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Abstract: Multiple sclerosis (MS) is an inflammatory, autoimmune, demyelinating disease of the central nervous system 

(CNS) that usually starts as a relapsing-remitting disease. In most patients the disease evolves into a chronic progressive 

phase characterized by continuous accumulation of neurological deficits. While treatment of relapsing-remitting MS 

(RRMS) has improved dramatically over the last decade, the therapeutic options for chronic progressive MS, both primary 

and secondary, are still limited. In order to find new pharmacological targets for the treatment of chronic progressive  

MS, the mechanisms of the underlying neurodegenerative process that becomes apparent as the disease progresses need  

to be elucidated. New animal models with prominent and widespread progressive degenerative components of MS have  

to be established to study both inflammatory and non-inflammatory mechanisms of neurodegeneration. Here, we discuss 

disease mechanisms and treatment strategies for chronic progressive MS. 
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INTRODUCTION 

 Multiple sclerosis (MS) is one of the most common neu-
rological disorders frequently leading to permanent disability 
in young adults [1]. The clinical course is unpredictable and 
highly variable. In the majority of the patients a sudden onset 
of neurological deficits marks the beginning of the disease. 
In these patients the disease continues as relapsing-remitting 
MS (RRMS) characterised by episodes of acute exacerba-
tions, followed by partial or complete recovery of the  
deficits. RRMS typically begins in the second or third dec-
ade of life and after a medium time to conversion of around 
19 years approximately 70% of the patients subsequently 
develop secondary progressive MS (SPMS). The rate of  
conversion to SPMS is approximately 2-3% per year [2]. 
Secondary progression is usually defined as a period of  
clinical worsening, which is independent of relapses and 
sustained for at least six months. However, the time of  
conversion is sometimes difficult to pinpoint as it slowly 
builds up and remains unnoticed by the patient and the  
clinician for some time. Another challenge is to distinguish 
the chronic progression from residual symptoms that remain 
after patients have experienced acute relapses. There are no 
established biomarkers or definite clinical signs to discrimi-
nate between the relapsing-remitting and secondary progres-
sive phase of MS. 

 Around 15% of the patients develop primary progressive 
MS (PPMS) characterized by the steady progressive deterio-
ration in neurological function without preceding or con-
comitant relapses [3]. According to the revised McDonald 
diagnostic criteria from 2005 [4] the progressive neurologi-
cal decline has to persist for at least one year and two of the  
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following additional criteria have to be fulfilled: 1) nine  
MRI brain lesions or at least four brain lesions and abnormal 
visual evoked potentials, 2) at least two MRI spinal cord 
lesions, 3) CSF oligoclonal IgG bands or increased IgG  
index. 

 Characteristically, PPMS manifests around 10 years later 

than RRMS with a mean age of 39 years [3]. Interestingly, 

the median time of onset of SPMS and PPMS is almost iden-
tical [5]. In addition, the speed in which patients developed 

their neurological deficits in PPMS and SPMS is in remark-

able accordance [5]. Once patients with SPMS and PPMS 
have reached Kurtzkes disability status score (DSS) 4 the 

progression onwards occurs in stereotype manner. In fact, a 

study of the natural history of MS of 1844 patients (Lyon 
Multiple Sclerosis Cohort) showed that while the beginning 

is highly variable, the progression of the disease is much 

more uniform [6]. The median time to reach DSS 6 was 23.1 
years for patients with a relapsing-remitting onset and 7.1 for 

patients with primary progressive onset. However, the time 

to progress from DSS 4 to 6 or 7 was remarkably similar 
among the two subtypes. Once a clinical threshold of disabil-

ity had been reached, neither the number of relapses nor the 

rate of progression was prognostic for the further clinical 
course. Additionally, relapses that occurred before reaching 

the threshold or the relapses that became manifest thereafter 

showed no significant influence on the progression of irre-
versible disability [6]. Thus, the onset of secondary chronic 

progression in MS does not seem to be solely determined by 

the inflammatory load that occurs and becomes apparent 
during the relapsing-remitting course of the disease. 

 These key studies of the natural course of MS raise a 
central question: How is chronic progressive MS triggered? 
In principal, three different scenarios are possible: First, in-
flammatory processes in the beginning of the disease deter-
mine the onset of chronic progression. Second, chronic pro-
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gressive neurodegeneration starts from the beginning and 
inflammation occurs as a secondary response. A final possi-
bility is that the inflammatory processes and chronic pro-
gressive neurodegeneration are not connected to each other 
and progress independently. 

BIOMARKERS OF CHRONIC PROGRESSIVE MS 

 While the question of how RRMS is connected to chronic 
progressive disease remains unanswered, there is accumulat-
ing evidence that both processes have distinct underlying 
pathogenic mechanisms. RRMS is regarded as an immune-
mediated inflammatory demyelinating disorder, in which 
multifocal lesion are disseminated in time and space 
throughout the CNS [7, 8]. Lesions are associated with a 
breakdown of the blood-brain barrier and the presence of 
blood-derived lymphocytes and monocytes. Resolution of 
the inflammation, restoration of the conduction block and 
remyelination contribute to the clinical recovery. In contrast, 
chronic progressive MS is characterised by the irreversibility 
of the deficits due to progressive neurodegeneration [9-11]. 

 To follow the different pathological processes of MS 
biomarkers and surrogate markers are required to monitor 
and predict the disease progression [12]. For RRMS mag-
netic resonance imaging (MRI) has proven to be a reliable 
tool to measure the formation of inflammatory lesions. Areas 
of focal inflammation are detected with high sensitivity as 
new gadolinium (Gd) enhancing lesions. Histological analy-
sis at autopsy or after biopsy shows that Gd-enhancement 
indeed correlates with intense inflammatory activity and 
dense perivascular cuffs [13, 14]. In addition, Gd-
enhancement lasts for 2-6 weeks similar to the duration of a 
typical relapse. The number of Gd-enhancing lesions and T2 
lesions increases more rapidly in RRMS as compared to 
SPMS. Furthermore, patients with PPMS have fewer GD-
enhancing lesions and a smaller T2 lesion load then patients 
with RRMS [15]. 

 Thus, Gd-enhancement is a useful surrogate measure of 
relapses and therefore frequently used as an outcome criteria 
in many therapeutic trials of RRMS. Since six out of seven 
newly formed MRI lesions are clinically silent it is more 
sensitive as clinical outcome measures. However, the appli-
cability of neuroimaging to predict long-term disability from 
the lesion load is not straightforward [16]. In fact, a longitu-
dinal-study showed the EDSS score 14 years after diagnosis 
correlated only moderately with the lesion volume on MRI 
scans at 5 years (r=0.60) [17]. It seems that a change in the 
number and volume of the lesions correlates only with the 
concurrent change in disability at early but not at later stages 
of the disease. 

 Are there any surrogate markers of chronic progressive 
MS? 

 There are several MR measures available to determine 
neurodegeneration in MS. The two most specific MR meth-
ods are whole-brain atrophy measurements and MR spec-
trometry to measure the levels of the neuronal metabolite N-
acetyl aspartate (NAA). Atrophy can be detected in both, the 
brain and the spinal cord of patients with SPMS and PPMS 
from the beginning of the disease and several studies have 
shown that atrophy correlates with disability [18, 19]. In 

addition to brain spinal cord volumetric measurements, MR 
spectrometry of NAA levels has demonstrated diffuse neu-
ronal loss from the earliest clinical stages of disease [20-22]. 
Additionally, cerebral spinal fluid (CSF) biomarkers of neu-
ronal damage such as neurofilament autoantibodies or the 
degree of neurofilament phosphorylation are beginning to 
emerge as new valuable surrogate markers for the neurode-
generation in MS [23, 24]. 

 Furthermore, new genetic approaches such as genome-
wide association scans for MS have recently identified new 
susceptibility loci for MS [25-27]. Such studies may also 
unravel genes associated with chronic progressive courses of 
the disease. 

NEURODEGENERATION IN PROGRESSIVE MS 

 Evidence for neuordegeneration in MS has been reported 
as early as 1868 by Charcot in post-mortem histolopa-
thological analysis. Contemporary high-resolution laser-
scanning confocal microscopy analyses have confirmed the 
presence of axonal pathology in MS lesions [28-30]. The 
most widely used marker for axonal dysfunction is the detec-
tion of amyloid precursor protein (APP) accumulations in the 
axons. Why APP becomes detectable in axons of MS lesions 
is not completely understood, but the breakdown of axonal 
transport followed by the subsequent retention of APP is the 
most likely possibility. It is also feasible that APP synthesis 
increases or degradation decreases as a result of the inflam-
matory process. Another immunohistochemical marker used 
to demonstrate axonal pathology is SMI32, an antibody that 
labels non-phosphorylated neurofilament in axons. The 
maturation of the axonal cytoskeleton is usually accompa-
nied by increased neurofilament phosphorylation, a process 
that is induced by the myelinating glia and leads to an in-
crease in axonal diameter [31]. Demyelination may trigger 
the dephosphorylation of neurofilaments in axons, thereby 
mediating structural changes within the axon. Other changes 
in the axonal cytoskeleton that are observed in MS lesions 
are the phosphorylation and aggregation of tau, a microtu-
bule-binding protein [32, 33]. Increased carbonylation and 
degradation of cytoskeleton elements within axons have also 
been reported [34]. All these findings show that the axonal 
cytoskeleton is highly vulnerable and an important target in 
MS. These functional changes of the axonal cytoskeleton 
have important consequences if they persist as they will 
eventually lead to alterations in the transport of cargo along 
the axons and to an impairment of synaptic transmission 
[35]. 

 Whereas these changes in the axonal cytoskeleton may 
mark a transient and still reversible dysfunctional state of the 
axon, other neuropathological findings such as axonal trans-
section and axonal end-bulb formation clearly show irre-
versible axonal damage in MS lesions [29]. Axonal swellings 
and transsections are already observed early in the disease 
within acute demyelinating lesions. More transsected or 
swollen axons were found within acute, inflammatory le-
sions as compared to chronic, sclerotic plaques [10, 36]. On 
the basis of this positive correlation between inflammation 
and structural changes in axons, the inflammatory process 
has been suggested to be responsible for the ongoing neu-
rodegeneration in MS [37]. 
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 Besides this local, acute neuronal damage in inflamma-
tory lesions, there is also a more widespread, diffuse neu-
rodegeneration in the CNS of MS patients. MR spectrometry 
analyses of NAA levels reveal neuronal loss in normal ap-
pearing white (NAWM) and cortical grey matter [20, 38]. 
One possible explanation for the diffuse neuronal loss is sec-
ondary Wallerian degeneration as a result of focal axonal 
injury. However, there seems to be no correlation between 
total lesion load and the extent of neurogeneration as deter-
mined by NAA levels or brain atrophy measurement [12]. 
These finding raise the question whether the inflammatory 
attack by itself is the sole responsible factor or whether non-
inflammatory mechanisms contribute to neurodegeneration 
in MS [10]. 

MECHANISMS OF NEURODEGENERATION 

 There are a number of different inflammatory effectors 
that may be responsible for the axonal pathology in MS. For 
example, CD8

+
 T cells are able to exert cytotoxic effects on 

neurons within an inflammatory milieu [35]. Under physio-
logical conditions neurons express low amounts of MHC 
class I. However, by inflammatory stimuli the expression of 
MHC class I is induced and this makes neurons highly sus-

ceptible to an attack by CD8
+
 T cells [39, 40]. In cell culture, 

the interaction of CD8
+
 T cells with axons resulted in tran-

section of neurites and the formation of adjacent solitary 
neuritic spheroids similar as observed in active MS lesions 

[41]. Consistent with these findings, CD8
+
 T cells are fre-

quently observed adjacent to damaged neurons in MS lesions 
[42]. The role of CD8

+
 T is further supported, by a study in a 

MHC class I light chain deficient mouse model of MS that 

shows extensive demyelination in the absence of an axonal 
pathology [43]. 

 In addition to CD8
+
 T cells it is also likely that microglia 

participate in the neurodegenerative process in MS. The 

presence of activated microglia is a pathological hallmark of 
lesions in chronic progressive MS. These cells release a 
number of different factors that have been shown to be cyto-
toxic to neurons in culture [44]. For example nitrogen mon-

oxide (NO) has repeatedly been seen to be detrimental to 
neurons for example by modifying ion channels, inhibiting 
mitochondrial respiration or blocking synaptic vesicle trans-
port [45-47] . Neuropathological studies reveal an activation 

of the inducible form of NO synthase in acute lesions of  
patients with multiple sclerosis [48, 49]. 

 Another important mediator of axonal damage seems to 
be glutamate as inflammatory stimuli may trigger glutamate 
release, which in turn induces excitotoxicity by calcium 
overload in neurons [50, 51]. Activation of AMPA and/or 
kainate receptors can damage axons or oligodendrocyetes 
[50, 52]. NMDA (N-methyl-D-aspartic acid) receptors are 
expressed on the surface of oligodendrocytes and in the mye-
lin membrane and can, if activated abnormally, result in 
myelin degradation [53, 54]. 

 Other inflammatory responses that can induce neuronal 
injury are antibody- and complement mediated processes. An 
interesting finding in this respect is the identification of 
autoantibody-mediated axonal injury by targeting neurofas-
cin 186 (NF 186), a neuronal protein concentrated in the 

node of Ranvier [55]. Furthermore, contactin-2/TAG-1, a 
protein localized at the juxtaparanodal domain, has recently 
been identified as an autoantigen targeted by T-cells and 
autoantibodies in MS [56]. The contactin-2/TAG-1-directed 
autoimmunity induces encephalitis characterized by a prefer-
ential inflammation of the gray matter of the spinal cord and 
cortex [56]. 

 A viral etiology of MS has been discussed [57, 58] and it 
feasible that specific viral infection may trigger an autoim-
mune-response towards axonal components and thereby con-
tribute to neurodegeneration in MS. 

 Mitochondrial dysfunction is another factor that is likely 
to contribute to axonal damage in MS. In fact, the number of 
mitochondria is not only increased in chronic active and in-
active lesions in progressive MS, but also the respiratory 
chain complex IV activity is altered [59, 60]. Oxidative dam-
age to mitochondrial enzymes and DNA might be responsi-
ble for the impairment of mitochondria [61]. 

 While it is clear that inflammation correlates with neu-
ronal cell death in acute inflammatory lesions, permanent 
disability is low during the early stages of RRMS. In fact, 
neurological deficits seem to accumulate at a time when  
Gd-enhancing lesions become less frequent and the total 
lesion load remains stable. 

 One possible explanation for this discrepancy is that the 
MRI only maps the inflammatory lesions that are formed 
early in disease, but not the inflammatory infiltrates that oc-
cur later in the disease. There is indeed some evidence that 
the pattern of inflammation changes in the course of MS 
[62]. Lymph follicle-like structures in the meninges and in 
the perivascular space have been observed in the progressive 
phase of the disease [63]. In addition, while T- and B- cells 
are cleared from active lesions, there is a population of 
plasma cells that remain diffusely distributed within the 
brain parenchyma [62]. There is also an increasing number 
of microglia that are scattered throughout the brain in  
progressive MS [64]. It has been suggested that early  
inflammatory lesions trigger these changes [62] and create a 
new inflammatory environment with a different subset of 
inflammatory chemokines [65] which is formed within the 
CNS parenchyma. The inflammatory cells that persist in  
the CNS in progressive MS may directly induce neuronal 
damage. There is also evidence for an increasing number  
of cortical lesions in chronic progressive MS [11]. These  
lesions differ fundamentally from the white matter lesions as 
they are mainly composed of activated microglia and contain 
a much lower number of T- and B-cells [66-68]. It is possi-
ble that neuronal injury in the cortex is induced by a soluble 
factor released by the inflammatory infiltrates within the 
meninges. 

 A shift from adaptive to innate immunity with abnor-
mally activated dendritic cells is another potential mecha-
nism of disease progression in MS [9]. Maturation and  
activation of dendritic cells were found to drive a proin-
flammatory immune response in secondary progressive  
MS [69]. 

 However, it is also possible that neuronal damage is indi-
rect and a result of the ongoing demyelination in the brain. 
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The loss of myelin has indeed far-reaching consequences for 
the axon. Demyelination does not only slow down nerve 
conduction, but also obliterates the axonal architecture and 
reduces long-term neuronal survival. The important function 
of myelin is highlighted in mouse mutants that are unable to 
form an intact myelin sheath as a result of gene deletions. 
For example, Shiverer mice contain a deletion of the MBP 
gene, which leads to the absence of myelin sheet formation 
and a severe behavioural phenotype with epileptic seizures 
and tremor [70]. The life span of these mice is dramatically 
reduced demonstrating the importance of myelin for the sur-
vival of an organism. Shiverer mice display a large number 
of changes in the axonal cytoskeleton and in the vesicular 
transport system that point towards a role of myelin in the 
regulation of fast axonal transport [71]. The breakdown of 
axonal transport that is often observed in neurons within 
active MS lesions could thus be explained in part by the loss 
of myelin ensheating the axons. 

 In addition to the role of myelin in structuring the axon, 
there is also evidence that myelin is essential for the long-
term axonal survival [72, 73]. Evidence for such a function, 
comes again from mouse mutants that lack some of the ma-
jor myelin genes. Knockout mice for the myelin-associated 
glycoprotein (MAG), the 2´,3´- cyclic nucleotide 3´- 
phoshodiesterase (CNP) and the proteolipid protein (PLP) 
form myelin and have an almost normal live span, but de-
velop late-onset, chronic progressive neurodegeneration [74-
76]. Axonal swellings, transections and an impairment of 
axonal transport occurning in these mice are highly reminis-
cent to the changes found in the CNS of patients suffering 
from MS. These mouse mutants provide evidence for a func-
tion of oligodendrocytes in providing trophic support for 
axons that is required for their maintenance into late adult-
hood. It will be important to identify these trophic factors 
and to determine whether they become limiting in chronic, 
progressive MS. 

 The concentration of voltage-gated sodium channels 

within specific regions between the internodes, the nodes of 
Ranvier, is another important function of myelin. The clus-
tering of the sodium channels, Nav1.2 and 1.6, in the nodes 
of Ranvier is essential for the saltatory conduction of action 

potentials along the axons [77, 78]. The saltatory conduction 
does not only speed up nerve conduction several folds, but 
also conserves energy within the neuron. After a demyelinat-
ing event, the clustering of sodium channels in the nodes of 

Ranvier is lost and both, the Nav1.2 and 1.6 channels become 
diffusely distributed along the entire axon [79-82]. This re-
sponse restores the conduction of the action potential, how-
ever resulting in a much higher energy demand. The increase 

in axonal sodium is compensated by enhancing the activity 
of the Na

+
/K

+
 ATPase thereby raising the requirement for 

ATP. Another consequence of high intra-axonal sodium lev-
els is the reversal of the Na

+
/Ca

2+
 exchanger, which allows 

excess Ca
2+

 to enter the axon [83]. Ca
2+

 overload has severe 
consequences for the axon, as it results in cytoskeleton 
breakdown, activation of cell death pathways and increased 
proteolysis by the activation of Ca

2+
 sensitive proteases. 

 In summary, there is evidence for at least two different 
mechanisms that contribute to neurodegeneration in MS – 

axonal damage by a direct inflammatory attack and as a con-
sequence of demyelination. These two different modes of 
actions may damage the axon at different stages of the dis-
ease. It is tempting to speculate that immune-mediated ax-
onal injury occurs in active lesions and is responsible for an 
acute form of neurodegeneration, whereas demyelination 
induces late-onset neurodegeneration. In fact, available data 
indicate that axons do not to degenerate immediately after 
demyelination, but only when compensatory mechanisms fail 
and a threshold of damaging insults have occurred [72]. 
These different mechanisms of neurodegeneration have to be 
taken into account when designing neuroprotective treatment 
strategies for MS. 

THERAPY OF CHRONIC PROGRESSIVE MS 

 There has been tremendous progress in the treatment of 

RRMS over the past years. Several disease-modifying im-
munomodulatory or immunosuppressive drugs have already 
been approved and many more are currently in the last 
phases of clinical trials with promising outcomes [84]. Un-

fortunately, therapy of chronic progressive MS is lagging 
behind (summarized in Table 1). So far, there is no proven or 
licensed disease-modifying drug to slow the progression of 
PPMS [85]. In fact, the outcome of most clinical trials evalu-

ating the effect of immunomodulatory or immunosuppres-
sive drugs in PPMS has been disappointing. By now the 
largest trial performed in patients with PPMS (943 patients) 
was carried out with the immunomodulatory drug, glatiramer 

acetate (GA) [86]. Whereas GA has been proven to be effi-
cient in the treatment of RRMS, the trial with PPMS patients 
had to be terminated prematurely as an interim analysis 
showed no discernible effect in the disease progression after 

two years. Only a post hoc analysis suggested that GA may 
slow disease progression in a subset of patients. Trials with 
the immunomodulatory drug, interferon beta (IFN beta), in 
patients with PPMS have been of smaller size, but the out-

come was similarly disappointing. Two small, single-
centred, placebo controlled trials (123 patients) did not re-
veal any reduction of disability progression in PPMS patients 
[87, 88]. Although these studies were underpowered, to al-

low a definite conclusion on the efficacy of IFN beta the 
negative outcome did not encourage the initiation of larger 
trials. Recently, a single-center, phase two pilot study with 
interferon beta-1b on primary progressive showed no effect 

on sustained disability assessed by EDSS, but surprisingly 
revealed statistically significant differences for the Multiple 
Sclerosis Functional Composite score and for T1 and T2 
lesion volume [89]. 

 A small, phase II trial of the immunosuppressant agent, 
mitoxantrone was carried out in patients with PPMS using 
12 mg/m

2
 of mitoxantrone or placebo every 3 months for 2 

years. Again no benefit was detected of treatment on time to 

sustained disease progression [90]. 

 There are also examples of effective treatment regiments 
for RRMS that have failed when these drugs have been 
tested in patients with SPMS. For example, the humanized 
monoclonal antibody, alemtuzumab (Campath-1H), which 
induces the cytolysis of CD52 positive cells leading to a T 
cell depletion and is highly effective in reducing relapse rate, 
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Table 1. Treatment Trials in Progressive MS 

Substance Disease Course Study Design Status/outcome Reference 

rituximab primary progressive MS 
phase2/3 (efficacy, placebo  

controlled, randomized) 

no significant difference in time to 

confirmed disease progression, less 

increase in T2-lesion volume 

[123] 

natalizumab primary progressive MS 
phase1/2 (safety, efficacy,  

uncontrolled) 
Recruiting NIH clinical trial database 

lamotrigine secondary progressive MS 
phase2 (efficacy, placebo  

controlled, randomized) 
Completed NIH clinical trial database 

idebenone primary progressive MS 
phase2 (safety, efficacy, placebo 

controlled, randomized) 
Recruiting NIH clinical trial database 

simvastatin secondary progressive MS 
phase2 (efficacy, placebo  

controlled, randomized) 
Recruiting NIH clinical trial database 

dirucotide secondary progressive MS 
phase2/3 (efficacy, placebo  

controlled, randomized) 
Completed NIH clinical trial database 

FTY720 primary progressive MS 
phase3 (efficacy, placebo  

controlled, randomized) 
active but not recruiting NIH clinical trial database 

interferon beta-1b 
primary and secondary 

progressive MS 

phase2/3 (efficacy, placebo  

controlled, randomized) 

no effect on sustained disability 

assessed by EDSS, effect on 

MSFC score, reduced T2/1 lesions 

[89] 

cyclophosphamide secondary progressive MS 
phase3 (efficacy, vs  

methylprednisolone, randomized) 
Recruiting NIH clinical trial database 

autologous  

mesenchymal  

stem cells 

secondary progressive MS 
phase1/2 (safety, efficacy,  

placebo controlled) 
Recruiting NIH clinical trial database 

mitoxantrone secondary progressive MS 
phase3 (efficacy, dose  

controlled, randomized) 
Completed [97] 

sunphenon EGCG 
primary and secondary 

progressive MS 

phase3 (efficacy, placebo  

controlled, randomized) 
Recruiting NIH clinical trial database 

hematopoietic stem 

cell transplantation 
secondary progressive MS 

phase1/2 (safety, efficacy,  

uncontrolled) 
ongoing but not recruiting NIH clinical trial database 

interferon beta-1a primary progressive MS 
phase2/3 (efficacy, placebo  

controlled, randomized) 

no effect on sustained disability 

assessed by EDSS 
[124] 

ABT-874/human 

monoclonalantibody 
secondary progressive MS 

phase2 (efficacy, placebo  

controlled, randomized) 
Completed NIH clinical trial database 

inosine secondary progressive MS 
phase2 (efficacy, placebo  

controlled, randomized) 
Completed NIH clinical trial database 

cladribine 
secondary progressive MS 

with active relapses 

phase2 (safety, efficacy, placebo 

controlled, randomized) 
ongoing but not recruiting NIH clinical trial database 

tovaxin autologous T 

cell vaccine 
secondary progressive MS 

phase1 (safety, efficacy,  

uncontrolled, not randomized) 

trend for improvement, MRI le-

sions stable 
[125] 

interferon beta-1b and 

tacrolimus 
secondary progressive MS 

phase2 (safety, efficacy, dose 

controlled, randomized) 
ongoing but not recruiting NIH clinical trial database 

teriflunomide 

(HMR1726) 
secondary progressive MS 

phase3 (safety, efficacy, dose 

controlled, randomized) 
ongoing but not recruiting NIH clinical trial database 
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Table 1. contd…. 

Substance Disease Course Study Design Status/outcome Reference 

erythropoetin chronic progressive MS pilot trial Completed [117] 

immunoglobuline 
primary and secondary 

progressive MS 

phase3 (efficacy, placebo  

controlled, randomized) 

no effect on disability assessed by 

EDSS 
[126] 

Fampridine 
primary and seconary 

progressive MS 

phase2 (safety, efficacy, dose 

controlled, randomized) 
improvement in walking ability [127] 

treosulfan 
secondary progressive MS 

with relapses 

phase2 (efficacy, placebo  

controlled, randomized) 

median number of relapses per 

year reduced, reduced number of 

Gd-enhancing lesions 

[128] 

 

MRI lesion load and disease progression in RRMS [91], does 
not seem to protect from disease progression once patients 
that have progressed to SPMS [92]. 

 Another example is the immunosuppressant drug cladrib-

ine, which was not effective in modifying the disease pro-

gression in a placebo-controlled trial with 159 patients suf-
fering from SPMS or PPMS, even though it produced and 

sustained significant reduction in the number and volume of 

Gd-enhanced lesions on MRI [93]. 

 These and other trials indicate that there is a critical  

window of therapeutic opportunity in the treatment of MS 

with immunomodulating or immunosuppressive drugs [92]. 

 A similar conclusion can be drawn when analyzing the 

efficacy of IFN-beta in trials conducted with SPMS. In the 

European trial of IFN-beta in SPMS, a reduction in relapse 
rates, MRI activity and progression of disability was ob-

served [94, 95]. While reduced relapse rates were also ob-

served in the North American and the SPECTRIMS trial of 
IFN-beta in SPMS, these trials failed to reproduce the bene-

ficial effects on the progression of disability [94, 96]. The 

analysis of the study population revealed that the patients in 
the European trial were younger with a higher pre-study re-

lapse rate, suggesting that the reason for the different out-

comes lies in the more active inflammatory disease in the 
European trial. Furthermore, mitoxantrone has been shown 

to slow down the progression of disease progression in pa-

tients with active and rapidly progressive SPMS [97]. Again, 
predictive parameters of mitoxantrone effectiveness seem to 

be the number of relapses within the past year before treat-

ment indicating that the inflammatory activity determines 
treatment response [98]. More recent trials with the B cell 

depleting monoclonal antibody rituximab showed an impact 

on disease activity in RRMS and neuromyelitis optica, but 
no efficacy in PPMS [99-101]. Even the aggressive treatment 

with autologous haematopoetic stem cell transplantation 

failed to suppress demyelination, neurodegeneration and 
clinical progression in the chronic progressive phase of the 

disease [102]. 

 All of these studies indicate that the available approved 
therapies are most effective early in the disease when the 
pathophysiology is dominated by the inflammatory and not 
the degenerative component. The studies also suggest that 

most immunomodulatory and immunosuppressive therapies 
are unlikely to have any substantial effect once the disease 
has progressed into the chronic progressive phase of the  
disease. This raises the central question: if inflammation 
triggers neurodegeneration, why are current therapies not 
more efficient in slowing down disease progression? 

 One possible explanation is that current immunomodula-

tory and immunosuppressive are unable to target the in-
flammatory cells in progressive MS. This could be due to the 

compartmentalization of inflammatory cells behind the 

blood-brain barrier, which is not sufficiently permeable for 
most drugs [62]. It also feasible that changes in the inflam-

matory process have occurred which are not a target of the 

current immunomodulatory and immunosuppressive drugs 
[9]. In fact, most therapies are directed against the cells and 

mediators of the adaptive immune system, whereas cells of 

the innate immune system like activated microglia and den-
dritic cells are dominating in chronic progressive MS. Fingo-

limod, a sphingosine 1-phosphate receptor agonist, which 

has not only been shown to affect lymphocyte migration, but 
also to modulate dendritic cell maturation, might be a prom-

ising disease modifying drug for the chronic progressive 

phase of MS [103, 104]. 

 Since the current approved disease-modifying therapies 

are most efficient early in the disease, it will be important to 

find out how effective they are in delaying the onset of 
chronic progressive MS. If there is indeed a causal relation-

ship of inflammation and neurodegenerative, early immuno-

modulatory treatment should have indirect neuroprotective 
effects. In this regard, it is important to note in most patients 

disease-modifying therapy is usually initiated with IFN-beta 

or GA due to their favourable safety profiles, whereas the 
more effective drugs natalizumab and mitoxantrone are used 

as an escalating therapy. Although there is some hope that 

early initiation of IFN-beta [105] or GA delays the onset of 
chronic progressive MS, this has not been proven conclu-

sively yet [106]. It might indeed be possible that more ag-

gressive and early immunomodulatory or immunosuppres-
sive treatments are required to substantial affect the time to 

progress to SPMS. Even though many approved disease-

modifying anti-inflammatory drugs are available for the 
treatment of RRMS, new and more effective drugs with ad-

vantageous safety profiles will be required in the future. 
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 It is also clear that drugs directly targeting neurodegen-
eration must be developed to efficiently treat chronic MS. 
There are already a relative large number of neuroprotective 
drugs that have been shown to be effective in different EAE 
models, but only few of them are currently being tested in 
clinical trials. The glutamate-antagonist riluzol is one prom-
ising candidate. A small pilot trial in 16 patients with PPMS 
showed neuroprotective effects on MRI parameters revealing 
a stablization of T1-hypointense lesion volume and cervical 
cord area [107]. Another example, is the Na

+
 and Ca

2+
 chan-

nel blocker, lamotrigine, which is currently been tested in 
trial including 120 patients with SPMS for 2 years. The 
compound MN-166 that inhibits leukotrien activity, phos-
phodiesterases and nitric oxide synthase seems to have neu-
roprotective effects as the analysis of an ongoing trial re-
vealed significantly reduced loss of brain tissue volume and 
less new lesion evolution to persistent T1-hypointensties 
over 1 year. The tetracycline-derived compound minocycline 
was shown not only to mediate neuroprotective effects but 
also to modulate the activation state of microglial cells and 
to reduce leukocyte transmigration. Treatment with mino-
cycline in the EAE model together with glatiramer acetate 
resulted in decreased disease activity and progression [108, 
109]. The ability to prevent disease progression in PPMS and 
SPMS is also being evaluated for the cannabis extract, dron-
abinol. 

 Work in the EAE models have revealed additional drug 
targets for the treatment of neurodegeneration in MS. Block-
ade of AMPA-responsive glutamate receptors with AMPA 
antagonists or the treatment with a fullerene compound com-
bined with a NMDA receptor antagonist ameliorate neurode-
generation in EAE [50, 52, 110]. Axonal protection has also 
been achieved using the Na

+
 channel inhibitors phenytoin 

and flecainide [111, 112]. Recently, the blocking of acid-
sensing ion channel-1 with amiloride revealed a neuroprotec-
tive effect in EAE [113]. Another successful neuroprotective 
approach was the modulation of the b-nicotinamide adenine 
dinucleotide (NAD)-dependent pathway involved in Walle-
rian axonal degeneration in an EAE model [114]. Promising 
results have also been achieved by the treatment with recom-
binant erythropoietin in EAE and in a pilot trial with MS 
patients [115-117]. 

 Another exciting approach is to promote remyelination in 
order to prevent axonal loss. The reasons why remyelination 
is impaired in MS are not complete understood, but one 
likely mechanism is the inhibition of oligodendrocyte pre-
cursor cells within chronic MS plaques [118, 119]. Proteome 
analysis of chronic plaques as performed by Han et al. [120] 
will be important to indentify the factors that block  
oligodendrocyte differentiation. One factor that has already 
been identified is LINGO-1 (Leucin rich repeat and Ig  
domain containing NOGO receptor interacting protein 1). 
LINGO-1 is a key inhibitor of oligodendrocytes differentia-
tion [121] and LINGO-1 antagonism has recently been found 
to promote remyelination in animal models [122]. 

CONCLUSION 

 Although tremendous progress has been made in the 
treatment of MS, there are still a number of important ques-
tions that need to be solved in order to develop more effi-

cient drugs to treat chronic progressive MS in the future. It is 
still not known how chronic progressive MS is triggered. 
Although there is consensus that neuordegeneration is re-
sponsible for the chronic progression of disability, the 
mechanisms that induce neurodegenerartion are not known. 
For the development of future treatment strategies this ques-
tion needs to be solved and new animal model that faithfully 
reproduce the neuropathological changes of MS must be 
developed. In most EAE models, acute, axonal damage 
within inflammatory lesions is observed, but the slowly 
evolving widespread neurodegeneration characteristic for 
chronic progressive MS is lacking. In addition, it will be 
important to define to what extent inflammation is responsi-
ble for the neurodegeneration in chronic progressive MS. 
Furthermore, research of non-inflammatory mechanisms of 
neurodegeneration will result in new discoveries that may 
open new avenues for the treatment of chronic progressive 
MS. 
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