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Abstract

Background: Discovering the key microbial species and environmental factors of microbial community and
characterizing their relationships with other members are critical to ecosystem studies. The microbial co-
occurrence patterns across a variety of environmental settings have been extensively characterized. However,
previous studies were limited by their restriction toward pairwise relationships, while there was ample evidence of
third-party mediated co-occurrence in microbial communities.

Methods: We implemented and applied the triplet-based liquid association analysis in combination with the local
similarity analysis procedure to microbial ecology data. We developed an intuitive scheme to visualize those complex
triplet associations along with pairwise correlations. Using a time series from the marine microbial ecosystem as
example, we identified pairs of operational taxonomic units (OTUs) where the strength of their associations appeared
to relate to the values of a third “mediator” variable. These “mediator” variables appear to modulate the associations
between pairs of bacteria.

Results: Using this analysis, we were able to assess the OTUs' ability to regulate its functional partners in the
community, typically not manifested in the pairwise correlation patterns. For example, we identified Flavobacteria as a
multifaceted player in the marine microbial ecosystem, and its clades were involved in mediating other OTU pairs. By
contrast, SARTT clades were not active mediators of the community, despite being abundant and highly correlated
with other OTUs. Our results suggested that Flavobacteria are more likely to respond to situations where particles and
unusual sources of dissolved organic material are prevalent, such as after a plankton bloom. On the other hand, SARTTs
are oligotrophic chemoheterotrophs with inflexible metabolisms, and their relationships with other organisms may be
less governed by environmental or biological factors.

Conclusions: By integrating liquid association with local similarity analysis to explore the mediated co-varying
dynamics, we presented a novel perspective and a useful toolkit to analyze and interpret time series data
from microbial community. Our augmented association network analysis is thus more representative of the
true underlying dynamic structure of the microbial community. The analytic software in this study was
implemented as new functionalities of the ELSA (Extended local similarity analysis) tool, which is available for
free download (http://bitbucket.org/charade/elsa).
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Background

Marine ecosystem dynamics are likely controlled by en-
vironmental conditions and by the interactions between
individual microbial taxa in the environment [1, 2].
Therefore, the study of the interplay among microbial
species and the factors that control them are critical to
understand and predict ecosystems’ functions and their
response to environmental changes. But how to apply
theoretical approaches to predict species interactions in
microbial communities from proximal data such as
taxon abundances is still a key challenge in microbial
ecology [3, 4]. Studies of microbial co-occurrence pat-
terns [5-7] have led to novel insights into the ecology
and habitats of different bacterial species. For instance,
correlation network analyses have shown that related or-
ganisms, such as different ecotypes of SARII respond to
different environmental conditions and co-occur with
different bacterial, archaeal and protistan species [7, 8].
Such analyses have also elucidated the differences in the
interactions between grazers and viruses with bacteria
[9, 10], and have suggested that changes in surface envi-
ronments can have an effect on bacteria deep in the
ocean [11, 12].

One limitation of previous correlation-based methods,
such as CoNet, MENAP, SparCC, and CCLasso [13-16]
is that they examine only pairwise correlations between
organisms. It is however observed that some relation-
ships between organisms are mediated by third variables
[17-19]. For example, in marine ecosystems, mixo-
trophic eukaryotes feed on bacteria under some condi-
tions (such as low sunlight or high prey density) but are
photosynthetic under others. The trophic mode of these
mixotrophs, is thus influenced by environmental condi-
tions; in turn the way the mixotrophs interact with their
environment is influenced by their trophic mode. Thus,
a three variable mediation relationship could exist where
sunlight levels (through trophic mode) affect the rela-
tionship between the mixotroph and its prey. Many bac-
teria are mixotrophic as well [20-22], and may similarly
have interactions with their surroundings that are medi-
ated by the variables that determine the trophic mode.

Other associations that likely include more than two
variables would include symbioses that are favorable
under only certain conditions. A well-known example is
the symbioses between nitrogen fixing bacteria and their
eukaryotic hosts [23-25], which are likely only prevalent
in nitrogen-limited environments. Syntrophic relation-
ships likewise would only exist under conditions favorable
to that relationship, as would predation, competition and
any other interaction that could occur between two organ-
isms but might be mediated by third variables.

To examine how co-occurrence might be mediated by
biological or environmental variables we employed liquid
association (LA) analysis [26, 27] in succession to
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co-occurrence network analysis by the local similarity
analysis (LSA) [6, 28, 29]. The rationale here is that LSA
acts as a filtering mechanism to limit our three way ana-
lysis to only those variables that were at least sometimes
associated with each other. Importantly, local associa-
tions, measured by ELSA [28-30], can include patterns
that are present and robust over some parts of a
time-series data set while weak or absent in other parts
of that time-series. A natural question is whether the
time-series are associated with a third variable. This
question can then be measured by LA.

Our newly implemented Extended Liquid Association
(ELA) analysis pipeline integrates both co-occurrence and
mediation analysis to identify both pairwise and third
party mediated associations. The ELA software is available
as subroutines of the ELSA package (http://bitbucket.org/
charade/elsa/). The tool will enable researchers to address
the co-occurrence phenomenon with additional perspec-
tive of changing pairwise species-species or species-envir-
onment interaction with regard to a third species or
environmental factor, or a varying ecosystem indicator. In
this study, we identified multi-party interactions in inter-
species and species-environment interaction using the
San Pedro Ocean Time-series (SPOT) microbial commu-
nity data by Cram et al. [11], which profiles the marine
ecosystem near Los Angeles coast [7] using Automated
Ribosomal Intergenic Spacer Analysis (ARISA) [31]. We
also discussed the limitations of current analysis and pos-
sible future developments of ELA.

Methods

Analysis scheme

Our entire process, from data collection through
visualization was outlined in Fig. 1 and is detailed in the
following subsections. Briefly, we first collected the
combined SPOT dataset (as detailed in Data Collection)
including both operational taxonomic unit (OTU) abun-
dance levels and environmental factors co-measured.
We then imputed the missing values and applied
rank-based normalization to the dataset (as detailed in
Data Normalization). The normalized data was
analyzed by the ELSA software to discover significant
local pairwise associations (as detailed in Local Similar-
ity Analysis); these are associations that are present over
part, though not necessarily all of the time series. Finally,
we analyzed these significant local associations with the
Extended Liquid Association routines within ELSA to
reveal third party meditations of these pairwise
interactions (as detailed in Liquid Association Ana-
lysis). We finally described a novel visualization scheme
to represent mediated association triplets in Cytoscape
[32], and discussed their implications (as detailed in
Visualization).


http://bitbucket.org/charade/elsa
http://bitbucket.org/charade/elsa
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Fig. 1 The flowchart of integrated co-occurrence (Local Similarity)
and mediation (Liquid Association) analysis pipeline

_

Our new bioinformatics tool - Extended Liquid Associ-
ation (ELA) implements every step described in this ana-
lysis. This tool integrates two established and validated
methods: Liquid Association analysis by Li et al [26] and
the Local Similarity Analysis by Ruan et al. [6] and Xia et
al. [28]. We chose to combine these tools because they be-
have synergistically with each other -- ELSA can uniquely
identify local time-series associations and LA can elucidate
those associations that are modulated by a third variable.
Furthermore, the two tools, LSA and LA have been indi-
vidually benchmarked extensively, comparing with other
tools by independent studies [33, 34]. Indeed, in a compari-
son of many tools for correlation based network analysis,
Weiss et al. [13] recently identified LSA as the best tool for
correlation-based ecological time series data analysis.

Data collection
Our data were from the San Pedro Ocean Time-series pro-
ject, which are publicly available from the BCO-DMO
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(Biological & Chemical Oceanography Data Management
Office)  websites:  <http://www.bco-dmo.org/dataset/
537137> (physical and chemical data) and <http://
www.bco-dmo.org/dataset/535915> (biological data). The
generation of these data has been described previously
[35]. The samples were collected approximately monthly
from 5-m depth from August 2000 through January 2011.
Environmental parameters such as temperature and salin-
ity measurements were measured in situ. Nitrate, nitrite,
phosphate and silicate concentrations were measured by
auto-analyzer. Bacterial heterotrophic productivity was
measured through thymidine and leucine incorporation.
Bacterial and viral concentrations were measured by SYBR
(Synergy Brands, Inc) green epifluorescence microscopy.
We also obtained satellite estimates chlorophyll-A con-
centration, and surface productivity. Other environmental
variables included day length, virus to bacteria ratios, the
excess phosphate concentration over Redfield ratios, and
cell doubling time.

Bacterial community composition was determined by
the ARISA fingerprinting method in conjunction with
clone libraries. The ARISA data we used were a set of
423 of operational taxonomic units with putative taxo-
nomic identities. The final data set is a 423 by 120 data
matrix, where each row is an ARISA profile and each
column is a time point (each entry value of an ARISA
profile stands for the percentage of that operational
taxon unit (OTU) in the community at the time. A 35
by 120 data matrix of supplementary biotic and abiotic
environmental factors and ecosystem status indicators
was combined with the ARISA data, in which, each row
is one environmental factor and each column is the
measure of that environmental factor at one time point,
to obtain the final merged 458 by 120 raw data matrix.

Data normalization

We took the approach as in Li et al. [26] to normalize
the relative abundance for ARISA datasets. In detail, to
accommodate possible nonlinear associations and the
variation of scales within the raw data, we apply the fol-
lowing approach to normalize the raw dataset before our
analysis. We use X; to denote the raw data of the i-th
time spot of a variable. Assuming we have n samples in
OTU profile, first, we take

Ry = rank of Xy in {X1,X3,...,X,} (1)

Then, we take:

Zp =t [nljf J : (2)

where @ is the cumulative distribution function of the
standard normal distribution. We will take Z=_Z7.,


http://www.bco-dmo.org/dataset/537137
http://www.bco-dmo.org/dataset/537137
http://www.bco-dmo.org/dataset/535915
http://www.bco-dmo.org/dataset/535915
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obtained through the above
normalization of X.

A flowchart for incorporating Liquid Association (LA)
with Local Similarity Analysis (LSA) was shown in Fig.
1. First, we used LSA to find candidate local and without
time-delayed associations between factors X and Y. We
filtered the results based on p-value and g-value. Then,
given the significant LSA factors X and ¥, we computed
LA score to screen all environmental/OTU factors to
discover potential mediating factor Z. Next, a permuta-
tion test for liquid association was performed and the re-
sults were filtered based on p-value and g-value to
remove insignificant triplets. Finally, we used the soft-
ware Cytoscape to visualize the resulted association
network.

procedure as the

Local similarity analysis
In the next step, Local similarity analysis (LSA) was used
to screen locally co-occurring pairs for later third-party
mediation analysis. The LSA technique has been fully
characterized in previous literature and has been suc-
cessfully applied to the study of the co-occurrence net-
works within marine ecosystems [6, 7, 28, 29]. In this
study, LSA was applied to find local associations with or
without time delays. LSA was carried out with the ELSA
software package [29] with parameters “d 0’ and ‘-p
theo'. The ‘-d 0’ flag in this case indicates to the algo-
rithm that we only wanted to identify unlagged associa-
tions -- that is, associations of zero time delay. This
parameter was chosen because we were only interested
in synchronized co-occurrences and thus accepted only
local similarity associations without delays. We also spe-
cified, with the “-p theo’ flag that we wanted to estimate
the p-value with the faster theoretical approximation
[28] rather than the slower permutation based approach.
To correct for multiple testing, we use the false dis-
covery rate (FDR) or q-value (Q). This g-value is defined
as the fraction of false positives if a given association is
declared as significant [36]. Resulting pairs with
“P<0.001”, “Q<0.05” and with an association segment
spanning more than 50% of the total sampled time units
were selected as correlated pairs. A cut-off for Local
Similarity (LS) Score was determined at 0.28 by those
p-value and g-value cut-offs, which could be interpreted
as an analog of correlation coefficient of the same sam-
ple size.

Liquid association analysis

Next, we applied liquid association (LA) analysis to the
each of the correlated pairs of variables to find their me-
diating factors. Liquid association analysis was originally
developed by K.C. Li et. al. for characterizing the in-
ternal evolution of expression pattern of a pair of genes
(X,Y) depending on a ‘scouting’ (mediator) gene Z [26].
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In the microbial ecology setting, we analyze ecological
functional factors instead of genes. Suppose X, Y, and Z
are ecological functional factors and their measurements
are standard normal distributed (after a normalization
procedure) random variables with mean 0 and variance
1. The liquid association score (LA score) of X and Y
with respect toZ, as denoted by LA (X; Y| Z), is defined
as LA(X; Y] 2) = E(XYZ).

We estimate the LA score using the average product
of three properly normalized factors:

1 m
LAX;Y|Z) =3 " XiYiZi (3)

It can be seen that LA(X; Y| Z) =LA(Y; X| Z) =LA (Z;
Y| X). Therefore, the LA score is a measurement of
dependent association among the three functional fac-
tors; however, the score does not tell which two of the
three are associated, which other is the mediating the re-
lationship. In our analysis, the LSA approach supple-
ments as the first step to identify the correlated pairs
and then we used the identified pairs to scout for medi-
ating factors.

To see whether the LA score computed is statistically
significant, a permutation test was performed. To do
this, after we computed the true LA score for X and Y
with respect to Z, we randomly permuted the sequences
of Z, and computed again a permuted LA score and
compared it to the true LA score to see whether it was
more extreme. The procedure was repeated many times
(N=1000) and the p-value (P) was calculated as the
fraction that the permuted LA scores were higher than
the true LA score. We used “P<0.001” and “Q<0.05” to
control for statistical significance and multiple testing.

As shown in Fig. 2, There are four types of mediated
correlation relationship, i.e., liquid association types,
among factors X, Y'and Z: (A) High Z level enhances the
positive correlation between X and Y (Fig. 2a); (B) Low
Z level enhances the negative correlation between X and
Y (Fig. 2b); (C) Low Z level enhances the positive correl-
ation between X and Y (Fig. 2c); (D) High Z level en-
hances the negative correlation between X and Y (Fig.
2d). In all cases, the correlation between X and Y is me-
diated by the level of Z. Those liquid association scenar-
ios include cases when factors X and Y are correlated in
one direction when Z is in one state, and X and Y cease
to correlate or even to correlate reversely when the state
of Z changes [26].

For example, the scenario a high Z level enhances the
positive correlation between X and Y is shown in Fig. 2a.
In the upper panel of Fig. 2a, factors X and Y were dis-
played in a scatter plot and the corresponding status of
Z was both shape- and color-coded in the scattered
points. A green circle stands for a low level of Z while
an orange square stands for elevated level. The mediated
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Fig. 2 Mediated correlation and example Cytoscape diagrams for all liquid association types of factors X, Y and Z a High Z level enhances the
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co-occurrence is represented by an orange-colored re-
gression line applied to the scatter points of high level of
Z only. We designed the graphic element as in the lower
panel of Fig. 2a to illustrate this relationship for visualiz-
ing the co-occurrence networks using Cytoscape. Those
three factors: X, Y and Z, were interconnected via a gray
triangle to denote this three-way association. The wavy
line connecting the triangular with the factor Z stands
for mediation and the solid lines connecting the triangu-
lar with X and Y stands for the mediated correlation. We
use red to indicate positive correlations and blue for

negative correlations. Similarly, one can interpret the
other types of liquid associations as depicted in the other
panels of Fig. 2.

Visualization

To illustrate those complex triplet relationships in
Cytoscape, we created a representation diagrams for
each type: Green squares represent environmental fac-
tors or ecosystem status indicators. Violet octagons
represent functional groups (OTUs). Gray triangles rep-
resent the three-way liquid association. Solid lines
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indicate local similarity associations - red solid lines in-
dicate positive correlations while blue solid lines indicate
the negative. Wavy lines indicate third-party mediation -
red wavy lines indicate that the association is strong
when the mediating variable is high, while the blue wavy
lines indicate that the association is strong when the me-
diating variable is low (see Fig. 2).

We loaded all liquid association and local similarity
connections into Cytoscape [32], along with metadata of
bacterial and environmental factors. With Cytoscape we
illustrated all significant three-way associations that in-
volved environmental parameters. Those associations
were all statistically significant and their pairwise LS
scores were higher than 0.28. We went on to investigate
associations that involved nodes of special interest. We
first investigated pairwise interactions between oper-
ational taxonomic units that were regulated by environ-
mental parameters. We also investigated associations
that involved at least one OTU from the SARII cluster,
as well as associations that contained at least one OTU
from the class Flavobacteria.

Results

Co-occurrence mediated by environmental factors
Bacterial abundance

Inspection of the liquid association interactions between
pairs of OTUs that were mediated individual environ-
mental parameters identified a variety of three-way inter-
actions. Bacterial abundance (Bact) appeared to predict
correlations of seven pairs of operational taxonomic
units (Fig. 3). That is, seven pairs of positively and nega-
tively correlated OTUs showed strongest correlations in
their relative abundance in some cases when total bac-
terial abundance was high, and in other cases when bac-
terial abundance was low. For instance, the correlation
between AEGEAN_676.9 and OTUS522.8 is positive and
was at its strongest when the total bacterial abundance
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was high. Conversely, as shown in the figure, the correl-
ation between AEGEAN_676.9 and Prochl_HL (I) 828.8
was positive and at its strongest when total bacterial
abundance was low.

In total, five of those seven pairs of bacteria
(SARI11_682.4, SARII_703.7, AEGEAN_653.1, AEGE
AN 679.4, AEGEAN _676.9) contained at least one OTU
from the SARII cluster. Furthermore, six of the seven
pairs were linked by a common OTU (Bact). That is,
there were two OTUs (OCS155_418.5 and OM43_836.8)
that were correlated (positively or negatively) with an-
other OTU when total bacterial abundance was high but
correlated with a different OTU when the bacterial
abundance was low. Overall it suggested that an alter-
nating pattern exists for those common OTUs as they
change interacting partners and types as the total bac-
teria abundance rise or drops, for example, when Bact is
high OM43 may compete with Formos but when Bact is
low, OM43 instead cooperates with AEGEAN.

Other environmental factors

There were many other environmental parameters that
also appeared to be in liquid association with correlated
OTU pairs, including silicate (12 connections), viral
abundance (5 connections), salinity (6 connections),
bacterial productivity as measured by thymidine in-
corporation (4 connections), the rate of change in day
length (spring vs fall) (4 connections), phosphate con-
centration, and chlorophyll-A concentration (3 connec-
tions) (see Fig. 4).

For example, chlorophyll-A concentration (Chol_A_Sat)
was a critical mediator of alphaproteobacteria and actino-
bacteria clades. When it was high, it enhanced the cooper-
ation between SARII 703.7 and AEGEANI69 653.1
clades - both were alphaproteobacteria, to promote car-
bon oxidization. This positive triplet association indicated
likely oxidative bacteria bloom after a major increase of

OTU_522.8

AEGEAN 676.9

Owenwe_654.9

0CS155_418.5

SAR11_682.4

SAR11 703.7

AEGEAN_653.1 Formos_762.8

an environmental factor

AEGEAN_679.4

Fig. 3 A sub-network of local and liquid associations in which OTU correlations were mediated by the total bacterial abundance (Bact),

Prochl_HL(1)_828.8

A three way association pattern
[ Bacterial abundance

. bacterial OTUs
. SAR11 nodes
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Fig. 4 A comprehensive network of local and liquid associations in which OTU correlations were mediated by environmental factors
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B sariieraz
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marine productivity from photosynthetic plankton as indi-
cated by high Chol_A_Sat level. Such alphaproteobacterial
cooperativity however was inhibited by competition from

(gray triangle) by three OTUs (OCS155_ 8715,
PAUG3G_600.6, and OTU_522.8). When the abundance
of those three mediating OTUs were high, the

OTU OCS155_418.5, which was a predominantly actino-
bacteria clade and was also involved in degrading organic
matters, as we could observe an enhanced negative correl-
ation between SARII 682.4 and OCSI55 418.5 when
Chol_A_Sat concentration was high. A nature explanation
for the observation was alphaproteobacteria and actino-
bacteria’s competing biochemical nature to degrade
organic matters. Interestingly, when Chol_A_Sat was low,
it also enhanced the cooperation between two other
alphaproteobacterial OTUs (SAR216_744.7 and AEGE
AN_679.4). This partner switch suggested subclones of
alphaproteobacterium clades could rise or cease to domin-
ate clade activity depending on changing environmental
status.

Co-occurrence mediated by other operational taxonomic
units

SAR11

Due to its unique metabolism and ecological role [37,
38], as well as its abundance and temporal variability in
the surface of the san pedro channel [6] and globally
[39], we focused on three-way associations in which any
of the three nodes were from the SARII clade (Pelagi-
bacterales). It was evident that while many SARIIs were
correlated with other operational taxonomic units, only
OTU SAR11_735.5 appeared to be involved in (several)
three-way interactions with cutoffs of a liquid associ-
ation effect larger than 0.8 (Fig. 5).

In the sub-network formed by the five correlating
OTUs (Fig. 6), SARII_735.5 has a special status. First,
SARI1 735.5 and OTU _545.8 (an OTU of unknown tax-
onomy) were positively correlated. They were connected
by red solid lines and their correlations were mediated

strength of the positive correlation between SARII_
735.5 and OTU_545.8 was stronger, and those positive
three-way interactions were represented by red wavy
lines. Further, the correlations of four pairs of SARII
OTUs (OTU_545.8 and OCS155_871.5, OTU_545.8
and PAUC34_600.6, OCS155_871.5 and OTU_522.8,
PAUC34_600.6 and OTU_522.8) were mediated by
SARII_735.5. When the abundance of SARII 735.5
was high, the strength of these four correlations were
stronger. Notably, all correlations between pairs of
OTUs and three-way interactions in this network
were all positive, implying these OTUs benefited from
each other’s boom and their relationships belonged to
mutualism. This subgraph illustrated a complex and
largely feed-forward trophic network that whose dy-
namics depended on the activity of SARII clades.

Flavobacteria

The genus that appeared to be involved in the most
three-way interactions was Flavobacteria with four nodes
appearing in a tight cluster with other OTUs, most of
which were liquid-associated (Fig. 7). These associations
suggested that the bacteria in the cluster occasionally
co-occurred together. At other times the Flavobacteria
and their cooperatives were not co-occurring, but they
were not necessarily all absent.

There were 31 liquid association patterns in the (Fig.
7). All the Flavobacteria OTUs, which were highlighted
by bold outlines, were involved in triple associations.
OTU_522.8 was a special OTU (which was located at
the left of Fig. 7) in this cluster. It was involved in more
than 30 three-way association patterns. For instance,
OTU_522.8 was positively correlated with OTU_545.8,
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SAR11 682.4

SAR11_686.9 SAR11_692.2

oTU522.8

\

Fig. 5 A sub-network showing OTUs mediated and/or correlated to/by SARTT OTUs. SAR11 nodes were highlighted by bold outlines. All SARTT in
the dataset and their significant liquid and local associations were shown

Aspecial three way association pattern
A three way association pattern
[environmental parameter

@racterial oTUs

@5AR11 nodes

and their correlation was mediated by six OTUs, which
included Formos_785 and NS9 683.9. The red solid and
wavy lines indicated that the relationship of those OTUs
was mutualism. The correlation between OTU 522.8
and OCS155_871.5 was mediated by OCS155_435.5, the
blue wavy line indicated that when the abundance of
OCS155_435.5 was high, the positive correlation be-
tween OTU_522.8 and OCS155_871.5 was weaker, which

demonstrates a competitive relationship between
OCS155_435.5, OTU_522.8 and OCS155_871.5.

Discussion

The interactions between microbial species are complex
and often non-linear. Some of those interactions are reg-
ulated by factors within the microbial community itself
[40], such as the levels of key organic matter producers.
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\
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Fig. 6 A sub-network of four bacterial OTUs that were liquid-associated with SARTT and SART1_7355

SAR11 735.5
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Some of them are however mediated by environmental
factors, such as temperature, oxygen, among others. For
example, water column mixing can disturb microbial
communities by disrupting the physical-chemical gradi-
ents created by thermal stratification known to define
niches for microorganisms [41-45]. Liquid association is
thus promising in revealing and elucidating these com-
plex non-linear co-mediated associations.

Environment

Analysis of the SPOT dataset suggested that there were
a series of correlations that occurred most strongly only
under certain conditions. We observed that several bi-
otic and environmental parameters, especially bacterial
and viral abundance, silicate concentrations and salinity
appeared to predict a number of correlations between
bacteria. Liquid associations involving these parameters
suggest that not only do bacteria interact with each
other and environmental parameters, but furthermore
that the nature of the relationships between many bac-
teria are likely affected by their environment.

Liquid associations in which bacterial abundance me-
diated the relationships between pairs of OTUs could in-
dicate symbioses or competitive interactions between
species that depend upon either the overall density of
the bacterial community. Denser microbial communities,
for instance are likely to have higher encounter rates be-
tween bacteria pair of bacteria which could potentially
increase opportunities for symbioses, antagonistic inter-
actions, viral exchange and other interactions. Alterna-
tively, some unmeasured parameter, such as predation

[46]. For instance, the AEGEAN_676.9 bacteria (which is
a SARI11 relative [47], is positively associated with
OTU_522.8 under high bacterial abundance, and with
Prochlorococcus High Light Strain 828.8 under low bac-
terial abundance. SAR11 is known to require metabolic
by products of other organisms, and one could expect
that it gathers these metabolites from different organ-
isms under different conditions.

Viruses are believed to have complex effects on bacter-
ial communities, and this study suggests a number of in-
teractions that may be mediated either by the viruses
themselves or an unmeasured factor that relates to viral
abundance [48, 49]. Silicate concentrations likely affect
the protest community with diatoms utilizing silicate
and dinoflagellates taking advantage of low silicate con-
ditions; these eukaryotes likely interact with bacteria by
producing chemicals, consuming resources, through pre-
dation and possibly through symbioses [50]. These dif-
ferent conditions might impact the kinds of relationships
bacteria could have. For instance, the several bacteria
that work together to break down a compound produced
by one source might show up as a three-way positive
interaction. Meanwhile two bacteria that compete to
colonize a diatom symbiotic host or diatom carcass
might show up as a three-way negative interaction with
diatoms.

The parameter in our dataset that appeared to predict
the associations between the most of OTUs was the
number of days that had elapsed since the beginning of
our data set. This suggests that a number of correlations
that could be found in the first part of our data set were
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not seen in the later years of the data set and vice versa.
This suggests a long-term temporal shift in the kinds of
associations in the bacterial community.

OTUs

There were numerous cases of interactions between trios
of bacteria and noticed that certain groups appeared to
be associated with these three way interactions but not
others. We observed notably different patterns between
the liquid associations that contained at least one SARI1
OTU and those liquid associations that contained at
least one Flavobacterial OTU. SAR11s, with the excep-
tion of one OTU (SAR11_735.5), appear to not be found
in three-way liquid associations in this dataset, meaning
that while they may correlate with other bacteria, the
magnitude of this correlation is rarely associated with
the relative abundance of a third OTU. This lack of
three way associations suggests that SARII bacteria
themselves do not influence associations between other
kinds of bacteria. On the other hand, out of ten Flavo-
bacterial OTUs that correlated with other bacteria, eight
of these appeared to be part of liquid associations. The
overall pattern for Flavobacteria is that they were part of
a cluster of positive liquid and local associations. This
suggests that there was a set of conditions in which Fla-
vobacteria and related OTUs co-occurred positively.
However, under other conditions, these OTUs were
un-related to each other. Likely these Flavobacteria and
their associates were all responding to some unmeasured
environmental situation such as a bloom. That is, when
the unmeasured condition was happening, one set of as-
sociations predominated, and when it was not happening
another set predominated. This manifests as three way
associations between OTUs. Another possibility is that
communities may structure themselves in different ways,
with different sorts of exchanges between organisms.
Under one structure, we see one set of patterns and
under another we see a different set of patterns. This
structure could be driven by (unmeasured) environmen-
tal variability, could be a process shaped the interplay
between organisms themselves. As no environmental pa-
rameters that we measure appeared to associate with
this cohort, we can only speculate at this time what
likely caused this association.

This difference in patterns between microorganisms
suggests different trends in the ecological associations
between organisms of different genetic makeup. Flavo-
bacteria are known for being particle associated and able
to break down complex molecules and might respond to
situations in which particles and unusual sources of dis-
solved organic material are prevalent, such as after a
plankton bloom [51]. SARI1Is on the other hand are
known as oligotrophic chemoheterotrophs with inflex-
ible metabolisms. Accordingly, their relationships with
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other organisms may be less governed by environmental
or biological factors.

Caveats

It should be noted that the collected data and obtained
results are only associations (not causality), and need be
further verified their validity by one by one OTU experi-
mentation. Furthermore, the validity of ELA depends on
the goodness of community fingerprint data, such as
number of samples, accurate abundance of each species
etal. In the future, by applying ELA. In the future, by
applying liquid association analysis to an integrated
community big dataset, it is possible to find resilient as-
sociations are common to all communities as well as as-
sociations unique to certain community types. This can
help us better understand the ecological dynamics with
regard to community differences.

Conclusions

Multi-party correlations have been vastly revealed be-
tween biological entities ranging from ecosystems to
genes [52]. Our approach of coupling local association
with liquid association allows additional insight by first
identifying statistical patterns, and then using liquid as-
sociation to identify whether the strength of those pat-
terns is modulated by additional variables. This
approach examines many associations at once, and is
thus inherently hypothesis generating. It allows for an
initial exploration of patterns in a microbial data-set that
go beyond pairwise correlations to three way correla-
tions. In our analysis of the San Pedro Ocean time
series, this approach has shown us for the first time that
associations between organisms appear to change from
the beginning to the end of the data set, that bacterial
and viral total abundance appears to modulate the inter-
actions between relative abundances of individual OTUs,
and that OTU associations appear to be modulated both
by environmental parameters and by other OTUs. These
patterns provide a starting point for future observational
approaches to explore whether these sorts of three-way
patterns are robust across ecosystems, and for experi-
mental and modeling approaches to explore the mech-
anistic underpinnings of these sorts of associations. We
think this approach will be valuable in the analysis of
any multivariate time-series data sets. We encourage
groups to use the freely available software which has
been added as an extension to the ELSA software pack-
age [28, 29] whose source code can be found at http://
bitbucket.org/charade/elsa.
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