies. In the short review by Guo et al.
authors describe recent developments in the field, pointing out
the most recent dynamic improvements and novel approaches in
studying the lipid composition, lipids quantification and exact
lipid localization. But there is still a lot to be done on the
technological level if we want to understand the role of this
complex biomolecules in aging. Authors discuss limitations of
current methods and give couple of potential ideas for future
developments.

The studies published in this Research Topic highlight the
important role of lipids in the process of aging and the
development of age-related diseases. Given the recent
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technological developments in lipid analysis, we are convinced
that the next decade will see a flurry of activity in this exciting
field and we are very much looking forward to these
discoveries.
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