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Abstract

Ildr2, a modifier of diabetes susceptibility in obese mice, is expressed in most organs, including islets and hypothalamus,
with reduced levels in livers of diabetes-susceptible B6.DBA mice congenic for a 1.8 Mb interval of Chromosome 1. In
hepatoma and neuronal cells, ILDR2 is primarily located in the endoplasmic reticulum membrane. We used adenovirus
vectors that express shRNA or are driven by the CMV promoter, respectively, to knockdown or overexpress Ildr2 in livers of
wild type and ob/ob mice. Livers in knockdown mice were steatotic, with increased hepatic and circulating triglycerides and
total cholesterol. Increased circulating VLDL, without reduction in triglyceride clearance suggests an effect of reduced
hepatic ILDR2 on hepatic cholesterol clearance. In animals that overexpress Ildr2, hepatic triglyceride and total cholesterol
levels were reduced, and strikingly so in ob/ob mice. There were no significant changes in body weight, energy expenditure
or glucose/insulin homeostasis in knockdown or overexpressing mice. Knockdown mice showed reduced expression of
genes mediating synthesis and oxidation of hepatic lipids, suggesting secondary suppression in response to increased
hepatic lipid content. In Ildr2-overexpressing ob/ob mice, in association with reduced liver fat content, levels of transcripts
related to neutral lipid synthesis and cholesterol were increased, suggesting ‘‘relief’’ of the secondary suppression imposed
by lipid accumulation. Considering the fixed location of ILDR2 in the endoplasmic reticulum, we investigated the possible
participation of ILDR2 in ER stress responses. In general, Ildr2 overexpression was associated with increases, and knockdown
with decreases in levels of expression of molecular components of canonical ER stress pathways. We conclude that
manipulation of Ildr2 expression in liver affects both lipid homeostasis and ER stress pathways. Given these reciprocal
interactions, and the relatively extended time-course over which these studies were conducted, we cannot assign causal
primacy to either the effects on hepatic lipid homeostasis or ER stress responses.
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Introduction

In an earlier study [1] we exploited the differential diabetes

susceptibilities of mouse strains C57BL/6J (B6) and DBA/2J

(DBA) [2] segregating for the obesity mutation, Lepob, to identify a

gene that encodes a predicted single-pass, trans-membrane

molecule that, in B6.DBA congenic mice (segregating a DBA

haplotype in a 1.8 Mb interval on Chr1), was associated with

reduced b-cell replication rates accompanied by reduced b-cell

mass, and persistent mild hypoinsulinemic hyperglycemia. This

gene, formerly designated ‘‘Lisch-like’’, has been renamed ‘‘immu-

noglobulin-like domain containing receptor 20 (Ildr2) [http://

www.informatics.jax.org/mgihome/nomen/] to reflect the simi-

larity of the conserved domain structure of the cognate protein to

the two other members of this gene family: Ildr1 and Ildr3 (aka

‘‘LSR’’ – lipolysis stimulated receptor).

Despite their structural similarities, the three Ildr-genes exhibit

widely divergent tissue-specific expression profiles, providing little

evidence of significant overlap among their functions. The major

isoforms of both ILDR1 and ILDR3 localize either to the plasma

membrane (PM) or to the cytosol [3,4]. Although ILDR1 has been

linked to neoplastic disease 2 [5] and non-syndromic deafness [6],

how it functions is unknown. ILDR3, which was initially identified

as a fatty acid-activated, liver-specific lipoprotein receptor [7], has

since been characterized variously as a receptor for Clostridium

toxin [8], as an hepatic receptor upregulated by leptin [9] and as a

component of tri-cellular junctions in epithelial cells [10].

The Ildr2 gene is widely expressed, with 4 major isoforms that

are differentially expressed in tissues relevant to the diabetic

phenotype (hypothalamus, liver and islet b-cells). Expression levels

of isoform 4, highest in liver, are reduced 20-fold in B6.DBA
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congenic animals and 30-fold in 10-week-old DBA mice versus B6

animals [1]. To assess the role of Ildr2 in the molecular physiology

of normal, adult liver, we used intravenously administered

adenoviruses containing overexpression or knockdown constructs

to study in vivo effects in liver and whole animal, and in transduced

primary hepatocytes to study in vitro effects.

Here we report that ILDR2, in contrast to ILDR1 and ILDR3,

is exclusively localized in the endoplasmic reticulum (ER), where it

apparently participates in both lipoprotein physiology and the ER

stress response, with consequences for hepatic lipid homeostasis.

Results

ILDR2 is Localized to the Endoplasmic Reticulum
As previously described [1], the four major isoforms of ILDR2

(Figure 1) contain an amino terminal immunoglobulin-like

domain and long, carboxy tail. Isoforms 1, 2, and 4 also contain

a single trans-membrane (TM) domain. Isoform 1 is full-length;

isoform 2 lacks exon 6 (carboxy to the TM domain); isoform 4

lacks exon 4 (amino to the TM domain); isoform 3 lacks the TM

domain and both flanking exons.

To determine the cellular location(s) of ILDR2, various isoforms

were tagged at the C-termini with the green variant of the

monomeric yellow fluorescent protein (mYFP), transiently trans-

duced into mouse cells, and analyzed by confocal microscopy for

co-localization with probes for the ER and PM (Figure 2). Ildr2-

isoform 2, predominantly expressed in the hypothalamus, was

transduced into cells of the mouse hypothalamic neuronal cell line

GT1-7 (Figure 2A). Ildr2-isoform 4, the predominant isoform

endogenously expressed in the liver, was transduced into cells of

the mouse hepatoma cell line, Hepa1c1c7 (Figure 2B). Both

isoforms localized solely to the ER membrane, with no detectable

fluorescence in the vicinity of the PM. Placement of the tagging

peptide did not affect subcellular destination, since localization to

the ER membrane was seen also in Hepa1c1c7 cells transduced

with Ildr2-isoform 1 tagged at its N-terminus with the FLAG

epitope (Figure 2C). These results support the model depicted in

Figure 1, in which the hydrophobic, amino-terminal, immuno-

globulin-like domain of isoforms 1, 2 and 4, extends into the ER

lumen, and the hydrophilic carboxy-terminal tail, extends into the

cytoplasm. We also observed no changes in the subcellular

distribution of C-terminal tagged isoform 4 in Hepa1c1c7

transfectants that were exposed to glucose, insulin, free fatty acids

(FFA), and low-density lipoprotein (LDL) (data not shown). These

results suggest that, unlike ILDR1 and ILDR3, whose final

destination is the PM, ILDR2 is an integral ER trans-membrane

molecule that likely does not further translocate within these cell

types.

Functional Analysis of Ildr2
The ER plays critical roles in protein and lipid synthesis,

lipoprotein assembly and export, glucose and calcium homeostasis,

and cellular responses to metabolic stress [11–15]. These protean

functions affect liver [16], hypothalamus [17], and b-cells [18].

The metabolic phenotypes seen in the Ildr2 B6.DBA.congenic lines

are consistent with effects on ER stress mechanisms [1].

Accessibility of the liver to in vivo and in vitro transcriptional

manipulation using adenovirus vectors [19,20], led us to focus on

the liver.

To examine the effects of short term changes in Ildr2 expression

in liver on lipid and glucose homeostasis, 10-week-old chow-fed

C57BL/6J (wild-type; WT) or B6.Cg-Lepob/J (obese; OB) male

mice were transduced with adenoviral expression vectors encoding

shRNA (‘‘ADKD’’) that knockdown Ildr2, or with adenoviral

constructs driven by the CMV promoter (‘‘ADOX’’) that

overexpress Ildr2. To control for non-specific effects of adenoviral

transduction on gene expression, we also transduced mice with

adenoviral expression vectors encoding shRNA that knockdown

lacZ, or with adenoviral constructs driven by the CMV promoter

that overexpress the green fluorescent protein (GFP). Expression

levels in the hypothalamus and white adipose tissue were

unaffected by transduction with either the ADKD or ADOX

viral constructs (data not shown), confirming that their effects were

restricted primarily to the liver. Knockdown efficiency exceeded

80% at 3 days post-transduction (p.t.) and 90% at 10 days p.t.,

while Ildr2 overexpression resulted in 2- to 4-fold increases in

mRNA levels.

For studies of liver morphology, histology and chemistry, and

for liver-specific gene expression analysis, animals were sacrificed

Figure 1. Predicted structure of major ILDR2 isoforms. Isoform 1 (GenBank: FJ024495.1) is full-length. There are 10 predicted exons. Exon 1 is
an amino terminal signal peptide; exons 2 and 3 code for an IgV-like immunoglobulin domain; exon 4 is amino proximal to the trans-membrane
domain of exon 5; exons 6–10 comprise a randomly-coiled, carboxy-terminal tail (simplified in this depiction as rod-like). Based on results shown in
Figure 2, exons 1–4 are lumenal and exons 6–10 are cytosolic. Isoform 2 (GenBank: FJ024496.1) lacks cytosolic exon 6. Isoform 4 (GenBank:
FJ024498.1) lacks lumenal exon 4. Isoform 3 (GenBank: FJ024497.1) lacks exons 4, 5, and 6 and, therefore has no trans-membrane domain, and is
depicted as entirely cytosolic.
doi:10.1371/journal.pone.0067234.g001
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at 3 days or 10 days p.t. To provide a general picture of the

cellular/biochemical consequences of manipulations of expression

of hepatic Ildr2, we evaluated the livers by visual inspection, light

microscopy, chemical composition, and by quantitative expression

of selected genes related to neutral lipid/cholesterol synthesis, lipid

oxidation, glucose homeostasis, and ER stress. Mice were also

evaluated by indirect calorimetry, ipGTT, and plasma lipid

profiling. To identify very short term responses to changes in

expression of Ildr2, we transduced mouse primary hepatocytes with

the ADKD and ADOX constructs and analyzed responses at

24 hr p.t.

Ildr2 does not Cross-regulate with Ildr1 or Ildr3
Although the apparent lack of cellular colocalization of ILDR2

with other molecules of this family makes it unlikely that ILDR2

interacts directly with them, its functions could be mediated

through secondary genetic effects. To test this possibility we

analyzed transcription levels among the ildr genes in primary B6

mouse hepatocytes transduced with siRNAs specific to each gene

(Table 1). Whereas siRNA specific to Ildr2 almost completely

suppressed its own expression, it reduced expression of Ildr1 by

only 3% and Ildr3 by 27%, with little effect on Ildr2 of knockdown

of either Ildr1 or Ildr3. These results indicate that expression levels

of Ildr genes do not significantly cross-regulate.

Changes in Ildr2 Expression Affect Liver Morphology and
Histology

Control WT livers (lacZ) were normal in size and appearance in

WT animals at 3 and 10 days p.t. but, as expected, were enlarged

and grossly steatotic in OB animals (Figure 3). The ADKD livers

(WT and OB) were enlarged and grossly steatotic, whereas the

ADOX WT livers were generally normal in appearance and size

as were, remarkably, the ADOX OB livers.

Control WT livers were histologically normal with the exception

of occasional mild lipid vesiculation and attendant monocytic

infiltration, presumably due to adenovirus transduction per se. As

anticipated, OB control livers showed extensive large vacuoliza-

tion with minimal focal lobular lymphocytic infiltration [21].

Livers of ADKD WT mice at 3 days p.t. (Figure 3A) showed

mildly increased periportal vacuolization, modest mononuclear

infiltration, occasional apoptosis and autophagy. By 10 days p.t.

(Figure 3B), histologic changes were striking: smaller lipid vesicles

in the periportal region progressed to larger droplets at a distance

from the portal tract, with ballooning of hepatocytes, autophagy,

apoptosis and periportal monocytic inflammation. Some cells

showed clumped pink intermediate filaments resembling human

Mallory-Denk bodies in steatohepatitis, where they signify

hepatocellular oxidative stress [22]. In the fed ADKD animals,

increased apoptosis and inflammation were apparent in the

context of a preponderance of large droplet fat vesicles. Lobular

inflammation reminiscent of human non-alcoholic steatohepatitis

was also seen. The livers of ADKD OB mice at 10 days p.t.

(Figure 3C) displayed extensive lipid deposition, with micro-

vesiculation accompanied by severe monocytic infiltration, and

areas of fibrosis in some animals.

In ADOX WT animals, phenotypic effects were generally

modest. At 3 days p.t. (Figure 3D), livers showed mild, small

droplet steatosis, but by 10 days p.t. (Figure 3E), there were areas

of increased apoptosis with minimal lipid deposition or inflam-

mation, consistent with a primary effect on ER stress-related

responses. In fed animals, glycogen deposition was greatly

increased. ADOX OB animals at 10 days p.t. (Figure 3F) showed

substantial reduction in the severity of steatosis (mostly medium

and large droplet) with virtually no inflammation or apoptosis.

These changes represented a striking ‘‘rescue’’ of the histology

seen in the OB control and KD animals.

These gross effects and microscopic characteristics indicate the

importance of Ildr2 in hepatic lipid homeostasis, with reduced

expression causing lipid accumulation and overexpression acting

to reduce this excess in OB livers. These effects generally increased

in severity between 3 and 10 days p.t. Potential mechanisms for

these effects and their molecular and physiological consequences

were investigated.

Liver and Plasma Chemistry
Hepatic triglyceride (TG) content was generally consistent with

the histological effects of ADKD (Tables 2, 3, and 4) and

ADOX (Tables 5, 6, and 7), whereas plasma TG, FFA, and

Figure 2. Fluorescence microscopy of ILDR2 localization under basal conditions. ILDR2 fused on its C-terminus to mYFP (green) was
transiently co-transduced into cell lines with DsRed-probes specific to either the ER (red) or the PM (red). The ER-specific probe is DsRed fluorescent
protein attached to the ER-retention sequence KDEL. The PM-specific probe is DsRED attached to a farnesyl group that targets the protein to the
inner leaflet of the PM. Cells were fixed without any further treatment 24 hr after transfection. Bar: 100 uM. Confocal images recorded at 636
magnification. (A) GT1-7 cells. ILDR2-isoform 2-YFP merges with DsRed-ER probe to produce a yellow signal over the ER, but does not merge with the
red DsRed-PM probe. (B) Hepa1c1c7 cells. The green ILDR2-isoform 4-YFP probe merges with the red DsRed-ER probe to produce an orange signal
over the ER; expression levels of labeled proteins are less uniform than in GT1-7 cells. The red DsRed-PM and green ILDR2-YFP signals do not merge in
the PM. (C) Hepa1c1c7 cells. N-terminal fusion of ILDR2-isoform 1 with 3xFLAG epitope co-transduced with DsRed-probes to ER. Tag geometry does
not interfere with subcellular localization.
doi:10.1371/journal.pone.0067234.g002

Table 1. Relative expression of Ildr-family genes transduced with Ildr-siRNAs.

Ildr1 siRNA (n = 3) Ildr2 siRNA (n = 10) Ildr3 siRNA (n = 3)

Gene Relative Expression P-value Relative Expression P-value Relative Expression P-value

Ildr1 0.14 1.2 E-03 0.97 NS ND NA

Ildr2 0.97 NS 0.03 6.5 E-06 1.28 3.3 E-03

Ildr3 ND n/a 0.73 8.0 E-05 0.03 3.4 E-03

Genes of the Ildr-family do not significantly cross-regulate. Data for effects of Ildr1 and Ildr3 siRNAs were determined by qPCR. Data for effects of Ildr2 siRNA are from
microarray. Levels of mRNA are normalized to the 36B4 ribosomal housekeeping gene, expressed relative to levels of each gene in control cells transduced with a
scrambled, non-specific siRNA sequence. n/a: not applicable; ND: not done; NS: not significant.
doi:10.1371/journal.pone.0067234.t001
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glucose/insulin-related measurements were minimally affected. In

contrast, hepatic and plasma cholesterol were greatly increased in

refed 10 day ADKD animals. These phenotypes are described in

more detail below.

At 3 days p.t. in ADKD WT animals (Table 2), body weight,

liver weight and liver total cholesterol (TCH) content were

unaffected, as were circulating concentrations of glucose, insulin,

TG, TCH, and FFA. However, hepatic TG and glycogen content

were significantly increased. Estimates of insulin resistance by

HOMA2-IR and b-cell function by HOMA-2B% were unaffected,

as were glucose excursions during IPGTT (see below). At 10 days

p.t. in ADKD WT animals (Table 3), hepatic and circulating

TCH and hepatic TG were increased while circulating TG was

unchanged. Again, HOMA measurements were unaffected. In

ADKD OB mice at 10 days p.t. (Table 4), - starting from higher

baselines (as expected vs. WT animals) [21] - liver weight, TG and

TCH content increased, and glycogen content decreased. Circu-

lating concentrations of glucose, insulin, TG, TCH, and IPGTT

were unaffected; circulating FFA concentrations were increased.

In ADOX WT animals at 3 days p.t. (Table 5), TG and TCH

concentrations per unit wet weight of liver were higher (and

glycogen lower) than in control mice. Plasma lipids were

unaffected by ADOX. At 10 days p.t. in ADOX WT mice

(Table 6), liver TG was lower, and glycogen content higher than

in controls. Plasma TG and TCH trended higher in the ADOX

animals. At 10 days p.t. in ADOX OB mice (Table 7), liver TG

and TCH content were reduced without significant changes in

circulating glucose, TG, TCH or FFA. Hepatic glycogen per gram

wet weight was unaffected but, given the considerable reduction of

TG, was probably decreased per unit liver nitrogen. Measure-

ments of blood ALT and AST enzyme levels in these animals

Figure 3. Liver morphology and histology in ADKD and ADOX WT and OB mice. Chow-fed, 10-week-old B6 males were sacrificed after 24-
hr fast (Fasted) or following a 24-hr fast and 12-hr refeeding (Refed). Liver morphology is shown in the upper panels and hematoxylin and eosin
staining of representative sections is shown in the lower panels at 200X magnification (scale is 100 mm). Asterisk (*) identifies large droplet,
macrovesicular lipid vacuoles, particularly evident in Ob sections; large open arrows (M-D) denote intra-hepatocellular Mallory-Denk-like eosinophilic
material; open yellow arrows (mF) denote small droplet, microvesicular fat within hepatocytes; short double black arrows (iMO) indicate mononuclear
inflammatory cells, consistent with lymphocytes; large blue arrows (ap) indicate apoptotic hepatocytes; (glyc) identifies a ‘‘clear’’-appearing
hepatocyte with increased glycogen content (e.g., ADOX WT 10d Refed); Portal Tract (or PT) is above the hatched line in ADKD WT 10d Fasted); (CV) is
Central Vein; (PV) is Portal Vein; (BD) is Bile Duct. (A) Wild-type mice, 3 days p.t. with adenovirus knockdown vectors expressing RNAi for lacZ or Ildr2
(B) Wild-type mice, 10 days p.t. with adenovirus knockdown vectors expressing RNAi for lacZ or Ildr2 (C) ob/ob mice, 10 days p.t. with adenovirus
knockdown vectors expressing RNAi for lacZ or Ildr2 (D) Wild-type mice, 3 days p.t. with adenovirus vector over-expressing GFP or Ildr2; there is no
significant steatosis or inflammation (E) Wild-type mice, 10 days p.t. with adenovirus vector over-expressing GFP or Ildr2 (F) ob/ob mice, 10 days p.t.
with adenovirus vector over-expressing GFP or Ildr2. As described in the text, increased apoptosis without inflammation is consistent with a primary
role for ILDR2 in ER stress responses.
doi:10.1371/journal.pone.0067234.g003

Table 2. Liver and plasma chemistries of ADKD WT mice at 3
days p.t.

ADKD WT 3 D

Fasted

Phenotype (n) lacZ (10) Ildr2 (10) P-value

Body weight (g) 25.960.5 25.760.8 0.831

Liver weight (g) 1.260.0 1.260.0 0.772

Hepatic TG (mg/g Liver) 53.765.1 69.263.1 0.018

Hepatic TCH (mg/g Liver) 6.760.1 7.260.3 0.268

Hepatic glycogen (mg/g Liver) 8.662.0 20.262.9 0.008

Plasma glucose (mg/dL) 182610 216616 0.096

Plasma insulin (mg/L) 0.1560.04 0.2660.06 0.190

Plasma TG (mg/dL) 156.8629.7 157.3620.0 0.989

Plasma TCH (mg/dL) 67.461.4 70.862.4 0.250

Plasma FFA (mEq/L) 1.2760.03 1.2960.02 0.564

Plasma ALT (mU/L) 134.3610.3 126.267.8 0.064

Plasma AST (mU/L) 125.568.0 126.867.3 0.707

HOMA2-IR 0.5960.17 1.1160.33 0.178

HOMA2-B (%) 14.363.3 16.562.8 0.598

Mice were chow-fed, 10-week-old B6 (WT) males, intravenously injected with
ADKD vectors expressing RNAi for lacZ or Ildr2. Measurements were taken at 3
days p.t. (following a 12-hr fast). n = number of animals in each study. Data
shown are mean 6 SEM; P values were calculated by 2-tailed t test. FFA, free
fatty acids; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
HOMA2-IR, homeostasis model assessment-estimated insulin resistance; HOMA-
2-B (%), homeostasis model assessment-b-cell function.
doi:10.1371/journal.pone.0067234.t002
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indicate that toxic effects of the adenoviral transductions on

hepatocyte integrity were minimal.

Analysis of in vivo Lipoprotein Production and Clearance
The increase in hepatic TG and TCH in the ADKD mice could

reflect: 1. increased assembly/reduced secretion of lipoproteins; 2.

increased synthesis/decreased oxidation of TG; 3. increased

synthesis/decreased disposal of cholesterol. Detergents such as

Triton WR1339 block clearance of TG in circulating lipoproteins

by inhibiting lipoprotein lipase (LPL)-mediated lipolysis of

circulating TG-rich lipoproteins [23]. When LPL is inhibited,

changes in circulating concentrations of lipoprotein species reflect

Table 3. Liver and plasma chemistries of ADKD WT mice at 10 days p.t.

ADKD WT 10 D

Fasted Refed

Phenotype (n) lacZ (5) Ildr2 (6) P-value lacZ (5) Ildr2 (6) P-value

Body weight (g) 25.1 27.5 0.084 27.5 27.5 0.983

Liver weight (g) 1.3 2.1 0.000 2.1 2.5 0.096

Hepatic TG (mg/g Liver) 46.462.9 88.666.5 0.001 18.662.8 76.967.0 0.000

Hepatic TCH (mg/g Liver) 9.860.6 18.061.7 0.005 7.660.4 14.861.4 0.003

Hepatic glycogen (mg/g Liver) 1.960.2 3.260.5 0.039 58.063.6 37.162.1 0.007

Plasma glucose (mg/dL) 8167 8663 0.619 18765 15368 0.009

Plasma insulin (mg/L) 0.2660.10 0.2560.02 0.903 4.9160.75 5.9961.68 0.576

Plasma TG (mg/dL) 114.2619.0 138.0617.0 0.362 203.8622.9 243.0627.0 0.275

Plasma TCH (mg/dL) 131.764.0 254.0624.8 0.003 135.568.8 313.3632.4 0.001

Plasma FFA (mEq/L) 1.5260.06 1.2560.13 0.093 1.0560.18 0.7260.03 0.150

Plasma ALT (mU/L) 44.566.2 51.169.3 0.598 46.663.0 48.366.0 0.812

Plasma AST (mU/L) 46.566.8 48.869.2 0.852 49.663.7 47.566.5 0.797

HOMA2-IR 0.8560.35 0.8060.09 0.901 n/a n/a n/a

HOMA2-B (%) 94.4622.2 91.069.0 0.989 n/a n/a n/a

Mice were chow-fed, 10-week-old B6 (WT) males, intravenously injected with ADKD vectors expressing RNAi for lacZ or Ildr2. Measurements were taken at 10 days p.t.
(following either a 24-hr fast ‘‘Fasted’’ or following a 24-hr fast and 12-hr refeeding ‘‘Refed’’). n = number of animals in each study. n/a: not applicable. Data shown are
mean 6 SEM; P values were calculated by 2-tailed t test. TG, triglycerides; TCH, total cholesterol; FFA, free fatty acids; ALT, alanine aminotransferase; AST, aspartate
aminotransferase; HOMA2-IR, homeostasis model assessment-estimated insulin resistance; HOMA-2-B (%), homeostasis model assessment-b- cell function. In
contemporaneous experiments in our laboratory, B6 mice fasted for 12 hr and not treated with adenovirus had plasma ALT of 86.0 mU/L and AST of 94.6 mU/L.
doi:10.1371/journal.pone.0067234.t003

Table 4. Liver and plasma chemistries of ADKD OB mice at 10 days p.t.

ADKD OB 10 D

Fasted Refed

Phenotype (n) lacZ (3) Ildr2 (4) P-value lacZ (3) Ildr2 (4) P-value

Body weight (g) 46.760.4 46.860.9 0.961 46.463.1 47.361.9 0.845

Liver weight (g) 4.260.5 5.860.3 0.012 3.460.1 6.460.7 0.047

Hepatic TG (mg/g Liver) 77.564.0 113.766.8 0.037 77.061.0 118.067.3 0.041

Hepatic TCH (mg/g Liver) 10.661.5 16.563.4 0.189 8.960.7 16.963.6 0.203

Hepatic glycogen (mg/g Liver) 43.060.4 14.663.8 0.004 44.261.9 5.861.3 0.001

Plasma glucose (mg/dL) 175629 116620 0.215 379679 214628 0.233

Plasma insulin (mg/L) 18.1610.1 27.2619.5 0.707 77.8633.1 103.565.3 0.576

Plasma TG (mg/dL) 97.6628.0 133.5616.1 0.395 121.0624.5 195.4624.2 0.135

Plasma TCH (mg/dL) 110.362.5 104.062.5 0.173 112.669.7 133.768.5 0.231

Plasma FFA (mEq/L) 1.2360.01 1.7160.08 0.012 1.3160.07 2.4460.16 0.013

Plasma ALT (mU/L) 93.264.0 107.264.1 0.006 105.969.6 126.8625.3 0.274

Plasma AST (mU/L) 88.962.3 110.0611.3 0.036 93.4610.6 115.8637.1 0.421

Mice were chow-fed, 10-week-old B6.V-Lepob/J (OB) males, intravenously injected with ADKD vectors expressing RNAi for lacZ or Ildr2. Measurements were taken at 10
days p.t. (following either a 24-hr fast ‘‘Fasted’’ or following a 24- hr fast and 12-hr refeeding ‘‘Refed’’). n = number of animals in each study. Data shown are mean 6

SEM; P values were calculated by 2-tailed t test. TG, triglycerides; TCH, total cholesterol; FFA, free fatty acids; ALT, alanine aminotransferase; AST, aspartate
aminotransferase.
doi:10.1371/journal.pone.0067234.t004
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hepatic secretion rates of very low-density lipoprotein (VLDL). We

measured concentrations of plasma TG following LPL inhibition

with Triton WR1339 in 10-week-old chow fed ADKD and

ADOX WT mice at 7 days p.t. (Figure 4). Area under the curve

(AUC) analysis of hepatic lipoprotein secretion shows no

significant difference in either ADKD (Figure 4A) or ADOX

mice (Figure 4B). These results suggest that in ADKD mice, the

increased hepatic lipids did not stimulate increased VLDL

secretion and that, consequently, the increased plasma lipids,

notably TCH, reflected reduced hepatic lipoprotein clearance.

Likewise, the decreased hepatic lipids in ADOX mice were not

due to increased VLDL secretion. Increased hepatic lipid synthesis

in ADKD mice was not coupled to secretion or decreased hepatic

fatty acid oxidation. In contrast, ADOX mice could have had

decreased hepatic lipid synthesis or increased fatty acid oxidation.

Finally, it is interesting to note that in these animals, glucose

tolerance was normal despite severe hepatic steatosis [24].

Steady-state Lipoprotein Analysis
Based upon the striking changes in hepatic lipid content without

evidence of change in lipoprotein export, we were interested in

qualitative and quantitative changes in circulating lipoproteins in

response to transient manipulations of Ildr2 expression. We were

particularly interested in determining if the dramatic increase in

TCH in the ADKD mice represented increased TCH in VLDL or

LDL, or decreased TCH in high-density lipoprotein (HDL). In

analysis by fast protein liquid chromatography (FPLC) of fasted

plasma obtained prior to the Triton study (Figure 5), VLDL

cholesterol (fractions 12–16) and IDL/LDL cholesterol (fractions

17–23) were clearly higher, and HDL cholesterol (fractions 24–30)

was ,20% lower in the ADKD animals (Figure 5A, 5C). In

ADOX animals (Figure 5B, 5D), VLDL was similarly increased,

LDL was not altered, and HDL was also slightly reduced. These

results are consistent with the data reported in Tables 2, 3, 4, 5,

Table 5. Liver and plasma chemistries of ADOX WT mice at 3
days p.t.

ADOX WT 3 D

Fasted

Phenotype (n) GFP (9) Ildr2 (9) P- value

Body weight (g) 25.160.7 24.360.6 0.439

Liver weight (g) 1.260.0 1.060.0 0.004

Hepatic TG (mg/g Liver) 93.0611.9 124.369.6 0.073

Hepatic TCH (mg/g Liver) 10.761.2 15.661.6 0.038

Hepatic glycogen (mg/g Liver) 14.662.2 6.262.1 0.009

Plasma glucose (mg/dL) 15966 166613 0.637

Plasma insulin (mg/L) 0.1560.04 0.2160.04 0.316

Plasma TG (mg/dL) 127.3621.9 153.3614.2 0.338

Plasma TCH (mg/dL) 65.360.9 72.162.8 0.052

Plasma FFA (mEq/L) 1.2860.03 1.3560.09 0.502

Plasma ALT (mU/L) 79.5615.1 99.4613.1 0.008

Plasma AST (mU/L) 78.0620.5 93.3613.0 0.089

HOMA2-IR 0.5660.16 0.7960.15 0.347

HOMA2-B (%) 17.763.8 23.564.7 0.302

Mice were chow-fed, 10-week-old B6 (WT) males, intravenously injected with
ADOX vectors expressing GFP or Ildr2. Measurements were taken at 3 days p.t.
(following a 12-hr fast). n = number of animals in each study. Data shown are
mean 6 SEM; P values were calculated by 2-tailed t test. TG, triglycerides; TCH,
total cholesterol; FFA, free fatty acids; ALT, alanine aminotransferase; AST,
aspartate aminotransferase; HOMA2-IR, homeostasis model assessment-
estimated insulin resistance; HOMA-2-B (%), homeostasis model assessment- b-
cell function.
doi:10.1371/journal.pone.0067234.t005

Table 6. Liver and plasma chemistries of ADOX WT mice at 10 days p.t.

ADOX WT 10 D

Fasted Refed

Phenotype (n) GFP (5) Ildr2 (6) P-value GFP (5) Ildr2 (6) P-value

Body weight (g) 24.1 23.2 0.607 27.5 26.0 0.112

Liver weight (g) 1.0 1.3 0.011 1.7 2.2 0.030

Hepatic TG (mg/g Liver) 64.966.9 33.064.7 0.004 31.365.5 20.065.6 0.191

Hepatic TCH (mg/g Liver) 11.460.8 7.460.6 0.005 6.860.7 5.460.9 0.272

Hepatic glycogen (mg/g Liver) 1.160.3 4.060.9 0.033 63.061.3 71.260.4 0.048

Plasma glucose (mg/dL) 10564 9264 0.056 21164 15563 0.001

Plasma insulin (mg/L) 0.3460.09 0.3460.07 0.988 5.6760.09 4.9560.07 0.560

Plasma TG (mg/dL) 57.662.5 9869.6 0.005 192.8623.0 246.1622.4 0.117

Plasma TCH (mg/dL) 114.668.9 123.9611.6 0.563 125.762.3 145.761.2 0.005

Plasma FFA (mEq/L) 1.2560.16 1.7060.19 0.148 0.6560.18 0.8260.10 0.470

Plasma ALT (mU/L) 66.965.1 32.160.3 0.021 72.266.3 41.161.9 0.042

Plasma AST (mU/L) 65.663.7 31.460.5 0.012 68.066.2 41.162.7 0.028

HOMA2-IR 1.3660.25 1.1060.19 0.435 n/a n/a n/a

HOMA2-B (%) 86.0614.8 100.0618.8 0.570 n/a n/a n/a

Mice were chow-fed, 10-week-old B6 (WT) males, intravenously injected with ADOX vectors expressing GFP or Ildr2. Measurements were taken at 10 days p.t. (following
either a 24-hr fast ‘‘Fasted’’ or following a 24-hr fast and 12-hr refeeding ‘‘Refed’’). n = number of animals in each study. n/a: not applicable. Data shown are mean 6 SEM;
P values were calculated by 2-tailed t test. TG, triglycerides; TCH, total cholesterol; FFA, free fatty acids; ALT, alanine aminotransferase; AST, aspartate aminotransferase;
HOMA2-IR, homeostasis model assessment-estimated insulin resistance; HOMA-2-B (%), homeostasis model assessment-b-cell function.
doi:10.1371/journal.pone.0067234.t006
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6, and 7, in which ADKD animals had higher absolute

circulating TG than ADOX animals and where WT fasted and

refed ADKD mice exhibited increases in plasma TCH and TG vs.

controls, whereas WT ADOX mice exhibited more moderate

changes.

Hepatic Gene-expression Signatures
To assess possible molecular bases for these changes in liver

histology and lipid/glycogen chemistry with the remarkably

minimal effects of these changes on systemic lipid and insulin

homeostasis, we examined hepatic expression of genes related to

acylglyceride, cholesterol and glucose homeostasis and ER-

resident molecules mediating responses to metabolic stress

(Figure 6).

In ADKD WT animals, at 3 days p.t. (Figure 6A), increases in

transcript levels of genes involved in acylglyceride synthesis were

consistent with increased TG content; however, at 10 days p.t.

(Figure 6B), transcripts of genes related to acylglyceride synthesis

were reduced (where Fas expression was especially decreased in

the fed animals), as were genes related to cholesterol homeostasis

Table 7. Liver and plasma chemistries of ADOX OB mice at 10 days p.t.

ADOX OB 10 D

Fasted Refed

Phenotype (n) GFP (4) Ildr2 (4) P-value GFP (4) Ildr2 (4) P-value

Body weight (g) 45.161.4 48.260.6 0.120 46.961.1 43.760.8 0.066

Liver weight (g) 3.460.2 3.960.3 0.321 4.660.3 3.460.1 0.042

Hepatic TG (mg/g Liver) 49.565.7 27.163.0 0.019 56.464.4 32.364.0 0.007

Hepatic TCH (mg/g Liver) 7.760.6 5.660.2 0.038 6.460.2 5.160.29 0.015

Hepatic glycogen (mg/g Liver) 50.464.3 53.563.7 0.606 62.86101.6 61.36103.6 0.689

Plasma glucose (mg/dL) 151610 174624 0.420 224629 263620 0.349

Plasma insulin (mg/L) 13.664.4 24.562.5 0.168 73.9619.1 89.364.0 0.489

Plasma TG (mg/dL) 94.3627.2 129.8643.4 0.538 137.6618.3 135.4611.7 0.925

Plasma TCH (mg/dL) 134.063.5 129.063.9 0.383 143.164.8 130.962.6 0.086

Plasma FFA (mEq/L) 1.6660.09 1.4660.05 0.119 2.2560.29 1.7660.12 0.206

Plasma ALT (mU/L) 115.1618.4 109.7615.7 0.668 108.065.4 100.1615.3 0.386

Plasma AST (mU/L) 106.168.8 101.7613.8 0.611 102.7612.7 98.7617.0 0.718

Mice were chow-fed, 10-week-old B6.V-Lepob/J (OB) males, intravenously injected with ADOX vectors expressing GFP or Ildr2. Measurements were taken at 10 days p.t.
(following either a 24-hr fast ‘‘Fasted’’ or following a 24 hr fast and 12 hr refeeding ‘‘Refed’’). n = number of animals in each study. Data shown are mean 6 SEM; P values
were calculated by 2-tailed t test. TG, triglycerides; TCH, total cholesterol; FFA, free fatty acids; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
doi:10.1371/journal.pone.0067234.t007

Figure 4. TG secretion analysis in ADKD and ADOX WT mice. Chow-fed, 10-week-old B6 (WT) males were intravenously injected with ADKD or
ADOX vectors expressing RNAi for lacZ or Ildr2. At 7 days p.t., following a 16 hr fast, mice were intravenously injected with 15% Triton WR1339 at a
dose of 500 mg/kg. Plasma (from 100 ul of blood) was collected hourly for 4 hr and TG measured. (A) Wild-type mice, 7 days p.t. with adenovirus
knockdown vector expressing RNAi for lacZ or Ildr2; (B) Wild-type mice, 7 days post- transduction with adenovirus vector over-expressing GFP or Ildr2.
AUC: area under the curve. Insignificant differences by AUC analysis show that hepatic lipoprotein secretion is unaffected by Triton WR1339
administration in ADKD and ADOX mice.
doi:10.1371/journal.pone.0067234.g004
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and FFA catabolism. Unlike the livers at 3 days p.t., those at 10

days displayed a general suppression of transcripts of genes

mediating both synthesis and oxidation of hepatic lipids. The

general suppression of transcripts of genes mediating both

synthesis and oxidation of hepatic lipids between days 3 and 10

suggests that the accumulation of hepatic lipids due to effects of

inhibition of Ildr2 transcription resulted in secondary suppression

of the expression of these genes.

In ADKD OB animals at 10 days p.t. (Figure 6C), Ildr2

knockdown greatly reduced the expression levels of all transcripts

examined compared to the control (lacZ) animals. These effects

were comparable, though more extensive and proportionately

greater, than in the corresponding studies of WT animals, possibly

reflecting, in part, the consequences of pre-existing hepatic

steatosis.

In livers of ADOX WT mice at 3 days p.t. (Figure 6D), as in

the ADKD livers, in the context of an increase in TCH content

(and a trend towards increased TG), transcript levels of genes

mediating the synthesis of these molecules were generally reduced,

although transcript levels of some fatty acid oxidation genes were

slightly increased. However, at 10 days p.t. (Figure 6E), transcript

levels of genes related to glucose metabolism and acylglyceride

synthesis were increased.

In livers of ADOX OB animals at 10 days p.t. (Figure 6F), the

very high levels of lipid accumulation due to the obesity of these

animals were reduced by over-expression of Ildr2. In association

with this reduction, levels of transcripts related to neutral lipid

synthesis and cholesterol are increased, suggesting ‘‘relief’’ of the

secondary suppression imposed by lipid accumulation as men-

tioned above [25].

ER Stress Pathways
The apparent fixed location of ILDR2 in the ER (see Figure 2)

raises the possibility that the protean effects of hypomorphism for

this gene might be related to a role in the mediation of ER stress

responses [12]. Such a role would not be inconsistent with an

independent effect on lipoprotein metabolism [26]. Accordingly,

we examined transcription rates of canonical members of the ER

stress response pathways [27].

In ADKD WT animals at 3 days p.t., expression of ER stress

effectors Perk, Atf6, and Ire1 was slightly reduced, while expression

of transducers Atf4 and Chop was increased. In general, Ildr2 over-

expression was associated with increased expression of ER stress

pathway genes, while Ildr2 knockdown was associated with

decreased expression. Effects were greater at 10 days than at 3

days p.t.

Increases in hepatocyte lipids activate ER stress pathways [28–

30], and activation of ER stress pathways increases hepatic lipid

deposition [31–33]. Given these reciprocal interactions, and the

relatively extended time course over which these studies were

conducted, it is not possible to assign causal primacy to either the

effects on lipid synthesis or ER stress responses. The data are also

consistent with the possibility that ILDR2 has primary effects on

both processes. Experiments conducted in isolated hepatocytes (see

Figure 7) demonstrate that in vitro knockdown of Ildr2 modestly

increases ER stress-related transcripts over a 48-hr period. Longer

term, these responses may be exhausted [34,35]. The apparent

paradox of increased ER stress responses in both ADKD and

ADOX hepatocytes may be due to the former’s reflecting the

response to increased cellular lipids, and the latter to direct

interactions of the ILDR2 molecule with elements of the ER stress

pathways. The increase in ER stress molecules is presumably

partially protective [36–38].

Figure 5. FPLC analysis of plasma lipoprotein fractions in ADKD and ADOX WT mice. At 7 days p.t. with either ADKD or ADOX vectors,
plasma from 6 wild-type mice was collected, pooled and TCH and TG profiles were analyzed by FPLC using Sepharose 6 Fast Flow columns. HDL,
high-density lipoprotein; LDL, low-density lipoprotein; VLDL, very low-density lipoprotein. (A) TCH profile in wild-type mice, 7 days p.t. with
adenovirus knockdown vector expressing RNAi for lacZ or Ildr2; (B) TCH profile in wild-type mice, 7 days p.t. with adenovirus vector over-expressing
GFP or Ildr2; (C) TG profile in wild-type mice, 7 days after adenovirus knockdown vector expressing RNAi for lacZ or Ildr2; (D) TG profile in wild-type
mice, 7 days p.t. with adenovirus vector over-expressing GFP or Ildr2. These experiments show an increase in plasma TG (as VLDL) in ADKD mice but
not in ADOX mice. TCH shifts in ADKD mice from HDL to LDL and VLDL, while in ADOX mice the decrease in HDL is accompanied by an increase in
VLDL only.
doi:10.1371/journal.pone.0067234.g005
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Short-term Effects of Ildr2 Expression on Lipid
Metabolism and ER Stress Pathways in Hepatocytes

ER stress can affect lipid metabolism and vice versa [31,39,40],

and molecules such as XBP1 can independently affect both

pathways [26]. In an effort to disarticulate – by shortening the

experimental time course - possible contributions of ILDR2 to ER

stress response mechanisms, we transduced C57BL/6J mouse

primary hepatocytes for 24 hr with Ildr2 ADKD and ADOX

adenoviral vectors and examined cellular lipid content (Table 8)

and expression of genes of lipid biochemical and UPR/ER stress

pathways (Figure 7).

In the ADKD cells, TG and TCH content were increased,

consistent with the changes seen in the in vivo studies. Only slight

changes were seen in the transcripts analyzed, with no indication

of primacy of Ildr2 knockdown effects on either lipid synthesis or

ER stress genes (Figure 7A). In the ADOX cells, TG and TCH

content were reduced in the context of large, reciprocal changes in

both lipogenesis, where Ldlr and Srebp1c decreased, and ER stress

effectors, where Atf6 and Ire1 increased (Figure 7B). The

comparable magnitude of these changes makes it difficult to

assign primacy, but is consistent with a role for Ildr2 in both

pathways. If these in vitro data at 24 hr are viewed in the context of

the 3 and 10 day in vivo studies, it is apparent that there are strong

temporal effects of responses of the ER stress pathways, and that

the responses are influenced by intercurrent processes, probably

lipid deposition per se.

Effects of Feeding Status, Diet, and ob Genotype on Ildr2
Expression

Hepatic lipid homeostasis is strongly affected by fasting and

refeeding and by diet [41]. To study their effects on Ildr2, we

compared levels of Ildr2 expression in livers of WT mice fed either

chow or a high-fat diet (Figure 8). These results show that feeding

status (the difference between fasted and refed mice) had little

effect on Ildr2 expression, whereas obesity achieved by feeding a

high-fat diet, increased Ildr2 levels by 3.6 fold (Figure 8A). To

determine if this effect was leptin-dependent, we also analyzed

Ildr2 expression in livers of OB (leptin-deficient) mice. These mice

showed a 3.7 fold increase in Ildr2 expression compared to age-

matched WT controls (Figure 8B). The large increases in ildr2

Figure 6. Relative expression of selected genes in ADKD and ADOX WT and OB mice. 10-week-old B6 male mice were chow-fed,
intravenously injected with ADKD and ADOX vectors and sacrificed at 3 days p.t, following a 12-hr fast. Expression levels were determined by qPCR
normalized to expression levels of the 36B4 housekeeping gene. Fold changes are relative to the GFP control in the same state as the Ildr2 (either
fasted or refed compared to fasted or refed). * indicates p,0.05; ** indicates p,0.01 (2 tailed t-test). (A) Expression in wild-type mice, 3 days p.t. with
adenovirus knockdown vector expressing RNAi for lacZ or Ildr2; (B) Expression in wild-type mice, 10 days p.t. with adenovirus knockdown vector
expressing RNAi for lacZ or Ildr2; (C) Expression in wild-type mice, 10 days p.t. with adenovirus vector over-expressing GFP or Ildr2; (D) Expression in
wild-type mice, 3 days p.t. with adenovirus knockdown vector expressing RNAi for lacZ or Ildr2: (E) Expression in ob/ob mice, 10 days p.t. with
adenovirus knockdown vector expressing RNAi for lacZ or Ildr2; (F) Expression in ob/ob mice, 10 days p.t. with adenovirus vector over-expressing GFP
or Ildr2. Changes in transcriptional profiles appear to be secondary to changes in lipid content.
doi:10.1371/journal.pone.0067234.g006
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expression, caused by leptin deficiency and high-fat feeding are

presumably secondary – at some level - to the deposition of TG in

the hepatocytes under both circumstances. Given the possible dual

roles of Ildr2, this effect could reflect a role of Ildr2 in ER stress

responses.

Calorimetry
To determine if there were differences in energy expenditure,

physical activity, or metabolic substrate use in the mice in any of

the models used (ADKD and ADOX in both WT and OB), we

performed indirect calorimetry (72-hr) on chow-fed, 10-week-old

WT and OB males, 4 to 5 days p.t. (Figure 9; Table 9).

Figure 7. Relative expression of selected genes in ADKD and ADOX primary hepatocytes. To identify short-term effects of changes in Ildr2
expression, hepatocytes from five 10-week-old B6 mice were extracted, pooled and plated into individual wells and exposed, in triplicate, for 24 hr to
ADOX or ADKD viral vectors. RNA was extracted, transcribed into cDNA, and expression was determined by qPCR. (A) Expression in hepatocytes
transduced with adenovirus knockdown vector expressing RNAi for lacZ or Ildr2; (B) Expression in hepatocytes transduced with adenovirus vector
over-expressing GFP or Ildr2. These results recapitulate those seen the in vivo studies.
doi:10.1371/journal.pone.0067234.g007
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There were no differences in rates or patterns of 24-hour energy

expenditure in WT mice between knockdown and control (data

not shown). However, in WT (Figure 9A) and OB (Figure 9C)

ADKD mice, the nocturnal respiratory exchange ratio (RER) was

7% lower vs. controls, indicating that, at night, the ADKD mice

preferentially oxidize fat to a greater extent than the WT mice. In

WT (Figure 9B) and OB (Figure 9D) ADOX animals, the RER

was not significantly different between the two groups at any time,

although the OB mice had a slightly higher RER during the dark

period. These data are consistent with hepatic lipid content

influencing systemic fuel oxidation: higher fat content increasing

fatty acid oxidation, resulting in a lower RER.

ipGTT (intraperitoneal Glucose Tolerance Tests)
To assess systemic effects of changes in hepatic lipid and

glycogen content on peripheral glucose homeostasis, we performed

ipGTT on chow-fed, 10-week-old WT and OB males, 7 days p.t.

with Ildr2 ADKD and ADOX constructs (Figure 10). Surpris-

ingly, no differences in systemic glucose tolerance were detected in

ADKD or ADOX animals versus either their respective controls,

or each other. Consistent with these findings, HOMA IR values

based on data obtained at the time of sacrifice of ADKD and

ADOX mice (at 10 days p.t.) were not significantly different (see

Table 2). Thus, large changes in hepatic lipid content were not

accompanied by changes in systemic glucose/insulin homeostasis.

This finding has implications for the possible mechanism(s)

underlying the effects of Ildr2 on hepatic lipid synthesis and

handling.

Discussion

Based upon manipulation of levels of expression of Ildr2 in liver

and isolated hepatocytes using ADKD and ADOX constructs, we

conclude that ILDR2 is an ER membrane protein that participates

in cellular lipid synthesis and responses to ER stress. The most

salient phenotype in the ADKD mice is TG accumulation,

accompanied by increased hepatic and plasma cholesterol and a

mix of micro- and macro-vesicular lipid droplets in periportal

hepatocytes. Overexpression of Ildr2 in ob/ob mice substantially

rescued their hepatic steatosis, as Ildr2 over-expressing mice had

significantly decreased hepatic TG and TCH and reduced

periportal vacuolar deposition.

Despite the excess lipid in the livers at 10 days p.t., transcript

levels for major lipogenic and fat-oxidative genes were reduced in

ADKD mice and up-regulated in ADOX mice. At 3 days p.t.,

several of these genes showed changes in expression in the opposite

direction, suggesting that down-regulation in ADKD mice at 10

days p.t. may have been a response to excess lipid accumulation.

These changes in transcriptional profiles are likely secondary to

the respective increased/decreased lipid content of the hepato-

cytes. Also relevant in considering the molecular pathogenesis of

the steatosis in the ADKD animals is the absence of major changes

of circulating TG or cholesterol in these animals, their apparently

normal rates of hepatic TG secretion, and the absence of

significant changes in glucose or insulin homeostasis. In ADKD

mice, reduced hepatic VLDL/IDL/LDL clearance and increased

circulating IDL/LDL cholesterol suggests a reduction in hepatic

LDL receptor-mediated clearance of those lipoproteins, consistent

with reduced expression of hepatic LDL receptor [42,43].

Table 8. Triglyceride and cholesterol content of ADKD and ADOX hepatocytes.

ADKD ADOX

lacZ Ildr2 P-value GFP Ildr2 P-value

Triglyceride (mg/g protein) 103.162.3 119.463.4 0.019 105.563.9 92.761.3 0.056

Cholesterol (mg/g protein) 7.5860.37 8.4560.40 0.083 8.4360.96 6.6260.45 0.081

Hepatocytes from 5, 10-week-old B6 mice were extracted, pooled and plated into individual wells and exposed for 24 hr to either the ADOX or ADKD (or empty vector
control) virus in triplicate. Cells were lysed and triglyceride and total cholesterol were determined.
doi:10.1371/journal.pone.0067234.t008

Figure 8. Expression of Ildr2 in liver is increased by adiposity through high-fat diet or leptin deficiency. Expression of Ildr2 was
determined by qPCR, normalized to 36B4 in mice sacrificed after either fasting for 24 hr or after fasting for 24 hr and followed by a 12-hr refeeding
period. (A) Wild type B6 mice at 6 weeks of age were fed ad libitum either chow or a high fat diet (60% of kcal from fat) for 3 additional months. (B)
Chow-fed wild type B6 and leptin-deficient OB mice (B6.Cg-Lepob/J) were purchased at 9 weeks and sacrificed at 10 weeks of age. Wild-type mice fed
a high fat diet and genetically obese mice showed a similar (3.6 to 3.7-fold) increase in Ildr2 liver expression compared to age- matched wild-type
mice (p value ,.01 ) regardless of feeding status.
doi:10.1371/journal.pone.0067234.g008
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Lipid accumulation in the liver is commonly associated with

liver and/or systemic insulin resistance and resultant hyperglyce-

mia. Indeed, hepatic steatosis is commonly implicated as a

causative factor in these phenotypes that are aspects of the

metabolic syndrome [44–46]. However, in the ADKD animals,

large changes in hepatic lipid content were not accompanied by

changes in systemic glucose/insulin homeostasis [47]. Decreased

lipid droplet turnover and/or enhanced traffic of newly synthe-

sized TG from the ER to the cytoplasmic droplets might be related

to the apparent absence of effect of the increased lipid deposition

on glucose/insulin homeostasis. Since neither insulin resistance

nor hyperglycemia was present in the ADKD mice (similar in this

regard to the phenotype of mice hypomorphic for hepatic Atgl)

[24,48,49], we investigated other mechanisms relating Ildr2 to

hepatic steatosis.

Localization of ILDR2 in the ER membrane, up-regulation of

ER stress markers in the livers of ADOX mice and down-

regulation in ADKD mice, along with the emerging relationship

Figure 9. Respiratory Exchange Ratio (RER) in ADKD and ADOX WT and OB mice. Mice were chow-fed, 10-week-old B6 (WT) or B6.V-Lepob/J

(OB) males, at 4 to 5 days p.t. with adenovirus knockdown vectors expressing RNAi for lacZ or Ildr2 or with adenovirus vectors over- expressing GFP or
Ildr2. Data shown are mean 6 SEM (8 mice per group) and run in a TSE systems indirect calorimeter for 48 hr. (A) WT ADKD; (B) OB ADKD; (C) WT
ADOX; (D) OB ADOX. ADKD mice show decreased RER at night, whereas ADOX mice show no differences, day or night. AUC calculations are shown in
Table 9.
doi:10.1371/journal.pone.0067234.g009

Table 9. Area under the curve calculations for calorimetry in Figure 9.

wild-type ob/ob

ADKD ADOX ADKD ADOX

AUC lacZ Ildr2 GFP Ildr2 lacZ Ildr2 GFP Ildr2

24-hr 43.260.6 40.860.6* 42.160.6 42.060.4 42.060.8 40.961.4 39.560.8 40.361.3

Day 20.160.5 19.260.5 19.660.4 19.760.2 19.860.4 20.060.6 19.160.3 19.560.6

Night 23.160.3 21.660.3** 22.460.2 22.360.3 22.360.6 20.960.8 20.560.5 20.860.7

*p,0.05;
**p,0.01; AUC, area under the curve.
doi:10.1371/journal.pone.0067234.t009
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between hepatic lipid accumulation and ER stress in several

metabolic disorders, including obesity, hepatic steatosis and type II

diabetes [16,31,50], suggest that ILDR2 might have a role in

cellular ER stress responses.

Three known pathways provide mechanisms whereby Ildr2

regulation of hepatocyte lipid metabolism and ER stress could be

achieved:

(1) ILDR2 has a primary role in ER function, where ER stress

produced by Ildr2 knockdown leads to lipid accumulation.

Overexpression of the ER stress chaperone BIP (GRP78) in

ob/ob mice (as with Ildr2) reverses hepatic steatosis [51], and

hypomorphic expression of UPR modulators Atf6, Ire1a, Chop,

and Crebh in mouse models cause hepatic dyslipidemia

[32,33,52,53].

(2) ILDR2 has a primary role in lipid metabolism, where Ildr2

knockdown leads to lipid accumulation, which causes ER

stress. Excess intracellular fatty acids induce ER stress in the

liver via pathways affecting ER membrane integrity and

calcium homeostasis [40,54], increasing Chop expression [55],

inducing PERK signaling [28] and stimulating CREBh-

induced inflammation [56,57]. Additionally, fatty acid–

binding protein-4 (aP2) has a primary role in lipid metabolism

and mitigates ER stress in macrophages [39].

(3) ILDR2 is independently involved in both ER function and

lipid metabolism, as has been suggested for the ER stress-

related gene, Xbp1, a key transcription factor and effector of

the UPR which is spliced by IRE1a in response to ER stress.

Xbp1 KO mice show reduced hepatic TG secretion and

decreased fatty acid oxidation, along with down-regulation of

key hepatic lipogenic genes [26]. While we have not shown

that ILDR2 is a transcription factor, by acting on downstream

signaling targets, including transcription factors, it could

independently affect the UPR and lipid metabolism.

The broad down-regulation of lipid metabolism and ER stress

genes in the ADKD mice at 10 days p.t. is consistent with studies

of pharmacologically-induced ER stress, in which expression of

genes involved in lipid metabolism and ER stress initially increases

and then declines. This pattern has been observed both in vitro and

in vivo for spliced Xbp1, Chop, Bip, lipogenic transcription factors,

lipid droplet proteins, and TG synthesis genes [34]. If Ildr2

knockdown induces ER stress in these mice, then by 10 days we

may be observing the decline of previously up-regulated ER stress

and metabolic genes.

Since it remains uncertain, which gene expression effects are

primary in the pathogenesis of the hepatic steatosis, and which

may be responses to the steatosis per se, the data obtained in the 3

and 10 day adenovirus transductions should be cautiously

interpreted. Absence of a clear pattern in the differential responses

of the canonical UPR pathways seen in the studies reported here

suggests that these variable responses may reflect differences in the

timing of the responses of specific molecules and pathways coupled

with secondary effects of the accumulation of hepatic lipids [58].

Ildr2-mediated effects on lipid homeostasis and ER stress

responses could account for both the hepatic steatosis observed

in the ADKD animals reported here, and the reduced b-cell mass

and accompanying glucose intolerance in the Chr 1 B6.DBA ob/ob

congenic animals [1]. Perk–null mice develop ER stress specifically

in the b-cell, with morphological abnormalities within the

pancreatic ER leading to loss of b-cells, and hypoinsulinemic

hyperglycemia [59]. Deregulation of lipid metabolism in a b-cell

line impaired insulin secretion [60].

In a recent study, ILDR2, along with ILDR1 and ILDR3, was

localized to tricellular junctions on the PM of mouse epithelial cells

– specifically fibroblasts, mammary and retinal epithelia, and

choroid plexus [61]. The authors propose that these molecules

mediate macromolecular access through these ‘‘tight junctions’’.

However, no specific effort was made to visualize ILDR2 or other

ILDR molecules in the ER. As has been described for the

thyrotropin-releasing hormone receptor, which is localized to the

PM in pituitary cells but to the ER and Golgi in non-pituitary cells

[62], ILDR2 may localize primarily to the PM in epithelial cells,

and to the ER in other cell types (e.g. hepatocytes, neurons, b-

cells). Alternatively, subcellular distribution of members of this

family of proteins may reflect cell type-specific splicing patterns, as

reported for BAT3 [63].

Materials and Methods

Ethics Statement
All protocols were approved by the Columbia Institutional and

Animal Care Use Committee (Permit Number: AAAC3125).

Animal Care
Mice were housed in a vivarium maintained on a 12 hr –12 hr

light-dark cycle, with ad libitum access to 5058 Purina PicoLab

Mouse Diet 20 (9% fat) and water, unless otherwise stated. All

mice were sacrificed at the same time-of-day (1000–1200 hr).

Strains
Male 9-week-old C57BL/6J (B6) (Stock number 000664) and

B6.V-Lepob/J (ob/ob) (Stock number 000632) mice were obtained

from Jackson Laboratories (Bar Harbor, ME) and allowed to

adjust to conditions in our local colony for 1 week prior to starting

experiments. Mice used to study the effects of feeding status and

diet (Figure 8A) were fed high-fat chow (60% kcals from fat) at

Jackson Laboratories from 6 weeks of age until purchase at 18

Figure 10. ipGTT in WT and OB mice 7 days p.t. At 7 days p.t. with
adenovirus knockdown vectors expressing RNAi for lacZ or Ildr2 (left) or
with adenovirus vectors over-expressing GFP or Ildr2 (right), the 10-
week-old chow-fed male B6 mice that were used in the 10 day
experiments were injected intraperitoneally after 12 hr fast with 2g/kg
glucose. The mice used in this experiment are the same mice that on
which indirect calorimetry was conducted on day 5 p.t. (A) WT ADKD;
(B) OB ADKD; (C) WT ADOX; (D) OB ADOX. In both ADKD and ADOX
animals, IPGTT was unaffected.
doi:10.1371/journal.pone.0067234.g010
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weeks of age. Mice were fed ad libitum high-fat chow (Research

Diets D12492i) for 4 additional weeks.

Metabolic Parameters
Body mass and composition. Weight was measured with a

Vicon Vic-212 integrating laboratory scale (Acculab). Fat and lean

mass were measured with a Minispec TD-NMR Analyzer (Bruker

Optics), calibrated using mouse carcasses [64].

Serum. Blood was collected at sacrifice. Plasma was analyzed

for glucose using an Autokit Glucose (Wako), for TG using an L-

Type TG M Color A (Wako), for TCH using Cholesterol E

(Wako), for FFA using HR Series NEFA-HR(2) Color Reagent B

(Wako) and insulin using an Ultra Sensitive Mouse Insulin ELISA

Kit (Crystal Chem). Glucose in living mice was measured with a

FreeStyle Lite portable glucose meter (Abbott) using 3 ml blood

from a capillary tail bleed. IPGTT was performed in the morning

after overnight fast. Blood for fasting glucose analysis was collected

by tail bleed. Mice were injected with 2 mg/g of glucose using a

50 mg/ml solution in autoclaved water. Blood was collected at 5,

15, 30, 60, and 120 minutes and glucose was measured with the

Autokit Glucose.

Plasma Lipid Profile and Triton Experiment
250 ml of pooled plasma from 6 mice fasted for 5 hr was used

for FPLC analysis using 2 Sepharose 6 Fast Flow columns in series

(Amersham Biosciences). The buffer contained 100 mM Tris and

0.04% NaN3, pH 7.5; a flow rate of 0.7 ml/min was used. TCH

and TG levels of FPLC fractions were measured using Wako

enzymatic kits. To block clearance of nascent lipoproteins, these

mice were then injected with Triton WR1339 (0.5 mg/g body

weight; Sigma-Aldrich) via tail vein. Blood samples were collected

at 0, 30, 60, and 120 min post-injection. Initial plasma samples

were used for TG quantification.

Liver Glycogen
Liver fragments (0.1–0.2 g) were digested in 1 ml of 30% KOH

at 95uC for 30 min; 0.2 ml of 2% Na2SO4 and 3.2 ml of 70%

ethanol were added and the mixture was centrifuged for 30 min at

6800 RCF. Pellets (containing glycogen) were washed with 70%

ethanol and resuspended in 0.5 ml of 0.2 M acetate buffer; 0.1 ml

of the solution was incubated for 30 min at 55uC with 5 ml of

amyloglucosidase (Sigma) and then incubated 5 min at 37uC with

Autokit Glucose (Wako Diagnostics, Richmond, VA). Glycogen

content was expressed as mg of glucose/g of wet liver.

Liver Lipids
Whole lipids were extracted by Bligh-Dyer extraction [65]. In

brief, 1.5 ml of chloroform:methanol (1:2, v/v) with 0.4 ml of PBS

was added to liver pieces (0.1–0.2 g) in a screw-capped glass test

tube and mixed vigorously for 1 min. Vigorous mixing followed

successive additions of 0.5 ml chloroform and 0.5 ml H2O. The

mixture was centrifuged at 1800 RCF for 5 min and the lower

(organic) phase, containing whole lipids, was collected and stored

at 220uC until assay. TCH and TG were determined with a

colorimetric kit (Wako; Cholesterol E 439-17501; L Type TG 461-

08892 and 461-09092).

HOMA-IR
HOMA2-IR (homeostasis model assessment-estimated insulin

resistance) and HOMA-2-B% (homeostasis model assessment-b-

cell function) were calculated using the HOMA calculator, http://

www.dtu.ox.ac.uk/homacalculator/index.php, based on the non-

linear updated HOMA2 model [66], which takes account of

variations in hepatic and peripheral glucose resistance, increases in

the insulin secretion curve for plasma glucose concentrations

.10 mmol/L (180 mg/dL) and the contribution of circulating

proinsulin.

Energy Expenditure
Energy expenditure was measured with a LabMaster-CaloSys-

Calorimetry System (TSE Systems, Bad Homburg, Germany). O2

and CO2 measurements were taken every 26 min during a 72 hr

period from 32, 10-week-old male mice (8 ADOX, 8 ADOX

control, 8 ADKD, and 8 ADKD control). Mice were injected with

the adenovirus on day 0 and placed in calorimeters from days 5–7.

Because of stress related to transfer to the calorimetry chambers,

only measurements taken within the last 48 hr were used to

calculate total 24-hr energy expenditure (TEE; in kcal/24-hr) and

respiratory exchange rate (RER = VCO2/VO2). Resting energy

expenditure (REE in kcal/24-hr) was defined as the1-hr period of

lowest energy expenditure. This coincided with the 1 hr of lowest

total ambulatory activity (generally early afternoon), during the 48-

hr period; this value was extrapolated to 24 hr. Non-resting energy

expenditure (NREE) was calculated as the difference between

TEE and REE (NREE = TEE – REE). Physical activity was

measured by an infrared beam system integrated with the

LabMaster system. Total activity (beam breaks) in X, Y, and Z

axes was recorded every 26 min. The system is designed to

differentiate between fine motor movement (defined as a single X

or Y axis beam break), ambulatory movement (defined as the

simultaneous breaking of two adjacent X or Y beams), and

rearing, defined as the breaking of the Z axis infrared beam. Lights

were off at night from 1900 to 0700 hr.

Adenovirus Studies
Adenoviral expression vectors. Adenoviruses were pre-

pared and amplified with the ViraPower Adenoviral Expression

System (Invitrogen). Viral titers were determined by plaque-

forming assays on HEK 293A cells. PCR-amplified, full-length

Ildr2-cDNA was subcloned into the pENTR/D-TOPO vector

using the pENTR Directional TOPO Cloning Kit (Invitrogen).

After verifying the sequence, inserts were transferred into the

pAd/CMV/V5-DEST vector by the Gateway system using LR

Clonase II Enzyme Mix. Sequences corresponding to the shRNAs

for Ildr2 and lacZ were cloned into pBlock-it (Invitrogen). The

sequence of the shRNA for Ildr2 was: 59-cac cGT TCA AAT

CCT ACT GCC Aga cgt gtg ctg tcc gtC TGG CAG TAG GAT

TTG AAC-39, where the 59 uppercase 18-nucleotide sequence

corresponds to the coding strand in exon 2 for the amino acid

sequence FKSYCQ.

Virus purification. To obtain virus particles, plasmids were

linearized by Pac I digestion and transduced into HEK 293A cells

with Lipofectamine 2000 using Opti-MEM medium. The

transduced HEK 293A cells were incubated at 37uC in a 6 cm

dish until the cells started to die (about 10 days). The cells and

supernatant were harvested in a 50 ml tube and subjected to 3

freeze-thaw cycles to lyse the cells. The suspension was centrifuged

at 1800 RCF for 15 min to eliminate cellular debris. The

supernatant was collected and used to transduce a new 10 cm

dish of HEK 293A cells. This process (grow, lyse, centrifuge,

transduce a larger number of cells) was repeated until 20, 15-cm

dishes, were incubated simultaneously. The cells and supernatant

were collected and spun at low speed (200 RCF) for 2 min. The

cells and 5 ml of supernatant were then subjected to 3 freeze-thaw

cycles to lyse cells, followed by centrifugation at 1800 RCF for

15 min. A CsCl step gradient was set up with a lower layer of 4 ml

of 1.4 g/ml CsCl and an upper layer of 3 ml of 1.2 g/ml CsCl.
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5 ml of supernatant was over-layered and ultracentrifuged at

65,000 RCF for 90 min at 4uC. The 1.2 g/ml cesium chloride

layer, containing virus, was extracted and dialyzed vs. 10 mM

Tris/HCL at pH 8.0. Viral concentration was determined by

OD260 assay.
Injection. Recombinant viruses were administered via tail

vein injection and mice were sacrificed 3 days or 10 days p.t.
Real-Time qPCR. RNA was extracted with TRIzol acid-

phenol reagent (Invitrogen) and purified with on-column DNase

digestion using RNeasy Mini Kit (Qiagen). RNA integrity was

verified by visual inspection of ethidium bromide stained

electrophoresis gels and by OD260 nm/OD280 nm.1.9 and

OD260 nm/OD230 nm.2.0. First strand cDNA synthesis was

performed using 1 mg of total RNA each and the Sprint RT

Complete-Random Hexamer kit (Clontech) according to the

manufacturer’s instructions. Reverse transcription (RT) followed

by PCR was used to analyze mRNA abundance in response to

treatments. Primers for genes were designed to produce an

amplification product which spanned at least one exon using the

Universal Probe Library Assay Design Center (www.

universalprobelibrary.com, Roche Applied Sciences); primers were

synthesized by Invitrogen. qPCR analysis was performed on a

LightCycler 480 (Roche) using the LightCycler 480 SYBR Green I

Mastermix (Roche).

Primers for PCR
Primers used for the PCR amplification of full-length Ildr2-

cDNA

Ildr2 Forward: caccATGGATAGGGTCGTGTTGGG

Ildr2 Reverse: TCAGACTACAAGGGACATCCTGGTTG-

GAAAGTCACC

The first TCA in the reverse is the stop codon. The ATG in the

forward is the start codon. Primers used in expression analysis are

shown in Table 10.

Construction of Tag Protein Fusions
N-terminal 3xFLAG Ildr2 fusion construct. The Ildr2 open

reading frame from exon 2 was subcloned into p3xFLAG-CMV-8

(N-terminal FLAG with PPT LS, Sigma-Aldrich # E4151-20UG).

Ildr2 was amplified using a forward primer on the sequence coding

for the first amino acids of exon 2 with a HindIII site (59 ATT

TAC AAG CTT CAG GTC ACA GTG CCT GAC AAG AAG

AAG GT39), and a reverse primer with an in-frame stop codon

and EcoR1 restriction site at the end of Ildr2 last exon (59- CAT

GCA GAA TTC TCA GAC TAC AAG GGA CAT CCT G -39).

The destination vector and the PCR amplified Ildr2 sequence were

digested with HindIII and EcoR1 (NEBiolabs) in NEBuffer EcoR1

and BSA at 37uC for 60 min, purified and ligated.

C-terminal -tagged ILDR2 mYFP construct. The ildr2 open

reading frame from exon 1 was subcloned into pmEYFP-N1

(Clontech # 6006-1). Ildr2 was amplified using a forward primer

on exon 1-including Kozak sequence- with a site for the restriction

enzyme NheI (59- ATC TTG CTA GCG GTA ATG GAT AGG

GTC GTG TTG G-39), and a reverse primer that bypass the stop

codon and an EcoRI restriction site (59- CAT GCA GAA TTC

GGA CTA CAA GGG ACA TCC TG-39). The destination vector

and the PCR-amplified Ildr2 sequence were digested with Nhe and

EcoRI (NEBiolabs) in NEBuffer EcoRI+BSA at 37uC for 60 min,

purified and ligated.

Isolation of Hepatocytes
Hepatocytes were pooled from 5, 10-week-old C57BL/6J mice.

The mice were anaesthetized with cocktail containing ketamine

(100 mg/kg) and xylazine (20 mg/kg) and then laparotomized to

expose the liver and the portal vein. A 25G winged needle

attached to a 50 ml syringe filled with 37uC EGTA-Hanks

solution (Hanks Balanced Salt Solution, Gibco; EGTA final

concentration 0.5 mM) was inserted into the portal vein and

clipped in place with a clamp at the root of the mesentery and the

needle. After cutting the inferior vena cava, the liver was perfused

with 30 ml EGTA-Hanks. Using a fresh syringe, the liver was then

perfused with 20 ml of a solution containing collagenase (5 mM

CaCl2 in Hanks with 1 mg/ml of collagenase type II Gibco #
17101-015) being careful not to inject bubbles. Liver was excised

and placed in a 10 cm sterile dish on ice with 2–3 ml of

collagenase solution and minced with scissors to remove visible

blood clots. Minced livers were pooled and incubated for 5–

10 min at 37uC and homogenized by pipetting up and down 20–

30 times. Then 20 ml of RT Hanks balanced salt solution was

Table 10. Primers used for expression analysis.

Gene Forward Reverse

Ildr1 TCATTGTCCTGCATTGGCTGA CAACAGCGGGTAGGACAGCA

Ildr2 ACAGGGCTCGACGGTTAC ACACCCACTCCAACACCAGC

Ildr3 TCACCATCACAGGAAATGCTGAC GCTTCTGAGGTCCTGCCAAGG

Pepck TGTCATCCGCAAGCTGAAGA TTCGATCCTGGCCACATCTC

Gck TCCCTGTAAGGCACGAAGACAT ATTGCCACCACATCCATCTCA

Glut2 GGAACCTTGGCTTTCACTGTCTT GGAACACCCAAAACATGTCGAT

Gpat GGCTACGTCCGAGTGGATTTT AACATCATTCGGTCTTGAAGGAA

Mgat1 CTGGTTCTGTTTCCCGTTGT GGTGAATGTTCCTGGGTGAG

Dgat1 CCTCAGCCTTCTTCCATGAG ACTGGGGCATCGTAGTTGAG

Dgat2 TCCAGCTGGTGAAGACACAC GATGCCTCCAGACATCAGGT

FAS ATCCTGGAACGAGAACACGATCT AGAGACGTGTCACTCCTGGACTT

ACC1 GGGCACAGACCGTGGTAGTT CAGGATCAGCTGGGATACTGAGT

Pparg2 TTCCACTATGGAGTTCATGCTTGT TCCGGCAGTTAAGATCACACCTA

Srebp1c CGGCGCGGAAGCTGT TGCAATCCATGGCTCCGT

Srebp2 CTGCAGCCTCAAGTGCAAAG CAGTGTGCCATTGGCTGTCT

Ldlr TGGAGGATGAGAACCGGCT GCACTGAAAATGGCTTCGTTTA

Apob TCACCCCCGGGATCAAG TCCAAGGACACAGAGGGCTTT

Ppara CCTCAGGGTACCACTACGGAGT GCCGAATAGTTCGCCGAA

Cpt1a CCTGGGCATGATTGCAAAG GGACGCCACTCACGATGTT

Acox1 CGATCCAGACTTCCAACATGAG CCATGGTGGCACTCTTCTTAACA

Mcad TGCTTTTGATAGAA
CCAGACCTACAGT

CTTGGTGCTCCACTAGCAGCTT

Ucp2 GACCTCATCAAA
GATACTCTCCTGAA

ATCTCGTCTTGACCACATCAACAG

Rxra GGCAAACATGGGGCTGAAC GCTTGTCTGCTGCTTGACAGAT

Fxra TGGGCTCCGAATCCTCTTAGA TGGTCCTCAAATAAGATCCTTGG

Fxrb GGGCTTAGAAAAT
CCAATTCAGATTA

CGTCCGGCACAAATCCTG

Perk CCTTGGTTTCATCTAGCCTCA ATCCAGGGAGGGGATGAT

Atf6 GGACGAGGTGGTGTCAGAG GACAGCTCTTCGCTTTGGAC

Ire1 TGAAACACCCCTTCTTCTGG CCTCCTTTTCTATTCGGTCACTT

Atf4 ATGATGGCTTGGCCAGTG CCATTTTCTCCAACATCCAATC

Xbp1 TGACGAGGTTCCAGAGGTG TGCAGAGGTGCACATAGTCTG

Chop TCCCTGCCTTTCACCTTG GCCCTGGCTCCTCTGTCA

Bip CTGAGGCGTATTTGGGAAAG TCATGACATTCAGTCCAGCAA

PCR primers used in experiments described in Table 1, Figure 6, and Figure 7.
doi:10.1371/journal.pone.0067234.t010
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added to the dish and mixed. The suspension was filtered through

sterile gauze into a 50 ml conical tube, spun 1 min at 200 RCF at

RT and aspirated to remove supernatant. Cells were resuspended

in 20 ml Gibco HG medium (with 10% FBS, 1% Penicillin

Streptomycin, 10 nm DEX, 100 nm insulin, and 0.1% Fungizone)

and pipetted up and down 5 times. The suspension was filtered

through a 100 um Nylon cell strainer (BD Falcon REF352360)

and collected in 50 ml conical tube. The filtrate was centrifuged

again at 200 RCF for 1 min at RT and aspirated to remove the

supernatant. Cells were resuspended in 25 ml of Gibco HG

medium and gently pipetted. Cells were counted with an

Invitrogen Countess using trypan blue staining and then

distributed at 36106 cells per 10 cm plate and incubated overnight

at 37uC in a humidified 5% CO2 incubator before administering

virus.

Cell Line Studies
Cell microscopy, image acquisition. Cell cultures were

prepared and maintained according to standard cell culture

procedures. Hepa1c1c7 and GT1-7 cells were maintained in

Dulbecco’s Modified Eagle Medium supplemented with 10% fetal

calf serum using BD Falcon T75 cell culture flasks. For transient

transfection, cells were harvested by Trypsin/EDTA digestion,

seeded on coverslips (16105 per coverslip) and incubated for 24 h

in a cell culture incubator at 37uC and 5% CO2. Transfection of

plasmid DNA for GFP-tagged ILDR2 was performed with

Lipofectamine 2000 according to the manufacturer’s instructions.

In brief, cells were incubated with 500 ng plasmid DNA and

1.25 ml Lipofectamine 2000 in Opti-MEM (24-well plate format)

over night before being analyzed. Transfection was up-scaled

accordingly if other plate formats were used.
Confocal images. Transduced cells were washed with PBS,

fixed in 4% paraformaldehyde at room temperature (rt) for

15 min, washed again with PBS, permeabilized with 0.1% Triton-

X 100 (2 min at rt) if necessary and incubated with blocking buffer

(5% normal goat serum and 0.05% Tween 20 in PBS) for 30 min.

For immunostaining, cells were incubated overnight at 4uC with

the corresponding specific antibody diluted in blocking buffer,

washed with PBS, incubated for 1 hr at rt with 2 mg/ml Alexa

Fluor 546 goat anti-mouse secondary antibody diluted in blocking

buffer washed with PBS and mounted in ProLong Gold antifade

reagent with DAPI as a nuclear staining marker. Samples were

analyzed with a Confocal Laser Scanning Microscope (TCS SP2,

Leica, Germany). When fluorescent proteins were used, GFP was

excited at 488 nm and fluorescence was detected at 500–540 nm.

YFP was excited at 514 nm and fluorescence was detected at 520–

560 nm. DsRed was excited at 557 nm and fluorescence was

detected at 592 nm. Alexa Fluor 546 was excited with the 543 nm

line of the helium laser and fluorescence was detected at 555–

700 nm. Cells were imaged with a 63.0x/1.25 HCX PL APO

objective lens. Images were processed with Adobe Photoshop

software. Images shown are stacks of several confocal sections.

siRNA reverse transfection. RNA interference-mediated

gene knockdown was achieved using custom Stealth RNAiTM

siRNA designed using the BLOCK-iTTM RNAi Designer software

(Invitrogen), and its correspondent controls.10 nM RNAi duplex

was diluted in Opti-MEMH I Reduced Serum Medium (Invitro-

gen) and 5 ul of LipofectamineTM RNAiMAX (Invitrogen) was

added to each well containing the diluted RNAi. After mixing, the

complexes were incubated for 20 min at rt. After incubation,

approximately 0.15–0.256106 cells per well in complete growth

medium without antibiotics were added to the wells containing the

siRNA-lipid complexes. Cells were then cultured in normal growth

medium processed for RNA or protein extraction as indicated by

experimental procedure.

Western blotting. Cells were lysed in M-PER Mammalian

Protein Extraction reagent (Thermo Scientific) with protease

(Calbiochem) and phosphatase inhibitor (Thermo Scientific).

Equivalent amounts of protein (100 to 400 mg) from each sample

were diluted in 16 LDS sample buffer (Invitrogen) containing

100 mM DTT and incubated for 10 min at 70uC. After

denaturing, the mixture was cooled at rt for at least 15 min and

the protein was resolved by SDS-PAGE. The gel was transferred

onto polyvinylidene fluoride (PVDF) membrane and blocked by

incubation for 1 hr at rt in a solution 5% bovine serum albumin

fraction V (BSA) in Tris-buffered saline with Tween (TBST) at

pH 7.4, followed by overnight incubation at 4uC with primary

antibody in 5% BSA/TBST. Following 3 15-min washes with

TBST, membranes were incubated for 1 hr at rt with the

corresponding secondary antibody and washed 3 more times in

TBST. Membranes were developed using a chemiluminescence

assay system and proteins were visualized using Kodak exposure

film. Membranes were stripped using RestoreTM PLUS Western

blot stripping buffer (Thermo Scientific) with vigorous agitation for

10 min at rt, followed by 3 TBST washes.

Statistical Analysis
Two tailed T tests were performed using Microsoft Excel.
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