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Abstract
It is not known whether administration of contrast agent via retro-orbital injection or the tail

vein route affects the efficiency of dynamic contrast-enhanced magnetic resonance imaging

(MRI). Therefore, we compared the effects of retro-orbital and tail vein injection on the kinet-

ics of the contrast agent used for MRI in mice. The same group of nine healthy female mice

received contrast agent via either route. An extracellular contrast agent was infused via the

tail vein and retro-orbital vein, in random order. Dynamic contrast-enhanced MRI was per-

formed before and after administering the contrast agent. The contrast effects in the liver,

kidney, lung, and myocardium were assessed. The average total times of venous puncture

and mounting of the injection system were about 10 and 4 min for the tail vein and retro-or-

bital route, respectively. For all organs assessed, the maximum contrast ratio occurred 30 s

after administration and the time course of the contrast ratio was similar with either routes.

For each organ, the contrast ratios correlated strongly; the contrast ratios were similar. The

retro-orbital and tail vein routes afforded similar results in terms of the kinetics of the con-

trast agent. The retro-orbital route can be used as a simple efficient alternative to tail vein in-

jection for dynamic contrast-enhanced MRI of mice.

Introduction
As animal models are used extensively in biomedical research, small animal imaging has be-
come increasingly important. Affording high spatial resolution and excellent soft tissue con-
trast, magnetic resonance imaging (MRI) has been applied widely to investigate small animals
in vivo. As a non-invasive, reproducible technique, MRI is valuable for assessing the longitudi-
nal kinetics of a contrast agent, revealing time-dependent intensity changes within a single
animal.

Magnetic resonance (MR) contrast agents can vastly improve image quality, and have made
a significant impact on the utility of MRI. In the time since the introduction of contrast agents,
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the number of contrast-enhanced MRI examinations has increased markedly. Such examina-
tions are widely used for qualitative and quantitative assessments, such as organ-specific imag-
ing [1], dynamic contrast-enhanced MRI [2], and perfusion MRI [3], and so on. For accurate
reproducible measurements, dynamic contrast-enhanced MRI requires reliable venous admin-
istration of the contrast agent.

The route of injection used most commonly to deliver a contrast agent intravenously in
small animals is the tail vein. However, because of the small diameter and fragility of mouse
vessels, this procedure remains technically challenging, time-consuming, and requires experi-
ence [4]. Repeated injections into the same animal become increasingly difficult, because of
vessel stenosis caused by fibrotic changes. Despite concern on potential damage to vision [5],
retro-orbital injection is used frequently in many fields; this is as a much easier, faster repro-
ducible technique. After appropriate training, operators can perform this technique reliably.
Repeated improper retro-orbital injection may cause possible fibrotic change of surrounding
orbital tissues, however, due to easiness, it rarely occurs.

Some studies have compared different routes of injection using different imaging modali-
ties, such as positron emission tomography and bioluminescence imaging [4, 6, 7]. However, it
is not known whether the tail vein or retro-orbital administration route affects the efficiency of
contrast agent enhancement in dynamic MRI. Therefore, we compared the dynamics of an ex-
tracellular MR contrast agent commonly used in clinical practice and preclinical research, after
administration via the tail vein or the retro-orbital route in healthy mice.

Materials and Methods

Ethics statement
All animal experimental procedures were performed in accordance with the University of
Tokyo guidelines for animal care and use, and were approved by the Institute of medical sci-
ence, the University of Tokyo animal care and use committee (PA10-28).

Animals
Female 8~10-week-old mice (BALB/c, CLEA Japan, Tokyo, Japan) were used. The mice were
maintained under specific pathogen-free (SPF) conditions in an animal facility [8] and given a
pelleted regular rodent diet and water ad libitum. To reduce signal interference from the gas-
trointestinal system, the mice were fed autoclaved potatoes 1 day prior to MRI [9].

Anesthesia was induced with 4% isoflurane in air using an isoflurane vaporizer (Murako
Medical, Tokyo, Japan), and maintained with 1.5% isoflurane. The mice respired freely during
data acquisition. When the respiration rate of the mice was about five per 10 s, they were posi-
tioned ventrally in ventral with fore and rear legs outstretched on a polymethylmethacrylate
plate using cellophane tape.

Venous insertion and contrast agent delivery
For tail vein injection, the self-made needle-tube system, 50 cm long with a dead volume of
30 μL, was used. To build this needle-tube system, we connected a 29-gauge needle cut from a
micro-syringe (MYJECTOR; Terumo, Tokyo, Japan) to a polyethylene tube (PE-10; Becton
Dickinson, Sparks, MD). The size of the outer diameter of PE 10 is the same as that of a
23-gauge needle, and its inner diameter is the same as that of a 25-gauge needle. The other end
of the PE-10 tube was joined to a micro-syringe to allow of injection. To dilate the tail vein, the
tail was immersed in water at 40°C for 15 s. The operator stretched the tail, kept the needle as
parallel as possible to the tail vein, inserted the ethanol-sanitized needle into the vein without
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avascularization, and connected the needle with the vein Two cut toothpicks were arranged at
each side of the tail as support for the tape and to affix the tail and needle (Fig 1A).

For retro-orbital injection, a PE-10 tube was used (without a metal needle) to avoid severe
artifacts caused by the syringe needle during MRI. To render puncture easy, one end of the
tube was cut in a beveled manner and the other end was connected to a micro-syringe. The
edge of bevel was trimmed to enable smooth insertion. The eye was partially protruded to facil-
itate PE tubing placement by applying a gentle pressure in the periorbital area. After ethanol-
sanitization of tip of the PE-10 tube, with the bevel-down tip position, the operator inserted it
into the medial canthus of a mouse at an angle of approximately 30° to the horizontal plane.
The tube was introduced so that it followed the edge of the eyeball down, until the tip reached
the base of the eye (Fig 1B). The operator put a drop of PBS in the eye to prevent it becoming
dry. Once the PE tubing was placed, the operator gently bent it caudalward, with an appropri-
ate radian being necessary to hold the tubing in place, and fixed it along mouse body and tail
with tape, and then the other end of the tubing was connected to a micro-syringe.

The total times required for puncture and mounting of the injection systems to the holders
were recorded for both the retro-orbital and tail vein approaches. After the needle-tube system
or the PE-10 tube was fixed, the mouse was placed in the MRI unit. To acquire arterial phase
images immediately after injecting the contrast agent, we left the needle-tube system in the tail
vein or the PE-10 tube in the retro-orbital sinus during sequential imaging.

MRI procedures
MRI was performed using a 1-Tesla permanent magnet compact MRI system (MRmini;
MRTechnology, Tsukuba, Japan), consisting of a console and a permanent magnet (Hitachi
Metals, Tokyo, Japan), installed in the laboratory of the SPF animal facility. A 30-mm inner-di-
ameter solenoid coil acted as a radiofrequency receiver. The magnet measured 60×64×82
(W×H×D) cm, weighed 1,400 kg, and had an air gap of 10 cm and a magnetic field homogenei-
ty of 3.6 ppm in a 30 mm-diameter spherical volume. A scout image was acquired in the coro-
nal view using a T1-weighted three-dimensional fast low-angle shot (FLASH) sequence, with a
TR of 30 ms, a TE of 2.2 ms, a flip angle of 57°, an in-plane matrix of 256×64, eight slab parti-
tions, one excitation, a bandwidth of 100 kHz, an in-plane pixel size 0.26 × 0.52 mm, a slice
thickness of 2.08 mm, and an acquisition time of 16 s. After the liver was placed at the center of

Fig 1. Photographs of tail vein injection and retro-orbital injection. Panel a shows tail vein injection and panel b shows retro-orbital injection in a mouse
restrained to the plate holder. A needle-tube system was inserted through the tail vein, while a PE-10 tube was inserted through the medial canthus of
the mouse.

doi:10.1371/journal.pone.0129326.g001
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the field of view, thoracoabdominal coronal images were acquired with T1-weighted three-di-
mensional FLASH sequence with following parameters: TR 30 ms, TE 2.2 ms, flip angle 57°,
in-plane matrix 256 × 64, 16 slab partitions, number of excitations one, bandwidth 100 kHz,
and acquisition time 32 s. Using zero interpolation, we reconstructed 32 slices with an in-plane
pixel size of 0.26 × 0.52 mm and a slice thickness of 0.52 mm.

Study protocol
The same group of nine healthy mice was given contrast agent via each venous route. For each
mouse, the baseline thoracoabdominal image, defined as the zero time point, was acquired be-
fore the contrast agent was injected. Gadopentetate dimeglumine (Magnevist; Bayer Schering
Pharma, Osaka, Japan) was injected via the tail vein or retro-orbital route, in random order. A
total of 0.2 mL/kg of gadopentetate dimeglumine was diluted with phosphate-buffered saline
(PBS) and the injection volume per mouse was fixed at 100 uL. Extravasation of contrast agent
into surrounding tissues is absorbed into interstitial spaces quickly, without side-effects. For
each mouse, the two injections were separated by at least 24 h to allow adequate clearance of
the prior contrast agent. Upon completion of contrast agent injection, a flush of 100 μL PBS
was given immediately, to avoid retention of the contrast agent at the injection site. To main-
tain proper pH level of contrast agent, PBS was used in this study rather than physiological sa-
line. Both the contrast agent injection and the PBS flush lasted 10 s. The time points are
referable to the onset of each scan (the beginning of contrast agent injection). For both injec-
tion routes, serial MRI images were collected from 30 s to 10 min at 45-s intervals, and 15, 20,
25, and 30 minutes after administering the contrast agent. After the scans were complete, the
injection devices were detached and the mice were removed from a polymethylmethacrylate
plate. Mice were then returned to their home cages and observed for recovery from anesthesia.
Every procedure was performed in the laboratory of the SPF animal facility, therefore medical
devices, such as needle, PE-10 tube and micro-syringe were sterilized by gas in advance.

Data analysis
The time courses of contrast ratios for the liver, kidney, lung, and myocardium were quantita-
tively assessed on serial MRI images. The signal intensity of each organ before and after con-
trast injection was measured by manually selecting a hand-drawn region of interest (ROI)
using ImageJ (National Institutes of Health, Bethesda, MD, USA). Three ROIs were chosen for
the liver, two in the right lobe and one in the left, excluding major vascular structures. For each
kidney, one ROI was chosen in the parenchyma of the maximum coronal section, excluding
the renal collecting system. One ROI was chosen in the maximum coronal section of each lung
field posterior to the heart, excluding major vascular structures. Two ROIs were chosen in the
maximum and next-larged coronal section of the heart, with each ROI outlining the contour of
the cardiac muscle. The mean signal intensities of all ROIs for each organ were defined as the
signal intensities of the corresponding organs. The signal intensities in post-contrast images
were divided by those of the corresponding pre-contrast images to give contrast ratios. The
time course of the contrast ratio in each organ was assessed.

Statistical analysis
For the liver, kidney, lung, and myocardium, correlations among the average contrast ratios of
the nine mice at different time points, between the retro-orbital and tail vein routes, were
determined using the Spearman nonparametric approach. Linear regression was also per-
formed. All statistical analyses were performed using EZR (Saitama Medical Center, Jichi Med-
ical University).
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Results
The average times taken for venous puncture and mounting of the injection system were about
10 and 4 min for the tail vein and retro-orbital routes, respectively. We did not observe severe
complication in mice undergoing either retro-orbital injection or tail vein injection. Occasion-
ally, minor complication was observed in some mice. A small drop of blood at injection site
was observed for retro-orbital injection and repeated attempts were required due to unsuccess-
ful tail vein injection. Even so, no injury or scarring was observed one week after the injection
in the eye or tail. No severe artifacts were seen in MRI images taken using either injection
route.

Similar levels of enhancement in the liver, kidney, lung, and myocardium were observed
using either the retro-orbital or tail vein route. Each organ became enhanced immediately after
injection of the contrast agent, and the enhancement decreased gradually (Figs 2 and 3). After
30 min, the kidney showed weak enhancement, and in the other organs, the contrast enhance-
ment had essentially disappeared because of contrast agent wash-out.

The peak contrast ratios in the four organs were obtained 30 s after commencement of injec-
tion via either intravenous route (Fig 4). For both the retro-orbital and tail vein routes, the re-
spective peak contrast ratios were 1.79 and 1.70 for the liver, 2.86 and 2.80 for the kidney, 3.44
and 3.45 for the lung, and 3.92 and 3.75 for the myocardium. The contrast ratios for both
routes decreased rapidly to 10 min for all organs measured, and then decayed steadily. At

Fig 2. Typical thoracoabdominal coronal MRI. Left column, from top to bottom, images acquired before (a), 30 s (b), 3 min 30 s (c), and 10 min (d) after
delivery of the contrast agent via the retro-orbital route. Right column, images obtained before (e), 30 s (f), 3 min 30 s (g), and 10 min (h) after delivery of the
contrast agent via the tail vein route.

doi:10.1371/journal.pone.0129326.g002
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Fig 3. Partial maximum intensity projections of thoracoabdominal MR images. Left column, from top to bottom, images obtained before (a), 30 s (b), 3
min 30 s (c), and 10 min (d) after delivering the contrast agent via the retro-orbital route. Right column, images obtained before (e), 30 s (f), 3 min 30 s (g), and
10 min (h) after delivering the contrast agent via the tail vein route.

doi:10.1371/journal.pone.0129326.g003

Fig 4. The time courses of contrast ratios after administration via the retro-orbital and tail vein routes.
Panel a, b, c and d shows liver, kidney, lung, and myocardium, respectively. Each point represents the mean
value of the contrast ratios of nine mice. Time point 0 is before contrast injection and the other time points are
from the start of each scan relative to the commencement of contrast agent injection. The error bars indicate
standard errors.

doi:10.1371/journal.pone.0129326.g004

Assessment of Retro-Orbital Injection in Mice for MRI

PLOS ONE | DOI:10.1371/journal.pone.0129326 June 10, 2015 6 / 10



30 min, the contrast ratios for the tail vein and retro-orbital routes were 1.06 and 1.09 for the
liver, 1.66 and 1.64 for the kidney, 1.28 and 1.31 for the lung, and 1.46 and 1.41 for the
myocardium.

Statistical results
Significant correlations were evident between contrast ratios obtained using the retro-orbital
and tail vein routes. Spearman’s correlation coefficients were 0.998, 1, 0.998, and 1 for the
liver, kidney, lung and myocardium, respectively (Fig 5). Upon linear regression, the propor-
tions of contrast ratios between the two routes were close to unity: y = 1.08 × –0.74 for the
liver, y = 1.11 × –0.21 for the kidney, y = 0.99 × –0.03 for the lung, and y = 1.09 × –0.23 for the
myocardium. Therefore, the contrast ratios were essentially identical when either injection
route was used.

Discussion
We compared the kinetics of an extracellular MR contrast agent after tail vein and retro-orbital
injection. For both injection routes, similar enhancement time courses were observed in the
liver, kidney, lung, and myocardium. Statistically, the contrast ratios were similar using either
injection route in each studied organ at all time points. The average total time required for ve-
nous puncture and mounting of the injection system was shorter for the retro-orbital than the
tail vein route, and no severe complications were encountered using the retro-orbital route.
When the technique is properly done by trained operator, complication was rarely observed.
Occasionally, there was a small drop of blood at the injection site, which can be easily wiped
with absorbent paper. Consequently, retro-orbital injection is a useful alternative to tail vein in-
jection when dynamic contrast-enhanced MRI is to be performed in mice.

The retro-orbital sinus of the mouse, which is located behind the eye at the medial and later-
al canthus, is a confluence of several veins, includes the supraorbital, inferior palpebral, dorsal
nasal, and superficial temporal veins [10]. The retro-orbital route is used for blood collection

Fig 5. Correlation of contrast ratio between tail vein and retro-orbital route. Panel a, b, c and d shows
liver, kidney, lung, and myocardium, respectively.

doi:10.1371/journal.pone.0129326.g005
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[11], bone marrow engraftment [12], leukemia induction [13], and gene engineering [14]. A
study of the delivery of a depletion agent indicated that the retro-orbital route and tail vein
routes were similarly effective when macrophage depletion of different tissues was required [5].
Another study concluded that these two routes could be used interchangeably for intravenous
injection [15]. A previous study compared the efficiency of retro-orbital and tail vein adminis-
tration of positron emission tomography radiopharmaceuticals in mice and demonstrated that
whereas retro-orbital injection was as effective as tail vein injection, the retro-orbital route was
both easier and faster [4]. It has not yet been definitively established whether the retro-orbital
route can serve as an alternative to the tail vein route for administration of MRI contrast
agents. We found that the enhancement efficiencies of extracellular contrast agents used for dy-
namic MRI were similar after injection via the retro-orbital and tail vein routes.

The large size of the retro-orbital sinus facilitates injection, saves time, and renders the pro-
cedure repeatable [4]. Moreover, the rich capillary microcirculation in the retro-orbital area
improves absorption of the injectate, rendering such injection comparable to the tail vein route
[4]. For retro-orbital injection, due to the large size of the retro-orbital venous sinus, PE 10
tube can be inserted into a relatively wide space surrounding the eyeball when compared to the
tail vein injection. In contrast with the retro-orbital injection, a reliable injection site has to be
chosen by operator for the tail vein injection, therefore, it is inevitably time-consuming and in-
jection efficiency is low. In the present study, the average time required for puncture and
mounting of the injection system was 4 min for the retro-orbital route, much shorter than the
10 min required for the tail vein route. The first attempt of the retro-orbital injection was al-
most always successful after appropriate training; however, the tail vein injection is sometimes
not successful even in experienced hands.

Any damage caused by retro-orbital injection should be both minimal and transient. Never-
theless, we took care with all manipulations, using PE tubing for injection rather than a syringe,
and sterilized devices in advance. We observed no severe complication in mice undergoing
retro-orbital injection.

With the PE-10 tube or needle-tube system still placed in the injection site, imaging data
were collected immediately after the contrast agent was injected. Thus, the arterial supply to
normal or diseased tissue or organs is clearly evident, which sensitively identifies and differen-
tiates pathological conditions.

In the present study, we used a compact MRI system with a 1-Tesla permanent magnet,
which has a relatively weaker magnetic field strength than other dedicated MRI systems for
small animal imaging. To obtain sufficient signal from a small animal, a superconducting MRI
system of high field strength is usually required [16]. However, such MRI system often requires
a great deal of space, and their high cost and poor accessibility may preclude the use of MRI in
routine experiments. A low-field MRI system can be installed in a small room and requires no
special maintenance [16, 17]. With a low field, less chemical shift and fewer susceptibility arti-
facts are produced [18]. The R1 relaxivity, which determines the T1-shortening effect of a con-
trast agent, is higher at lower field strengths [19]. In addition, safety issues associated with a
static magnetic field are less of a concern at lower field strengths [20].

Upon tail vein injection, the injection needle was left in the vein during the scan, but there
was no severe susceptibility artifacts. This may be due to using a low-field magnet. Upon retro-
orbital injection, to avoid susceptibility artifacts, a PE-10 tube was used without a needle. The
PE-10 tube was both tough and pliable, causing minimal injury to the mouse eye, and was easy
to fix after puncture, rendering it suitable for this procedure. We did not observe severe trauma
or evidence of infection at the injection site 1 week after injection. Retro-orbital injection via
tubing achieved the same effect as tail vein injection with a needle in terms of dynamic con-
trast-enhanced MRI of the mouse body. In addition, because retro-orbital is free of
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susceptibility artifacts, this method may be applied to MRI of the mouse head. Moreover, addi-
tional contrast agent or drugs can be injected during imaging, which may develop new applica-
tions for MR imaging. Different amounts of contrast agent may be tested in a single scan, or
the effect of intravenous injection of drug on fMRI can be monitored in real time.

In the present study, we applied three-dimensional FLASH sequence, providing high-reso-
lution images suitable for small animal studies. However, to assess tissue vasculature or tumor
neovasculature, much faster imaging sequences are required when a conventional extracellular
contrast agent is administered, because of the rapidity of blood circulation in mice. The extra-
cellular contrast agent used in this study was a low-molecular-weight compound that diffuses
readily into the extracellular space. The kinetics thereof may differ from those of other MRI
contrast agents, such as macromolecular-weight and hepatocyte-specific contrast agents.
Therefore, it is necessary to evaluate whether the kinetics of such agents is similar to extracellu-
lar contrast agent, given via retro-orbital route.

Conclusion
The retro-orbital and tail vein routes yielded similar results in terms of the kinetics of MR con-
trast agents in mice. Retro-orbital injection is a simple efficient alternative to tail vein injection
for dynamic contrast-enhanced MRI of the mouse using a conventional extracellular
contrast agent.
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