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Key Points

• The FL24Cx is an 
assay that can, before 
treatment, identify 
patients with FL at high 
risk for progression or 
death.

• The FL24Cx was 
rigorously developed 
and independently 
validated to predict 
EFS24 in pretreatment 
formalin-fixed paraffin-
embedded biopsies.

Although follicular lymphoma (FL) typically follows an indolent course, patients with FL who 
experience early events, such as transformation or progression, have increased risk of death 
related to lymphoma. The FL24Cx is an algorithm based on a 45-target gene expression 
profiling (GEP) assay, which was developed and trained using 265 formalin-fixed, paraffin-
embedded tissue samples on a reliable platform to predict, at the time of diagnosis, whether a 
patient will experience an event within 24 months. The modeling also confirmed and relied 
upon previously reported synergy between immune response (IR) gene expression signatures 
IR1 and IR2. Once locked, the 5-factor logistic regression FL24Cx model was independently 
validated in a retrospectively assessed cohort of 232 patients from 2 immunochemotherapy-
treated arms of SWOG Cancer Research Network S0016 phase 3 clinical trial, in which it 
assigned 169 patients to the low-risk group with 29 events before 24 months (17.2%) and 63 
patients to the high-risk group with 24 events before 24 months (38.1%). The relative risk of 
an event within 24 months after registration among patients who were classified into the 
high-risk group relative to patients who were classified into the low-risk group was 2.2 (95% 

confidence interval, 1.41 to 3.51). An up-front GEP biomarker, such as the FL24Cx, rigorously 
validated in a clinical laboratory and with a clinically relevant turnaround time, could 
identify and steer enrollment of patients at high risk for early events in clinical trials, thus 
enabling timely interpretation of such trials and increasing the pace of innovation.

Introduction

Follicular lymphoma (FL) is the most common indolent lymphoma, accounting for ~30% of all lym-
phomas, and has a 10-year overall survival (OS) of ~80%. However, some patients experience a more 
aggressive disease course, including early progression of FL or transformation to an aggressive B-cell
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lymphoma. Asymptomatic and low tumor burden or limited stage 
patients can initially be managed by observation 1 or treated with 
radiotherapy or rituximab monotherapy. In contrast, symptomatic 
and high–tumor burden patients, generally defined by Groupe 
d’Etude des Lymphomes Folliculaires (GELF) criteria, 2 are typically 
managed at diagnosis with immunochemotherapy, systemic cyto-
toxic chemotherapy combined with an anti-CD20 antibody (such 
as rituximab or obinutuzumab). 3-7 Thus, there is a wide range of 
approaches to patient management based on clinical risk. 8

The most commonly used clinical predictor of poor outcome is the 
FL International Prognostic Index (FLIPI), which stratifies patient 
survival risk based on 5 variables: hemoglobin, lactate dehydroge-
nase, stage, number of nodal sites, and age. Developed in 2004, in 
the prerituximab era, the FLIPI divides patients into low-, intermedi-
ate-, or high-risk groups with variable predicted 5-year OS of 91%, 
78%, 53%, respectively; with more contemporary 5-year OS esti-
mates ≥85% for the intermediate and 75% for the high-risk cate-
gory. 9-11 More recently, a subset of patients was identified at highest 
risk for excess mortality if they experienced progression or relapse 
events occurring before 24 months after initial chemotherapy. This 
risk factor is arguably the most powerful predictor of patient 
outcome, dividing patients into 2 groups with 5-year OS of 90% and 
50%. 12 However, this parameter cannot be assessed at diagnosis 
because 24 months need to pass before risk of early events can be 
assessed. Subsequent studies have defined early events in different 
ways, by sometimes including or excluding transformation to high-
grade lymphoma or death. 12-14 Herein, the term event-free survival 
at 24 months (EFS24) will be used inclusive of all events including 
recurrence, progression, transformation, or death.

Previously, we developed several lymphoma diagnostic and 
prognostic gene expression profiling (GEP) assays using the 
nCounter platform (nanoString Technologies, Seattle, WA) and 
have demonstrated the platform’s robustness and reproducibility in 
lymphoid malignancies, even when used with degraded RNA from 
formalin-fixed, paraffin-embedded (FFPE) tissues and used in a 
clinical diagnostic reference laboratory. 15-22 Of note, the success 
rate of GEP-based assays on specimens received from patients 
with lymphoma in the hospital clinical laboratory has been in 
excess of 90%, which compares very favorably to sequencing 
studies using FFPE tissue. 21,23

This study was designed to fill a medical void by creating a 
reproducible assay on a platform with a strong track record of 
utility in FFPE biopsies that can risk-stratify patients with FL up 
front when treatment with immunochemotherapy is under consid-
eration. We identified prognostic genes and gene signatures from 
previous publications, trained a model to predict early progression 
events using FFPE tissues from a prospective observational cohort 
study, and then performed independent validation using the locked 
model in a US Intergroup phase 3 randomized clinical trial. Herein, 
we describe our approach to creating the 45-gene “FL24Cx” 
assay to predict EFS24 failure, with the goal that this tool could be 
incorporated into risk stratification for clinical trial design.

Methods
Patient cohorts

Three groups of previously described patient data and samples 
were analyzed in this study. Each study group underwent

institutional review board protocol submission and approval at their 
respective institutions in accordance with the Declaration of Hel-
sinki. The training cohort was a combination of 2 groups of sam-
ples: FFPE tissues, sister blocks to snap frozen tumor biopsies, 
previously analyzed using Affymetrix U133 2.0 arrays on frozen 
tissues by the Lymphoma/Leukemia Molecular Profiling Project 
(https://llmpp.nih.gov/lymphoma/), and FFPE tissues or extracted 
RNA provided by the University of Iowa–Mayo Clinic Specialized 
Program of Research Excellence (SPORE) Lymphoma Molecular 
Epidemiological Resource (MER). 24 The training cohort (n = 265) 
represented a real-world, population-based patient cohort in which 
patients received 1 of the following immunochemotherapy treat-
ments: BR (bendamustine with rituximab; n = 44 [20%]), R-CHOP 
(rituximab with cyclophosphamide, doxorubicin, vincristine, and 
prednisone; with or without rituximab maintenance; n = 112 
[50%]), R-CVP (rituximab with cyclophosphamide, vincristine, and 
prednisone; with or without rituximab maintenance; n = 69 [30%]), 
and unknown combination (n = 40). The independent validation 
cohort, in contrast, consisted of FFPE tissues from a standardized 
phase 3 clinical trial (SWOG S0016) provided by the SWOG 
Cooperative Group Lymphoma Committee (https://www.swog. 
org/clinical-trials/s0016; www.ClinicalTrials.gov identifier: 
NCT00006721). No serial biopsies were available for analysis.

Initial selection of candidate genes

We surveyed the literature, in which extensive discovery work has 
been documented, for relevant candidate genes and signatures 
and identified: 66 genes related to immune response (IR; IR1/ 
IR2), 25 24 genes related to tumor biology and microenviron-
ment, 19,26 9 genes related to T-cell infiltration, 27 and 21 house-
keeping genes. A comprehensive review of whole transcriptome 
data from the Lymphoma/Leukemia Molecular Profiling Project 
database yielded some of the signatures previously reported, 
along with a subset of 24 candidate genes describing stromal 
biology, which were included for a total candidate gene pool of 
144 genes (123 target and 21 housekeeping).

Primary end point

EFS24 was defined as a dichotomous end point excluding 
patients censored with <24 months of follow-up. In early model 
exploration, we noted that the biology underpinning progression 
events appeared relevant to deaths, but irrelevant to the few 
recorded transformation events; thus, for more accurate model 
building, patients who experienced a transformation event within 
24 months (8 patients) were ultimately excluded from the training 
set. In the SWOG S0016 validation cohort, neither clinical nor 
histological evaluation for transformation was assessed at first 
relapse/progression. We therefore included all progression, 
relapse (which may have included transformation), and death 
events within 24 months of trial registration.

FFPE expression laboratory analysis

All FFPE tissues were reviewed by an expert lymphoma hema-
topathologist (L.M.R.) to confirm the diagnosis of FL and, if 
needed, macrodissected to achieve a minimum tumor content of at 
least 60%. RNA was extracted using a modified protocol for the 
XTRACT 16+ (AutoGen, Holliston, MA) or, for smaller biopsies, 
manually via the All-Prep FFPE DNA/RNA kit (Qiagen, German-
town, MD), and nucleic acid products were quantified using
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UV-Vis spectrophotometry via Nanodrop One (Thermo Scientific, 
Waltham, MA). Extracted RNA samples were analyzed on the 
nCounter platform (nanoString Technologies) using 144 custom 
oligonucleotide probe sets and the Elements XT TagSet chemistry. 
Gene counts were log 2 transformed, and each sample was then 
normalized by subtracting the average signal of the 21 house-
keeping genes, to arrive at final expression measures.

Division of genes into predictive classes

Predictive genes that performed well in FFPE were divided into 5 
categories. The first consisted of genes for which high expression 
had been previously identified with poor prognosis. Most of these 
were from Huet et al, 19 and FOXP1 was also included due to its 
association with poor prognosis. 26 The second group consisted of 
genes from the Huet et al publication for which high expression 
was associated with good prognosis. The third group consisted of 
the genes CD27 and CD28, which had been identified as 
potentially associated with good prognosis. 27 The final 2 groups 
were genes in the IR1 and IR2 signatures, which had been pre-
viously identified as having a synergistic relationship to survival. 25 

The 21 housekeeping genes used for normalization were excluded 
from risk analysis.

FL24Cx model training

Multiple model architectures, including Lasso, support vector 
machines, and random forests, were evaluated using all 123 target 
genes on the training set. The most accurate model relied on the 
demonstration that the IR2 signature, while not significant uni-
variately, acted as a refinement on the other signatures. Therefore, 
its association with survival was viewed in terms of how it added 
significance and impacted the other signatures. Similarly, the sig-
nificance of other signatures was assessed in context of the extent 
to which they added to IR2.

In the first stage of the modeling process, a gene expression 
signature was generated for each of the 5 gene sets by taking an 
unweighted average of the expressions of all genes in that set. In the 
second stage, each gene was associated with its coefficient in a 
multivariate linear logistic regression model of EFS24 status con-
sisting of that gene and ≥1 of the weighted signature averages. If 
that gene was not part of the IR2 gene set, then a model consisted of 
that gene and the unweighted IR2 signature average. If the gene was 
in the IR2 gene set, then the model consisted of that gene and the 4 
unweighted non-IR2 signature averages. Five genes were removed at 
this stage for having coefficients in the opposite direction of their 
expected biology. In the third stage, the signature averages were 
recalculated. However, rather than being unweighted, the signature 
averages were weighed according to their associated coefficients 
previously calculated. The final FL24Cx predictor score is the result 
of a 5-factor logistic regression, wherein each gene set is treated as 
a factor, fit to the binary EFS24 end point using these weighted 
signature averages, excluding 73 additional target genes based on 
nonsignificance and lack of reproducibility within the training set. The 
maximal Youden statistic 28 of a receiver operating characteristic 
(ROC) curve for this score vs EFS24 (supplemental Figure 1) was 
used to determine the optimal cut point to divide samples into a poor 
prognosis (“high risk,” likely to have an early event) and good prog-
nosis group (“low risk,” likely to achieve EFS24).

To evaluate the accuracy of this predictor within the training set, 
we performed 10-fold internal crossvalidation. Briefly, the training

set was randomly divided into 10 groups, without replacement. 
The model was trained using 9 groups, including variable selec-
tion, weight calculation, and cut-point identification, and evaluated 
on the remaining group. This is repeated 10 times, using each 
group as the validation set once.

Similar to other digital GEP assays, a lower limit quality cutoff was 
established; samples are called “poor quality” if the geometric 
mean of the housekeeping genes is <128 raw counts (or 7.0 in the 
log 2 -transformed counts).

The final genes in the model are listed in supplemental Table 1 with 
basic annotation from genecards.org. The 45-gene, 5-factor 
algorithm, including gene coefficients and threshold, was locked 
down before assessing in the independent validation cohort.

Independent validation

Blinded S0016 clinical trial samples (n = 272) were analyzed with 
the locked FL24Cx algorithm, and FL24Cx risk category calls were 
transferred to the SWOG Lymphoma Committee Biostatics group 
for correlation with patient outcomes and known clinical risk fac-
tors. The SWOG S0016 randomized phase 3 trial in FL compared 
R-CHOP to RIT-CHOP (R-CHOP followed by 131 I-tositumomab 
consolidative radioimmunotherapy), finding similar outcomes. 29,30

FL24Cx vs Huet validation comparison

Due to being performed on the same platform and some shared 
target genes, we compared the predictive ability of the FL24Cx 
model to that of the previously reported prognostic predictor from 
Huet et al 19 by taking the log 2 normalized nCounter gene 
expression counts for the genes in the Huet model, multiplied them 
by the weights specified in their article and calculated the signa-
ture score. Because the genes were evaluated as part of a 
different nCounter CodeSet and a different set of housekeeping 
genes, we could not directly translate the cut point to divide the 
samples into low-risk or high-risk prognostic groups. Instead, we 
evaluated the Huet model’s ability to predict EFS24 on the vali-
dation set with an ROC curve and compared it to a similar ROC 
curve based on the FL24Cx score (supplemental Figure 2). 
Recognizing that the scores were based on many of the same 
genes and therefore correlated, we evaluated the significance of 
the difference using bootstrapping. Data sets of equal size to the 
respective original were generated by resampling the original data 
with replacement. Then Huet and FL24Cx ROC curves were both 
regenerated from this set, and the difference between the areas 
under the curve (AUC) was calculated. This was repeated 10 000 
times. Two-sided P values for the AUC difference were calculated 
by dividing the observed AUC difference on the complete data by 
the standard deviation of the bootstrapped AUC differences and 
comparing those values to the quantiles of a standard normal 
distribution.

Evaluation of IR1-IR2 synergy

Independently from the FL24Cx model, we reinvestigated the 
synergistic relationship between IR1 and IR2 that had been pre-
viously observed. 25 We separately fitted 6 logistic regression 
models predicting EFS24. The first 2 consisted of modeling 
EFS24 as a function or IR1 alone in the training and validation sets, 
the next 2 consisted of fitting EFS24 as a function of IR2 alone in 
the training and validation sets, and the final 2 consisted of
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modeling EFS24 with a 2-variable model including both IR1 and 
IR2 in the training and validation sets.

Results
Figure 1 depicts the overall study schema. Briefly, the 144-gene 
nCounter panel was processed on 360 samples, 195 of 
which were from FFPE tissues qualified by on-site expert

hematopathologist review, and 165 of which were from previously 
extracted RNA with accompanying pathology data; 24 patient 
samples were removed for inadequate RNA. After iterative 
modeling, during which 71 duplicate samples were found and 
excluded and 78 genes were eliminated, the locked 45-gene 
predictor was independently validated on 232 unique samples 
passing quality control metrics. Summary statistics for the training 
and validation cohorts are provided in Table 1.

Fail

FL24Cx
45-gene predictor

Independently validated
n = 232

unique cases

FL24Cx
45-gene predictor

Trained on n = 265 cases
10X cross-validated on

n = 257 cases after removal
of 8 transformed cases

Poor Quality
n = 40

Fail
Assay
QC

Assay Cut-Point
Determination

Insufficient
RNA n = 19

78 target non-
contributing

genes removed

RNA Extraction +
FL24Cx

45 genes

Iterative evaluation of
predictive classes and

model training

71 Duplicated
Cases Removed

Assay Fail
n = 0

Fail
Failed QC

n = 40
Path
QC

Assay
QC

Insufficient
RNA n = 24

Validation Cohort
SWOG S0016

n = 331
FFPE Tissues

RNA Extraction + 
nCounter Panel

144 genes (123 target +
61 housekeeping)

n = 360

Pass

Pass Pass

Pass

No materials
on which to perform

Path QC

Path
QC

Failed QC
n = 21

Training Cohort
MER + LLMPP

n = 161 + 55 = 216
FFPE Tissues

Training Cohort
PRIMA n = 165

RNA derived from FFPE

Fail

Assay
coefficients

and cut-point
locked

Figure 1. Schematic diagram of study. The 144-gene nCounter panel was processed on 360 samples: 195 from FFPE tissues qualified by on-site expert hematopathologist 

review, and 165 from previously extracted RNA with accompanying pathology data, after which 24 samples were removed for inadequate RNA. After iterative modeling, during 

which 71 duplicate samples were identified and excluded and 78 genes were eliminated, the locked 45-gene predictor was independently validated on 232 unique samples that 

passed quality control metrics. LLMPP, Lymphoma/Leukemia Molecular Profiling Project; MER, Molecular Epidemiological Resource; QC, quality control.

6446 RAMSOWER et al 23 DECEMBER 2025 • VOLUME 9, NUMBER 24



Internal crossvalidation of the training cohort

Figure 2A visualizes expression levels for all 45 genes in the 5-
factor (gene group) FL24Cx signature in all training samples 
(n = 265), ordered according to increasing model score, and 
demonstrates the optimal score cut point at which failure to ach-
ieve EFS24 is enriched in the poor prognosis or “high-risk” group, 
and achieving EFS24 is enriched in the good prognosis or “low-
risk” group. Because the survival data were used to determine the 
model architecture, we applied 10-fold internal crossvalidation to 
reduce bias. The internally cross-validated low-risk group repre-
sented 63% of the samples and experienced a 13% EFS24 failure 
rate, whereas the high-risk group represented 37% of the samples 
and experienced a 49% EFS24 failure rate (Table 2). Kaplan-Meier 
curve of EFS in the training cohort stratified by cross-validated 
FL24Cx calls is shown in Figure 2B. The relative risk of failing 
EFS24 among patients classified into the high-risk group 
compared to those in the low-risk group was 2.49.

Independent validation

The FL24Cx model, with locked weights and threshold, was 
applied unchanged, and in a fully blinded fashion to the previously 
unseen SWOG S0016 cohort. This group of patients represented

those who received immunochemotherapy and had sufficient tis-
sue for analysis. Of the attempted samples (n = 272), 40 were 
called “poor quality,” leaving 232 evaluable patients, correspond-
ing to a sample success rate of 85%, including >20-year-old 
blocks and paraffin-dipped slides which required a more strenuous 
deparaffinization process before extraction. Patient characteristics 
by FL24Cx call are provided in supplemental Table 2. Patient 
characteristics between the subset of the S0016 cohort assayed 
were comparable to those of the combined S0016 R-CHOP and 
RIT-CHOP arms, 29 with the exception of serum β2-microglobulin 
(supplemental Table 3). There was no interaction between the 
treatment arm and FL24Cx call (P = .15; data not shown).

The successfully assayed samples derived from 232 patients, 
including 169 in the low-risk group and 63 in the high-risk group. 
The low-risk group experienced 29 (17.2%) EFS24 failures, 
whereas the high-risk group experienced 24 (38.1%) EFS24 fail-
ures (2-sided χ 2 P = .0007; Table 2). The relative risk of experi-
encing an early event among patients classified into the high-risk 
group compared to those in the low-risk group was 2.2 (95% 
confidence interval [CI], 1.41-3.51); EFS for the cohort stratified 
by FL24Cx is shown in Figure 3 (hazard ratio for high-risk 
group, 1.89; 95% CI, 1.33-2.70; 2-sided log-rank P = .0003).

Table 1. Summary statistics of training and validation cohorts

Training cohort LLMPP/MER 
n = 265, n (%)

Validation cohort SWOG S0016
n = 232, n (%) 2-Sided P value*

Age, median, y 58 53

Sex, male 153 (58) 131 (56) .800

Elevated β2M 51 (69) 143 (62) .300

Unknown 191 0

B symptoms 50 (20) 63 (27) .067

Unknown 16 1

Bulk, >10 cm 24 (10) 51 (22) <.001

Unknown 19 0

BM involvement 95 (47) 127 (55) .089

Unknown or indeterminate 61 1

Histologic grade 3A 77 (29) 16 (7) <.001

Unknown 0 1

Stage <.001

I-II 56 (21) 2 (1)

III-IV 207 (79) 230 (99)

Unknown 2 0

FLIPI risk .002

Low (0-1) 74 (29) 63 (27)

Intermediate (2) 79 (31) 107 (46)

High (3-5) 99 (39) 62 (27)

Unknown 13 0

FL24Cx risk .024

Low risk 168 (63) 169 (73)

High risk 97 (37) 63 (27)

β2M, β2-microglobulin; LLMPP, Lymphoma/Leukemia Molecular Profiling Project; MER, Molecular Epidemiological Resource. 
*Pearson χ 2 test.
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OS at 15 years stratified by FL24Cx included 66% survival in the 
high-risk group and 76% in the low-risk group (hazard ratio, 
1.17;95% CI, 0.70-1.94; log-rank P = .55; supplemental 
Figure 3A). FL-specific mortality, assessed by cumulative inci-
dence function at 15 years stratified by FL24Cx, was 22% in the 
high-risk group (95% CI, 12-34), and 12% in the low-risk group 
(95% CI, 8-18; Gray P = .0806). OS at 15 years after 2-year

landmark stratified by EFS24 showed 50% survival in the 
failed-to-achieve-EFS24 group and 77% survival in the achieved-
EFS24 group (hazard ratio, 2.55; 95% CI, 1.44-4.49). 
FL-specific cumulative incidence function at 15 years stratified by 
EFS24 was 30% in the failed-to-achieve-EFS24 group (95% CI, 
15-47), and 8% in the achieved-EFS24 group (95% CI, 4-13; 
Gray P = .0001.

FL24Cx.Call = High Risk

FL24Cx.Call = Low Risk

Cross-validated FL24Cx

EF
S

Time from treatment initiation (months)
60483624120

0%

25%
Log-rank

P < .0001

50%

75%

100%

B

A
Poor prognosis “High Risk”Good prognosis “Low Risk”

No EFS24 Event EFS24 Event Censored
EFS24
Model Score
C4A
C1QB
C1QA
BLVRA
VPREB1
TCF4
TAGAP
SEMA4B
RASSF6
PRDM15
ORA12
KIAA0040
GADD45A
FOXP1
FOXO1
FCRL2
EML6
E2F5
DCAF12
CXCR4
AFF3
TNFRSF25
TNFRSF1B
TBC1D4
SEPW1
SEMA4C
RAB27A
LGALS2
LEF1
JAM3
ITK
IL7R
HCST
FNIP2
FLT3LG
CD88
CD7
CAMK1D

0.125

0.25

0.5

1

2

4

8

ACTN1
CD28
CD27
VCL
SHISAB
RGS10
ALDH2

IR2

Huet Poor
plus FOXP1

IR1

Yang

Huet Good

Figure 2. Development of the FL24Cx gene expression signature. (A) Heat map of 45-gene signature in training cohort with gene group designations and mapped to 

EFS24. (B) Kaplan-Meier curve of EFS in cross-validated training data (24 months marked with vertical line), stratified by FL24Cx, with low-risk calls represented by the solid blue 

line and high-risk calls represented by the dashed red line.
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FL24Cx vs Huet model

With the caveat that, due to difference in overall CodeSet, we 
could not fully recreate the model presented by Huet et al, 19 an 
ROC analysis comparing the predictive power of the FL24Cx to 
the Huet model in the validation cohort showed a trend toward 
better performance of the FL24Cx model, although not the point of 
statistical significance (2-sided bootstrap P = .17).

IR1-IR2 synergy

We confirmed the previously reported synergistic association of 
IR1 and IR2 in both the training and the validation cohort. In both 
cohorts, the IR1 and IR2 signature scores were well correlated 
(training, r = 0.56; validation, r = 0.60). Further, all model coeffi-
cients in both the training and validation sets showed a marked 
increase in magnitude when they were part of a combined model 
than when they were evaluated as single variables (Figure 4).

Prediction of transformation

Supplemental Figure 5 depicts the average model score grouped 
by outcome (higher model score is associated with poor prog-
nosis/high risk). We observed that the average model score for the 
patients who transformed within 24 months was not significantly 
different from patients with no events. However, there was a sig-
nificant difference in model scores between those experiencing 
early progression and transformation events, despite the small 
sample sizes (supplemental Figure 5).

Discussion
Due to the lengthy natural history of FL, clinical trial read out can 
take a long time when enrolling minimally selected populations. An 
up-front assay, rigorously validated in a clinical laboratory, to 
identify patients at high risk of early failure is the missing tool to 
rapidly conduct informative trials. By steering enrollment toward 
patients with a high risk of early failure, trials can be interpreted in a 
timely fashion to increase the pace of innovation.

Efforts to gauge patient OS risk at diagnosis or before treatment 
initiation based on tumor, rather than patient, characteristics are 
numerous. Pathological classification into grades 1, 2, 3A, and 3B 
have been traditionally used and provide important information. 
Although both grades 1 and 2 are considered low grade, grade 3B

is considered more closely related to diffuse large B-cell lym-
phoma, with grade 3A still under study. 31,32 The prognostic 
significance of many immunohistochemical markers, such as for 
Ki67, MUM1, or tumor infiltrating lymphocytes, have also been 
reported, 31-42 as well as risk models combining biological and 
clinical factors such as assessing lack of intrafollicular CD4 
expression as a modular addition to the FLIPI, termed “BioFLIPI.” 43 

GEP has been successfully used to interrogate FL biology asso-
ciated with OS 19,25 and first uncovered the importance of the 
tumor microenvironment in defining relevant biology and 
outcome. 25

Whole exome sequencing has identified key genes and genomic 
breakpoints impacting FL biology, 44-46 and genetic aberrations 
have been incorporated into prognostic models based on patient 
and tumor characteristics such as the m7-FLIPI, 23 trained to 
failure-free survival, and the progression of disease at 24 months 
(POD24)–PI, 47 trained to POD24. The m7-FLIPI and POD24-PI 
integrate the impact of nonsilent mutations in 7 or 3, respec-
tively, key genes with the FLIPI score, with m7-FLIPI also using the 
Eastern Cooperative Oncology Group (ECOG) performance sta-
tus. Following initial publication, it appears that the utility of these 
models may vary for patients treated with different immunoche-
motherapy regimens. 47-49 In addition, these clinical and biological 
models continue to reinforce that patients experiencing early 
events have less favorable outcomes. 50-52 A comparison of the 
performance characteristics of FL24Cx vs m7-FLIPI and POD24-
PI is shown in supplemental Table 4. Briefly, the FL24Cx per-
forms similarly to both; however, the referenced sequencing 
method used for m7-FLIPI and POD24-PI is laborious, time 
consuming, requires 1 μg of DNA, has a higher technical failure 
rate (20.5% vs 14.7% of FL24Cx, and 2.5% of Lymph3Cx in newly 
diagnosed patients in real time 53 ), and is dependent upon down-
stream analysis methods for somatic mutation detection, especially 
in the absence of matched normal specimens.

The newly developed FL24Cx algorithm performed well to predict 
EFS24 failure in the initial modeling, crossvalidation, and inde-
pendent validation cohorts. However, it did not ultimately perform 
well to predict OS in the S0016 patient cohort with over 20 years 
of clinical follow-up. Because early events and OS are correlated, 
it was initially expected that the algorithm may also predict OS; 
however, the algorithm was specifically trained to EFS24 and thus

Table 2. Relationship between FL24Cx risk group prediction and failure to achieve EFS24 on internally cross-validated and validation 
cohorts

Low risk by FL24Cx, n (%) High risk by FL24Cx, n (%) 2-Sided χ 2 P value

Internal 10-fold crossvalidation of training 
cohort (n = 2570)*

n = 1609 (63) n = 961 (37)

Achieved EFS24, n = 1890 (74%) 1396 (87) 494 (51)

Failed to achieve EFS24, n = 680 (26%) 213 (13) 467 (49) N/A†

External independent validation cohort 
(n = 232)

n = 169 (73) n = 63 (27)

Achieved EFS24, n = 179 (77%) 140 (83) 39 (62)

Failed to achieve EFS24, n = 53 (23%) 29 (17) 24 (38) .0007

N/A, Not Applicable.
*Eight of 265 samples with transformed status were excluded (257 samples × 10 model iterations = 2570). 
†No P value is reported in the internal validation of the training cohort.
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is likely more indicative of true disease-specific events. An 
assessment of disease-specific cumulative incidence in the S0016 
validation cohort revealed only 33 of 72 deaths (45%) were spe-
cific to FL, and when stratified by FL24Cx, the high-risk group had 
nearly twice the incidence rate of the low-risk group.

As individual signatures, IR1 and IR2 were strongly correlated, 
with IR1 showing a modest association with good survival and IR2 
showed negligible association. However, when the 2 variables 
were combined into a multivariate model it was found that IR1 had 
a strong positive association with survival and IR2 had a strong 
negative association with survival. Effectively, the difference 
between IR1 and IR2 likely indicates different proportions of cell 
types within an overall difference in IR that is important to survival 
rather than the absolute number of infiltrating cells. 25

A limitation of this work is the lack of distinction between pro-
gression and transformation events; however, progression events 
without transformation are much more frequent, associated with 
poor outcomes, and are thus important to identify. 54 In the training 
set, we observed that although the model performed well for 
predicting disease progression and death, it did not independently 
predict transformation events (supplemental Figure 5). Excluding 
the transformation events in the training cohort did not decrease 
the power of the FL24Cx to predict EFS24 because, in our training 
cohort, progression accounted for nearly all of the early events, 
which is consistent with similar recently reported cohorts. 55 FL 
transformation is known to occur from a wide variety of genetic 
aberrations and heterogeneous mechanisms via divergent clonal 
evolution. 46,56,57 Nevertheless, in follow-up, we intend to explore 
FL24Cx utility in patients being treated with other chemotherapy
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backbones, such as bendamustine, which reduces FL pro-
gressions, whereas the number of transformations remains static, 
resulting in transformations accounting for a greater proportion of 
events. 14,58,59 Furthermore, to assess FL24Cx utility in other 
treatment regimens, we will analyze samples from additional 
chemotherapy and nonchemotherapy regimens (ClinicalTrials.gov 
identifiers: NCT03269669, NCT01216683, NCT03789240, and 
NCT03223610) conducted by National Cancer Institute cooper-
ative groups, intramural programs, and if possible, other studies of 
clinical interest. No serial biopsy samples before therapy were 
analyzed, so the stability of the signature over time is not known.

Although another algorithm developed on the nCounter platform 
by Huet et al 19 performed well in our validation cohort, adjustments 
could be made to optimize it for the EFS24 end point. A specific 
clinical score, known as the FLIPI24, has also been developed to 
assess EFS24, and will be a source of future research to see how 
it performs compared against, and in addition to, the FL24Cx in a 
modular approach. 51 Mutational data, to date, have been corre-
lated with OS, not EFS24, which will be an on-going direction of 
investigation for future publications.

Ultimately, the powerful combination of tumor biology assessed by 
gene expression, sequencing, and spatial transcriptomics with 
clinical data (FLIPI or FLIPI24) will likely help to plan rational tar-
gets of frontline or rescue therapeutic intervention and understand 
long-term survival for high-risk patients, which current clinical 
models alone do not.
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