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A B S T R A C T   

Among all their sensations, agents need to distinguish between those caused by themselves and those caused by 
external causes. The ability to infer agency is particularly challenging under conditions of uncertainty. Within the 
predictive processing framework, this should happen through active control of prediction error that closes the 
action-perception loop. Here we use a novel, temporally-sensitive, behavioural proxy for prediction error to show 
that it is minimised most quickly when volatility is high and when participants report agency, regardless of the 
accuracy of the judgement. We demonstrate broad effects of uncertainty on accuracy of agency judgements, 
movement, policy selection, and hypothesis switching. Measuring autism traits, we find differences in policy 
selection, sensitivity to uncertainty and hypothesis switching despite no difference in overall accuracy.   

A significant challenge to an agent’s perceptual and decision-making 
processes is to distinguish between sensations that it can control, and 
those out of its control. For example, imagine you are working on your 
computer and it beeps. How do you know if you caused it, as opposed to 
a colleague emailing you? Influential theoretical work on predictive 
processing and active inference suggests that the brain relies on pre
diction errors to assess and test hypotheses about agency (Friston et al., 
2013), but empirical evidence for this suggestion is lacking. 

Inferring the relations between actions and their sensory conse
quences is riddled with uncertainty due to the complexities involved in 
deconstructing sensory evidence from the non-linear confluence of 
hidden causes. Sometimes when you click, the ensuing beep occurs later 
because the computer is updating its virus-software; other times, it 
happens straight away. The brain must represent this uncertainty at 
numerous hierarchical levels to identify when it is appropriate to attri
bute agency to oneself. In this example, the breadth of the distribution 
representing how long it takes for the beep to occur is the variability and 
the frequency of the virus-updates is the volatility (how often does the 
variability distribution change). Crucially, we do not yet know how this 
uncertainty changes ongoing decisions about which actions to perform 
when trying to explore and infer agency; thus, we have yet to explore 
how agents close the action-perception loop under uncertainty. 

A judgement of agency is the verdict that the agent was herself the 
source of a sensory event – the conscious “I did that” response. It is often 
(but not always) based on a sense of agency (or a feeling of authorship) 

during the movement. Predictability is often investigated in sense and 
judgement of agency paradigms by manipulating whether or not the 
identity (Bednark, Poonian, Palghat, McFadyen, & Cunnington, 2015; 
Engbert & Wohlschlager, 2007; Hughes, Desantis, & Waszak, 2013; 
Kuhn et al., 2011; Majchrowicz & Wierzchoń, 2018), timing (Hughes 
et al., 2013; Majchrowicz & Wierzchoń, 2018) and/or presence (Moore 
& Haggard, 2008) of a sensory outcome meets some prediction set up by 
the block-wise probability of each outcome. However, very few studies 
consider a more continuous distribution of deviations from the expected 
outcome (e.g., Zalla, Miele, Leboyer, and Metcalfe (2015)) and, to our 
knowledge, no previous studies have considered volatility (changes to 
such a distribution) in an agency paradigm. 

In classic agency experiments, there are so few actions available to 
participants that action-selection strategies (or policies) cannot easily 
change in response to changes in prediction error or uncertainty. In 
some designs, such as Desantis, Hughes, and Waszak (2012), specific 
actions trigger specific outcomes, but the participants are instructed to 
equally perform each action. This does not allow participants to explore 
and attempt to optimally vary policy-selection. In other studies, partic
ipants do have freedom to change strategy, and have online action 
outcome mismatches, but the dependent variables are not sensitive to 
these strategies and so the temporal dynamics of online decisions with 
respect to this error are unknown (Zama, Takahashi, & Shimada, 2017). 
This gap in knowledge is crucial for understanding how we distinguish 
self-generated and externally-caused sensations in the real world. The 

* Corresponding author. 
E-mail address: kelsey.perrykkad@monash.edu (K. Perrykkad).  

Contents lists available at ScienceDirect 

Cognition 

journal homepage: www.elsevier.com/locate/cognit 

https://doi.org/10.1016/j.cognition.2021.104598 
Received 9 July 2020; Received in revised form 7 January 2021; Accepted 8 January 2021   

mailto:kelsey.perrykkad@monash.edu
www.sciencedirect.com/science/journal/00100277
https://www.elsevier.com/locate/cognit
https://doi.org/10.1016/j.cognition.2021.104598
https://doi.org/10.1016/j.cognition.2021.104598
https://doi.org/10.1016/j.cognition.2021.104598
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cognition.2021.104598&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Cognition 210 (2021) 104598

2

current study sought to close this gap using a novel judgement of agency 
task that dynamically closed the action-perception loop while inde
pendently manipulating variability and volatility. 

To understand these missing components in the process of inferring 
agency, we turn to recent accounts of agency from predictive processing 
- an explanatory framework whose fundamental claim is that the brain’s 
function is to minimise the long-term average error between its expected 
and actual sensory input (prediction error) (Clark, 2015; Friston, 2010; 
Hohwy, 2013). In doing so it reduces uncertainty by refining models of 
the hidden causes of sensory input in the environment and in the agent 
itself. 

Prediction error can be minimised by updating expectations while 
passively receiving sensory input (perceptual inference; perception). 
Another way to minimise prediction error is through action, by selec
tively sampling sensory input to satisfy beliefs about sensory input in 
future states of the world and the agent’s own body, given certain ac
tions (active inference; action) (Friston, 2017). Previous agency research 
has focused on perceptual inference in the context of agency, and has not 
interrogated the ongoing process of active inference. 

Under an active inference account, agency attribution would occur 
by minimising the divergence between the predicted outcomes of 
available policies for action and the most probable future sensory states; 
in other words, when there is a belief that goals can be reached from the 
agent’s current state (Friston et al., 2013; Friston, Samothrakis, & 
Montague, 2012; Hohwy, 2015). Thus, precision (i.e., the inverse of 
uncertainty) of these inferences is important (Friston et al., 2013) and 
lead us to investigate the effect of such variability on actions, prediction 
error and inferred agency. 

According to active inference, the very purpose of action is then to 
minimise expected prediction error. To understand how this plays out in 
the action-perception loop it is then essential to reveal the interplay 
between action selection and the magnitude of prediction error at a 
given time, under a given policy. For the critical case of agency attri
bution, it is not known how an agent infers policies that may help reduce 
uncertainty about agency; this is mainly because thus far its magnitude 
has been under the control of experimenters, not participants them
selves. Here, rather than dictating the magnitude of prediction error and 
measuring effects on behaviour and neural processes, we instead mea
sure the prediction error itself and allow participants to control it with 
their actions. 

The most straightforward expectation for active interrogation in an 
action-perception loop is that, where possible, policies are inferred which 
minimise prediction error. Part of the difficulty in testing this prediction is 
finding an appropriate way to measure prediction error. Here, we oper
ationalise prediction error using eye position to calculate the evolving 
divergence between hand-movement and stimulus trajectories. Eye- 
tracking indicates moment-to-moment beliefs about agency which can 
be tested by mouse-movement. We predict that variability and volatility 
will have independent effects on movement patterns and policy selection, 
as well as on prediction error minimisation and subsequent judgements of 
agency. Specifically, high variability allows less precise representation of 
control states, which predicts more repetitive policy selections (Perrykkad 
& Hohwy, 2020a), more prediction error and less accurate judgements of 
agency. High volatility suggests potentially discoverable interfering hid
den causes, predicting more policy exploration and more variance in 
prediction error which could aid accurate inference of agency. Indepen
dent of accuracy, we expect a positive correlation between agency-driven 
prediction error minimisation and judgements of agency, partly based on 
active inference theory and partly on prior literature on the role of 
prediction-expectation mismatch for agency reports. 

It is instructive to consider how prediction error minimisation might 
differ in clinical or subclinical populations because such comparisons 
help reveal how the prediction error mechanisms work. We focus here 
on predictive processing accounts of autism, according to which autistic 
individuals have difficulty abstracting causal rules to higher statistical 
levels, and thus classify more uncertainty as irreducible. This has been 

theorised to be due to weaker priors, weightier prediction errors or 
hyper-flexible estimates of volatility, which all result in a higher 
learning rate in autism (for review and details, see Palmer, Lawson, & 
Hohwy, 2017). Manipulation of uncertainty in tasks that rely on 
perceptual inference has been shown to change performance in autistic 
populations (Lawson, Mathys, & Rees, 2017). Characteristic differences 
in action in autism, such as restricted and repetitive behaviours, may 
indicate differences in active inference in variable environments 
(Palmer, Lawson, & Hohwy, 2017). Previous research, not framed in 
terms of predictive processing, has used basic versions of the task we use 
here, and found no difference between groups of autistic and non- 
autistic participants (Grainger, Williams, & Lind, 2014; Russell & Hill, 
2001; Williams & Happé, 2009), however, we predict the relationship 
between autism traits and agency attribution should be specific to in
teractions with uncertainty in the environment as the action-perception 
loop is dynamically closed (cf. Zalla et al. (2015)). This in turn speaks to 
underexplored topics in autism research relating to the sense of self and 
agency (Perrykkad & Hohwy, 2020b). Hence, here we additionally 
measured autistic traits in our sample and we predict that uncertainty 
will differently affect policies for movement and prediction error mini
misation for participants along this scale. 

1. Methods 

1.1. Participants 

Fifty neurotypical adult participants were recruited. Ten participants 
were excluded: five participants were removed for technical errors in 
recording, two for poor quality eye-tracking data (>35% lost trials) and 
three for poor accuracy (<45%). The final sample of 40 participants 
were primarily undergraduate students (55%, the remainder had 
completed tertiary degrees) with an overall mean age of 22.8 years (SD: 
3.65, range: 18–34) and included 24 female participants. None of the 
participants reported neurological conditions, taking medications which 
affect cognition, nor a history of drug abuse. One participant reported a 
diagnosis of depression, and one of ADHD, removing these participants 
did not affect the primary results of interest (see supplementary mate
rials). Two participants reported previously suffering a blow to the head 
that rendered them unconscious. All participants were fluent in English, 
had normal or corrected-to-normal vision and 95% were right handed. 
This study was approved by Monash University Human Research Ethics 
Committee (Project Number 11396). The experiment was conducted in 
accordance with the relevant guidelines and regulations, and all par
ticipants signed informed consent documents upon commencing the 
protocol. 

1.2. Autism quotient 

None of the participants were previously diagnosed with Autism 
Spectrum Disorder or its nominal variants. All participants completed 
the Autism Quotient questionnaire (Baron-Cohen, Wheelwright, 
Skinner, Martin, & Clubley, 2001) to quantify autistic traits. The mean 
AQ score was 21.43 (SD: 5.89, range: 12–38). 

1.3. Experimental task design and procedure 

For a schematic diagram of the experimental set up, task and 
experimental manipulation, see Fig. 1 and a video of the task is available 
at https://figshare.com/s/fd2742b897e21d901dd0 (DOI: 10.261 
80/5eabbfb9a8aa4). 

Testing was conducted in a quiet, darkened room. Participants were 
seated at a table with a chin rest set to a comfortable height, 84 cm from 
the screen, and approximately 55 cm from eye to eye-tracking camera. 
The task was completed using a computer mouse in the participant’s 
dominant hand which was hidden in a curtained box (base dimensions: 
32 cm wide x 30 cm deep). Their opposite hand gave judgement of 
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agency responses using the numbers on a keyboard. Participants had 
self-timed breaks between blocks. 

We implemented a variant of the Squares Task (Grainger et al., 2014; 
Russell & Hill, 2001; Williams & Happé, 2009), presented using 
Psychtoolbox-3.0.14 version beta in Matlab 2017b (Mathworks, Natick, 
Massachusetts) on a 1920 × 1080 screen (60 Hz refresh rate). Eight 
randomly coloured squares (100px2) appeared in an array at the 
beginning of each trial. All the squares moved when the mouse was 
moved and all the squares stopped when the mouse stopped, so partic
ipants had to move in order to accurately complete the task. Participants 
were given 15 s to identify the target square which they controlled. 
Distracter squares moved at a random angle offset from the vector of 
mouse movement, and this angle was also independently and randomly 
changed (and smoothly transitioned) five times in each trial. This means 
that each distracter square appeared to turn five times when the 
participant did not initiate a turn, breaking any illusion of control 
resulting from motor adaptation. Other than these turns, because the 
distracter squares took mouse input as part of determining their tra
jectory (mouse movement + angular offset + variability), the structural 
features of the motion of the target square (mouse movement + vari
ability) and distracter squares were identical. There were also less 
frequent no-control trials in which all the eight squares were distracter 
squares. After the 15 s, all squares froze and were numbered, and 
prompted an unspeeded numerical response from participants indi
cating which square they controlled or ‘0’ if they thought they controlled 
none of the squares. 

There were four uncertainty conditions in a 2 × 2 design (variability 
× volatility). Some jitter was added to all squares (variability), such that 
depending on the condition, there was a range (95% CI) of random noise 
around the mean angle input by the mouse (or the mouse angle + dis
tractor offset for distractors). This specified range also changed 
throughout the trial; the number of these changes was specified by the 
volatility. In the low variability condition, the distribution switched be
tween a 10◦ and 30◦ 95% confidence interval on either side of the mean, 
and for high variability, it switched between 90◦ and 110◦. The volatility 
manipulation decided how frequently the variability changed between 
these two distributions. In the low volatility condition, the variability 
changed three times, while in high volatility, there were 10 changes 
(pseudo-randomly timed with at least 50 frames between). Each trial’s 
starting distribution was randomly selected. So, for example, in blocks of 
the low variability, low volatility condition, if the distribution started with 
10◦, the target square was initially jittering within a 95% confidence 
interval spanning 10◦ either side of the input mouse angle, and this 

distribution randomly changed three times during the trial (so widened 
to ±30◦, then narrowed to ±10◦, then back to ±30◦) with a minimum of 
833 ms between these changes in variability (see Fig. 1). There were two 
blocks of each condition (variability-volatility pair) with 18 trials per 
block (16 agentive trials, 2 no-control trials) and block order was ran
domized for each participant. 

Prior to completing the task blocks, participants engaged in an 
interactive instruction demonstration. During the instruction period, 
participants were given control of a square and the features of the 
experiment were slowly introduced with text explanations. For instance, 
on the first page of the instructions, participants were shown one square 
with no variability added, and the text read: “This is you. Try moving 
around the screen…”. On subsequent screens features such as wrapping 
around the screen edge, random colours between trials, variability 
(“Sometimes, the square will not perfectly match your movements, but 
they are pretty close! Try this…”), distracter squares, and the typical 
trial structure (“In each trial, you will have 15s to determine which 
square is you. The colours and starting positions are random, so do not 
rely on them! You only get information about which one is you by 
moving around the screen.”) including how to respond were slowly 
introduced. Participants then completed a practice block containing 
sixteen total trials consisting of all trial types, which was excluded from 
all analyses. Participants received feedback following practice trials and 
summative feedback following the practice block. No feedback was 
given in the main task. 

At the end of the experiment there was a short motor control task. In 
this task, participants were asked to move a perfectly controllable square 
along a white path as fast and as accurately as possible. There were 10 
predesignated paths ranging in length and complexity. This task allowed 
us to quantify participants’ ability to execute motor intentions. 

1.4. Analysis 

1.4.1. Behaviour 
Performance on the motor control task was summarised by multi

plying average area traversed outside the white path by average reaction 
time. This index accounts for the speed-accuracy trade-off, where low 
scores indicate better motor performance. 

In the ‘squares’ task, accurate trials were those in which participants 
either correctly identified the target square, or correctly identified that 
there was no such square (no-control trials). Accuracy was the primary 
measure of overall task performance. 

The time spent moving on each trial was calculated in seconds. This 

Fig. 1. Task and manipulation. 
The participants’ task involved using a hidden mouse to con
trol eight squares on the screen. The mean of the target 
square’s movement was the participants’ movement, and dis
tractor squares moved at a random angle offset from mouse 
movement. Jitter was added to the motion of all squares 
depending on the condition. In low variability blocks, the 95% 
confidence interval from which jitter was sampled switched 
between ±10◦ (light blue) and ± 30◦ (dark blue), and for high 
variability, it switched between ±90◦ (yellow) and ± 110◦

(brown) around the input movement or offset. In low volatility 
the distribution changed three random times per trial (light 
grey), and in high volatility it changed ten times (dark grey). 
See also https://figshare.com/s/fd2742b897e21d901dd0 
(DOI: 10.26180/5eabbfb9a8aa4) for a video demonstration. 
(For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.)   
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served as a proxy for environmental sampling, as participants were 
given freedom to start and stop moving as they pleased though only got 
task-relevant information by moving. 

The speed of movement was calculated as the average pixels moved 
per frame, acceleration as change in speed per frame, and jerk as the 
change in acceleration per frame. Derivatives to the level of jerk were 
analysed to investigate the minimum jerk hypothesis of motor control 
(Wolpert, 1997) and for its possible relationship to movement trajec
tories in autism and its traits (Palmer, Paton, Hohwy, & Enticott, 2013; 
Palmer, Paton, Kirkovski, Enticott, & Hohwy, 2015). 

On each frame, the participant’s angle of motion was discretised into 
one of eight cardinal directions. These were plotted for visual inspection. 
Participants were found to primarily move in the cardinal directions (up, 
down, left, right), with smaller peaks at the diagonal midpoints. These 
plots, in combination with observation of trial replays, informed sub
sequent policy definition. A turn was defined as any change in direction 
which was preceded by at least three frames of one direction and sus
tained for at least three frames. More than simply sampling, which also 
occurred in straight movements, turning involves participant induced 
intervention on expected stimuli direction. These turns were further 
grouped into types, which were taken to indicate the participant’s pol
icy. These are pictorially and algorithmically defined in the Supple
mentary Materials. In brief, six policy types were identified: 1) 
Horizontal, 2) Vertical, 3) Perpendicular-Cardinal, 4) Non-Cardinal, 5) 
Hesitant-straight and 6) Circle. Note that rounded corners and circles 
were redefined for analysis as one turn each as they are taken as a 
unified intent of intervention by the participant. 

While none of these policies has an a priori advantage over any other 
for task performance, we were interested in how flexible each partici
pant was in switching between policies. For each policy, we created a 
mean percentage of turns that were of that type, across all conditions. 
We defined a participants’ dominant policy as the policy which had the 
highest percentage of turns across the entire experiment. This allowed us 
to look at the number of turns in each trial which were of the partici
pants’ dominant policy as compared to alternative policies, as a proxy 
for exploratory behaviour (i.e., more dominant policy use as exploitative 
policy selection, less dominant policy use as exploratory). The number of 
turns on each trial which fell into a participants’ dominant policy were 
used for this analysis. 

1.4.2. Eyetracking 
Binocular eyetracking data was collected using the SR Research 

Eyelink 1000 system. For each participant, binocular thirteen-point 
calibration was conducted; where calibration was unsuccessful using 
both eyes, one eye was used. The screen x and y coordinates were pre
processed for analysis. Preprocessing involved removing any values 
outside of the screen bounds, interpolating eyeblinks (as defined by 
pupil size outside of 1.5 standard deviations below to 2 standard de
viations above participant average pupil size), applying a Hanning 
window of 15 samples (93% overlap) to smooth the eyetrace, and 
replacing temporarily lost values in one eye with valid data from the 
other eye (including for whole trials if one eye was excessively noisy). 
Data was then epoched into trials, and downsampled to match the 
stimuli framerate for alignment with behavioural data. Trials with poor 
signal were defined as those with more than 30% of the samples inter
polated in both eyes, or whose recorded behavioural data was outside of 
two standard deviations above or below the participants mean recorded 
trial length (as the source of these outliers could not be identified). For 
the final sample of participants, there were a maximum of 65 poor-signal 
trials (mean = 33.4). Poor-signal trials were removed from all analyses 
(including behavioural only dependent variables above). 

The square the participant was looking at was determined by a novel 
biased-nearest-object method (see Supplementary Materials), which 
assumes that at a given moment the participant is looking at one square. 
While this assumption is nearly always correct, observation of the replay 
of many trials during development of this method (see also task 

demonstration video: https://figshare.com/s/fd2742b897e21d901dd0 
(DOI: 10.26180/5eabbfb9a8aa4)) showed occasionally participants 
did not fixate or smoothly pursue one square at a time, instead seemingly 
relying on peripheral vision. This was likely the participants initially and 
temporarily tracking multiple squares to narrow down their next hy
pothesis, consistent with multiple object tracking literature (Fehd & 
Seiffert, 2008). Times of hypothesis switch from one square to another 
were defined as any change in the looked-at square that lasts longer than 
one frame. 

The Euclidean distance between the expected location (had the stimuli 
followed the mouse) and the actual location of the hypothesised square 
was calculated as a proxy for prediction error. This means that the pre
diction error is contingent on how quickly the participants move (the 
error is higher if they move faster). Due to the manipulation, low vari
ability trials accrue less prediction error on average than high variability 
trials. The prediction error is also impacted by the magnitude of the dis
tracter’s angular offset when the hypothesised square is not the target, so 
the quality of the hypothesis will affect prediction error. The average 
prediction error for each participant was calculated across each trial. The 
slope of prediction error, representing the rate of prediction error mini
misation, was the slope of the line of best fit of the average prediction 
error at each time point in each condition for each participant (see Fig. 5a 
and c). As such, negative values here represent prediction error mini
misation, while positive values represent accumulating prediction error. 

Finally, given the temporal resolution of our prediction error mea
sure, we were interested in the pattern of prediction error around key 
temporal events – namely hypothesis switches and changes to the 
variability distribution (due to volatility). We call these analyses event- 
related prediction errors (ERPE). A one second epoch was centred on the 
event of interest (time zero) and prediction errors were averaged for 
each participant in each condition to create an average pattern of ac
tivity around the event. Means over five 200 ms time bins for each 
participant were taken for statistical analysis (bin number three is 
centered on the event onset, see Fig. 6a). There was no effect of time-bin 
in the volatility ERPE analysis, hence these are reported in the Supple
mentary Materials. 

1.5. Statistics 

All statistical analyses were conducted as Mixed Linear Models (MLM) 
using Jamovi version 1.1.4 and the GAMLj module (Gallucci, 2019; R 
Core Team, 2018; The Jamovi Project, 2019). Trial-wise data was used for 
all dependent variables except prediction error slopes and ERPEs for 
which condition-wise data was used. Variability and volatility were 
modelled as simple fixed effect factors, and AQ score was modelled as a 
continuous fixed effect. All interactions between fixed effects were 
included. By-participant random intercepts were included to address the 
non-independence of subject-level observations across trials and capture 
individual variability in task performance. Compared to traditional 
methods, this approach affords more sophisticated handling of missing 
and outlying data, thus improving the accuracy, precision, and general
isability of fixed effect estimates (Singmann & Kellen, 2020). See Table 1 
for additional covariates for each model. Degrees of freedom are reported 
as estimated by the Satterthwaite method. Post-hoc analyses were con
ducted with Bonferroni correction for multiple comparisons and post-hoc 
p-values are reported with this correction. For ease of interpretation, post- 
hoc tests for interactions with AQ were simple effects contrasting par
ticipants with three levels of autism traits: low (<Mean-1SD = 16, n = 6), 
within one standard deviation from the mean, and high (>Mean + 1SD =
27, n = 6) scores. 

1.6. Data availability 

The dataset used for Results, Table 1, and Figs. 2–6 is freely available 
at https://figshare.com/s/77dececaa2b966db4cf7 (DOI:10.26180/ 
5ed0708f103a2) (Perrykkad, Lawson, Jamadar, & Hohwy, 2020). 
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Table 1 
Significant results summary.   

Dependent 
Variable 

Additional 
Covariate 

M.E. 
Variability 

M.E. 
Volatility 

M.E. AQ Var*Vol Var*AQ Vol*AQ Var*Vol*AQ 

Task Accuracy  *** 
low>high   

** 
effect of var. is 
stronger in high 
vol    

Movement 
and 
Strategy 

Time Spent 
Moving 

Time to 
Movement 

*** 
low<high      

*** 
only for high AQ in high 
var.: low vol > high vol 

Speed  *** 
low>high   

*** 
low var. high vol 
> both low vol & 
high high; low 
low>high high    

Acceleration  *** 
low<high  

* 
decreasing 
with AQ     

Jerk         
Turning 
Behaviour  

*** 
low>high   

* 
effect of var. is 
stronger in low vol    

Dominant 
Policy Use 

Number of 
Turns      

*** 
in low AQ 
low vol <
high vol. In 
high AQ, low 
vol > high 
vol 

* 
the low AQ*vol diff. is 
lost in high variability 

Hypothesis 
Switches  

*** 
low>high   

** 
in low var. only 
low vol < high vol    

Prediction 
Error 

Average 
Prediction 
Error 

Accuracy 
(and all 
interactions) 

*** 
low<high    

*** 
var. 
difference is 
smaller in 
high AQ   

Condition- 
wise Slope  

*** 
low<high! 

* 
low>high        

M.E. 
Agency 

M.E. 
Accuracy 

M.E. AQ Accuracy*Agency Accuracy*AQ Agency*AQ Accuracy*Agency*AQ 

Agency-wise 
Slope  

*** 
not>agent   

*** 
in no agency 
judgement there is 
no diff. between 
correct and 
incorrect   

* 
High AQ there is no diff. 
between accuracy; Low 
AQ when judge agency 
correct<incorrect, 
reverse when no-agency 
and no diff. between 
agency in incorrect   

M.E. 
Variability 

M.E. 
Volatility 

M.E. AQ Var*Vol Var*AQ Vol*AQ Var*Vol*AQ 

Volatility 
ERPE 

Average 
Prediction 
Error 

* 
low<high       

Hypothesis 
Switch ERPE 

Average 
Prediction 
Error; 
Hypothesis 
Switches 

*** 
low>high 

* 
low<high  

** 
only in low var., 
low vol < high vol      

… M.E. Time 
Bin 

AQ*Time 
Bin 

Var*Time Bin …   

*** 
T2 and T3 
(event) 
are>T1, 
T4, T5 
which are 
equal 

*** 
In T3, AQ is 
negatively 
associated 
with 
prediction 
error 

*** 
Only in low var. 
T2 > T1, bigger 
var. diff. at T3   

For variables, M.E. = Main Effect, * = Interaction, For results, * = p ≤ 0.05, ** = p ≤ 0.01, *** = p ≤ 0.001 (Post-hoc values Bonferroni corrected for multiple 
comparisons), Var = Variability, Vol = Volatility, AQ = Autism Quotient, T1-5 = Time bins 1–5, diff. = difference, !See Supplementary Materials. 
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2. Results 

In this section, we summarise all statistical models in three sections, 
first, covering overall task performance, second, the movement and 
strategy measures, and last, prediction error measures. For each section, 
we describe the effect of uncertainty on the dependent variables fol
lowed by AQ results (though all statistical models included all fixed 
factors as above). For brevity, we report only main effects of uncertainty 
in the movement and policy variables. Full statistical reporting is 
included in Supplementary Materials. See also Table 1 for a summary of 
all significant results. Performance on the motor control task did not 
significantly correlate with AQ (r = 0.07, p = 0.65) or overall accuracy 
(r = − 0.21, p = 0.20), and so was not included as a random effect in any 
mixed model. 

2.1. Overall task performance: judgement of agency 

Average accuracy in the judgement of agency task (Fig. 2) was 
moderately high across conditions (μ = 81.0%, σ = 9.12%). MLM results 
show a significant main effect of variability (F(1,4664) = 85.07, p <
0.001) such that accuracy was approximately 10% higher in the low 
variability condition than in the high variability condition. Additionally, 
there was a significant interaction between variability and volatility (F 
(1,4665) = 8.62, p = 0.003). Post-hoc analysis revealed significant dif
ferences in all comparisons between the four conditions (z = 4.41–8.66, 
p < 0.001) except between low and high volatility when variability 
remained constant (low/low vs low/high p = 0.421, high/low vs high/ 
high p = 0.115). This result indicates that while volatility does not make 
a significant difference to accuracy on its own, the effect of variability on 
accuracy was stronger under high volatility. There was no significant 
effect of AQ on accuracy. 

2.2. Movement characteristics and policy selection 

Participants moved for an average of 13.7 s per trial (σ = 1.55, 
Range = 3.95–15.1). An MLM comparing the average duration of each 
trial spent moving across conditions (with the additional fixed effect of 
time to movement on each trial to account for possible confound) found 
a significant main effect of variability (Fig. 3a; F(1,4660) = 727.71, p <
0.001). Participants moved for longer in high variability conditions 
compared to low variability conditions by an average of 801 ms. 

An MLM analysis on average speed of movement revealed a signifi
cant main effect of variability (Fig. 3b; F(1,4661) = 36.42, p < 0.001) 
such that participants moved faster in the low variability condition 
compared to high (z = 6.03, p < 0.001). An MLM on acceleration 
showed a main effect of variability (Fig. 3c; F(1,4664) = 12.68, p <
0.001), with faster average acceleration in the high variability trials, 
compared to low (z = 3.56, p < 0.001). An MLM on jerk showed no 
significant results (Fig. 3d). 

On average, each trial contained 35 turns (Fig. 3e; σ = 13.9, Range =
6–107). An MLM on turn count showed a significant main effect of 

Fig. 2. Accuracy. 
Proportion of trials where participants chose the correct square. Participants 
were more accurate in low variability (blue) than high variability (orange), and 
this difference was more pronounced under high volatility (right) than low 
(left). Error bars are 95% CI. 

Fig. 3. Movement and strategy. 
These graphs depict movement and strategy variables 
(except dominant policy use, see Fig. 4) across all 
participants. Volatility is along the x-axis for each 
graph. Orange bars represent high variability, blue 
bars represent low variability. Error bars are 95% CI. 
a) shows mean duration of each trial spent moving, 
controlling for time to movement onset on each trial; 
b) shows average speed of movement, c) average 
acceleration and d) average jerk; e) shows average 
turn count on each trial; f) shows the average number 
of hypothesis switches on each trial, when the 
participant moves their eyes from one square to 
another. (For interpretation of the references to 
colour in this figure legend, the reader is referred to 
the web version of this article.)   
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variability (F(1,4661) = 346.22, p < 0.001) such that participants 
turned more frequently in low variability than high variability trials (z 
= 18.61, p < 0.001). The dominant turn-types (policies) in order of fre
quency across participants were Non-Cardinal (n = 22), Hesitant- 
straight (n = 14), Horizontal (n = 3) and Circle (n = 1). On average, 
in each trial, participants used their dominant policy 39.3% of the time 

(σ = 16.0, Range = 0–100), and within each participant, the average 
percent of turns on each trial that were of their dominant policy ranged 
from 30.1% to 51.9%. For the MLM on dominant policy turn count for 
each trial, the additional covariate of absolute number of turns on each 
trial was included to account for this confound. There were no signifi
cant main effects. 

Fig. 4. Dominant policy use. 
The turns participants made were categorised into types. This figure shows the number of turns in the participants’ own dominant strategy, controlling for total 
number of turns. For participants with low AQ (<16, panel a), only for low variability trials (blue), participants used their dominant policy more in high volatility 
(right) than low (left). For participants with AQ scores within one standard deviation of the mean (panel b), there was no difference between volatility conditions 
(left/right). In both variability conditions (blue and orange), participants with high AQ (>27, panel c) used their dominant policy more in low volatility (left) than 
high (right). Error bars are 95% CI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Prediction error average and gradient. 
Panel a) shows the grand average prediction error 
across the trial split by condition with lines of best fit 
for each. The box at the end of the graph shows the 
average prediction error across trials in each condi
tion. Panel b) shows the mean gradient or slope for 
the lines of best fit for each participant under 
different levels of volatility. Data used for the box at 
the end of panel a) is adjusted to account for the in
fluence of accuracy. Panel c) shows the grand average 
prediction error across the trial split by correct 
(green) and incorrect (purple) trials and whether the 
participants chose a square (Judged Agency, dark 
colours) or said that it was a no-control trial (Judged 
No Agency, light colours) with lines of best fit for 
each. Panels d-f show the mean gradient or slope for 
the lines of best fit for each participant in each 
combination, split by AQ score. Error bars are 95% 
CI. (For interpretation of the references to colour in 
this figure legend, the reader is referred to the web 
version of this article.)   
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On average participants switched hypotheses 42.2 times per trial 
(Fig. 3f; σ = 13.48, Range = 6–134). An MLM on hypothesis switch 
counts in each trial showed a main effect of variability (F(1,4661) =
195.91, p < 0.001) such that participants switch hypotheses more when 
variability is low than when it is high (z = 14.00, p < 0.001). 

These findings suggest that participants’ movement was strongly 
affected by increased environmental variability, causing participants to 
move more, move slower but accelerate more quickly, and switch hy
potheses less often. 

2.3. Autism traits and movement and policy 

For the dependent variable of time spent moving, there was a sig
nificant three-way interaction between AQ, variability and volatility (F 
(1,4660) = 11.37, p < 0.001). Post-hoc tests showed that for participants 
with high AQ only, under high variability only, participants moved for 
an average of 200 ms longer in low volatility than high volatility con
ditions. Additionally, the model considering acceleration showed a main 
effect of AQ (F(1,38) = 5.73, p = 0.022), such that mean acceleration 
decreased with increasing AQ (R2 = -0.011, p < 0.001). There were no 
significant findings relating to autism traits across other movement 
characteristics. 

Considering how participants across the AQ range changed their 
policies in response to uncertainty, the model for dominant policy use 
showed a significant interaction between AQ and volatility (F(1,4660) 
= 19.17, p < 0.001), and a significant three way interaction between 
AQ, variability and volatility (Fig. 4; F(1,4661) = 4.27, p = 0.039). Post- 
hoc analyses for the two-way interaction showed that for low AQ 
(Fig. 4a) participants used their dominant policy more in the high 
volatility condition (z = 2.14, p = 0.032), but only when variability was 
low (z = 2.92, p = 0.004), otherwise volatility made no difference (z =
0.10, p = 0.918). For high AQ (Fig. 4c) participants used their dominant 

policy more in the low volatility condition (z = 4.05, p < 0.001), 
regardless of the variability (high: z = 2.20, p = 0.028; low: z = 3.53, p 
< 0.001). 

These findings suggest that different levels of autism traits were 
associated with differences in the quantity of sampling behaviour, dif
ferences in fine-grained movement qualities and differences in the 
flexibility of policy-selection itself. 

2.4. Prediction error 

Across all participants, the average calculated prediction error per 
trial was 10.5 pixels per frame (Fig. 5a; σ = 4.93, Range = 0.43–50.1). 
An MLM analysis with the addition of accuracy and all of its interactions 
with the other fixed factors revealed that, as expected, average predic
tion error across each trial was significantly associated with the vari
ability condition (F(1,4653) = 284.05, p < 0.001). 

Comparing the slope of prediction error in each condition, an MLM 
with the addition of accuracy as a random effect revealed a significant 
main effect of variability (F(1,114) = 58.15, p < 0.001), which indicated 
that there was more prediction error minimisation in the low variability 
condition (lower gradient) than the high (See Fig. 5a; t = 7.63, p <
0.001). However, this main effect may be explained by a confound of the 
effect of accuracy which could not be modelled as a fixed effect due to 
high correlation between the effect of variability and the effect of ac
curacy on this dependent variable (see Supplementary Materials for a 
model including accuracy as a random effect in which the significant 
main effect is removed). There was also a marginally significant main 
effect of volatility (F = 3.96, p = 0. 049), which showed steeper pre
diction error minimisation in high volatility compared to low volatility 
(See Fig. 5a and b, t = 1.99, p = 0.049). 

To investigate the relationship between prediction error mini
misation and the participant’s judgements, we performed an MLM with 

Fig. 6. Hypothesis switch event-related prediction error (ERPE). 
Panel a) shows the grand average (blue line) prediction error across participants in a one second epoch centered on hypothesis switches. Time bins used for statistical 
models are represented in grey shaded bars below. Data used in statistical models, and therefore in panels b) and c) is adjusted for average prediction error dif
ferences between conditions and average number of hypothesis switches. Panel b) shows average prediction error in each time bin for each condition. There is more 
prediction error in this epoch in low variability (blue) conditions than high (orange). This difference is greatest in time bin three, at the time of the event. In low 
variability (blue), low volatility (light blue) conditions showed less prediction error in this epoch than high (dark blue). Time bin three has the greatest prediction 
error, followed by time bin two, and none of the others are significantly different from each other. The increase from time bin one to two is only significant in low 
variability (blue). Panel c) shows the data split by AQ score - lower AQ scores (lightest blue) are associated with greater prediction error at the time of the event (time 
bin three). Error bars and shading are 95% CI. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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a different structure. For each participant, a linear fit to prediction error 
across trials with the same accuracy and agency judgement served as the 
dependent variable. AQ score, accuracy and agency were included as 
fixed effects, and participant as a random intercept. This MLM showed a 
main effect of agency (F(1,113) = 82.89, p < 0.001) and an interaction 
between agency and accuracy (Fig. 5c; F(1,113) = 12.79, p < 0.001). 
Agency was associated with increased prediction error minimisation (t 
(113) = 9.10, p < 0.001). Post-hoc tests for the interaction showed that 
only when participants judge that they did not control any of the stimuli 
was there no difference in prediction error minimisation between cor
rect and incorrect trials (t(113) = 1.74, p = 0.51). When participants 
judge that they did have agency, there is more prediction error mini
misation when they are correct than incorrect (t(113) = 3.31, p =
0.007). However, when considering either only the correct or incorrect 
trials, prediction error minimisation was steeper when participants 
judged that they had agency (correct: t(113) = 9.00, p < 0.001; incor
rect: t(113) = 3.89, p = 0.001;) which confirms that the judgement of 
agency was associated with steeper prediction error minimisation 
regardless of accuracy. Numerically, the mean slope of the prediction 
error was only negative (indicating successful prediction error mini
misation) when participants were both accurate and judged that they 
had agency. 

To look at the effect of uncertainty and AQ score on dynamics of 
prediction error and hypothesis testing, we performed an MLM on the 
ERPE centered on hypothesis switches. In addition to the standard MLM, 
we included time-bin as an additional fixed effect of interest and average 
prediction error and average number of hypothesis switches in each 
condition as fixed-effect covariates. Fig. 6a shows the timeseries for the 
average prediction error across conditions and participants in the ana
lysed epoch. There were significant main effects of variability (F(1,512) 
= 125.10, p < 0.001), volatility (F(1,719) = 6.14, p = 0.013) and time- 
bin (F(4,719) = 252.29, p < 0.001) and two-way interactions between 
variability and volatility (Fig. 6b; F(1,729) = 10.76, p = 0.001) and 
variability and time-bin (F(4,719) = 17.94, p < 0.001). Time bins one, 
four and five were not significantly different from one another (t(720) =
0.06–1.55, p = 1.00) but the others were all significantly different from 
one another (t(720) = 5.24–26.79, p < 0.001), indicating a significant 
increase before the hypothesis switch starting at least 300 ms before, and 
a drop after back to the initial level of prediction error. Post-hoc analyses 
into the main effect of variability showed that low variability conditions 
had greater prediction error around the time of a hypothesis switch than 
did high variability conditions (t(519) = 11.09, p < 0.001), which is the 
inverse of the pattern for average prediction error across the whole trial. 
Post-hoc analysis of the interaction between time-bin and variability 
showed that the difference between variability conditions held across all 
time bins surrounding the hypothesis switch (t(697) = 6.15—13.81, p <
0.001), but that this difference was greater during time bin three (3.89 
pixels, greater than other bin averages by at least 1.69 pixels). Further, 
only in low variability is there a significant increase from time bin one to 
two (t(720) = 6.15, p < 0.001), indicating the increase may occur closer 
to the event in high variability conditions. While overall, low volatility 
was associated with less prediction error than high volatility around the 
time of hypothesis switches (t(721) = 2.48, p = 0.013), post-hoc analysis 
of the interaction between variability and volatility showed that this 
only holds when variability was low (t(727) = 4.07, p < 0.001). The 
main effects of this analysis also hold when data is restricted to only 
incorrect trials, suggesting this result is not driven by an artefact of trial 
accuracy (see Supplementary Materials for full statistical model and 
figure). 

These findings suggest that increased prediction error minimisation 
is associated with increased volatility and correctly and positively 
inferring agency. We have also shown that hypothesis switches function 
to reduce rising prediction error, and that the dynamics of minimising 
prediction error in this way is affected by environmental uncertainty at 
the levels of both variability and volatility. 

2.5. Autism traits and prediction error 

The model considering the effect of uncertainty and autism traits on 
average prediction error across a trial showed a significant interaction 
between variability and AQ (F(1,4653) = 10.58, p = 0.001). Post-hoc 
analyses of the variability × AQ interaction showed that the difference 
between variability conditions decreases as AQ increases (though they 
are still significantly different across all AQ scores; z = 9.01–14.44, p <
0.001). 

Additionally, the MLM considering agency, accuracy and AQ showed 
a three-way interaction between these variables (F(1,113) = 5.69, p =
0.02). Post-hoc analyses showed no difference between agency judge
ments for incorrect trials for participants with a low AQ score (Fig. 5d; F 
(1,113) = 3.51, p = 0.064), but otherwise, when participants judged that 
they had agency over one of the stimuli, the slope of their prediction 
error was lower, indicating that they were more effective at minimising 
prediction error (t(113) = 9.10, p < 0.001) (both the mean and high AQ 
groups, and when correct in low AQ). Further, while low AQ partici
pants’ prediction error was maximally sensitive to accuracy (lower 
slopes when correctly judging agency than incorrectly doing so, F 
(1,113) = 10.06, p = 0.002; and lower slopes when incorrectly denying 
agency than when correctly doing so, F(1,113) = 7.75,p = 0.006); high 
AQ participants’ prediction error was not sensitive to accuracy at all 
(Fig. 5f; F(1,113) = 0.11–2.29, p = 0.13–0.74). Participants with a mean 
AQ showed the appropriate difference only when they judged that they 
had agency (F(1,113) = 10.99, p = 0.001). 

Looking at the prediction error dynamics limited to the epoch around 
hypothesis switches showed a significant interaction between AQ and 
time-bin (Fig. 6c; F(4,719) = 12.16, p < 0.001). Post-hoc analysis 
showed a significant difference only in time-bin three (the time of the 
event) depending on the AQ score (F(1,50) = 8.58, p = 0.005). A further 
Pearson’s correlation test of AQ by prediction error in this time-bin 
showed that as AQ increased, the prediction error at the time of a hy
pothesis switch decreased (r = − 0.21, p < 0.001). 

These findings suggest that uncertainty in the environment differ
entially affects participants’ prediction error depending on measured 
autism traits, including the relationship between prediction error min
imisation and judgement of agency, and propensity to switch hypotheses 
in response to increasing prediction error. 

3. Discussion 

In this experiment, we closed the action-perception loop to investi
gate how uncertainty in self-caused sensations influences successive 
choices about which actions to perform to infer agency. Unlike many 
previous studies, these actions were freeform and temporally contiguous 
with ongoing sensory consequences. We showed that action selection 
changes depending on uncertainty in the mapping between actions and 
sensory outcomes. We also demonstrate that agency inferences reflect 
the temporal dynamics of prediction error. 

One of the most significant advances of this study on previous de
signs is the ability to measure and interrogate the temporal dynamics of 
prediction error, and how this relates to participant behaviour. Using 
this proxy for prediction error there were particularly interesting find
ings in the behavioural pattern around hypothesis switches and pre
diction error minimisation for trials with different judgements of 
agency. We will now discuss each of these in turn. 

Our eye-tracking analysis indicates a hypothesis switch when the 
participant moves from looking at one square to another and is indica
tive of a change in the moment to moment beliefs about agency with 
respect to the candidate square. For action to occur under the active 
inference account, prediction error comes first, and the action is per
formed to resolve it. This is consistent with the increasing prediction 
error leading to a hypothesis switch in our task, indicated by the sig
nificant peak in prediction error at the time of the hypothesis switch. 
The current agential hypothesis is abandoned when the prediction error 
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is too high – there is decreasing evidence that one can achieve one’s 
expected state with the available actions under the current hypothesis, 
which leads to a switch that alleviates prediction error. This finding is 
uniquely consistent with predictive processing (Friston, 2017). 

Environmental uncertainty influences this pattern too; after 
removing trial-wise average prediction error, low variability conditions 
have a higher prediction error in the hypothesis switch epoch. Also, only 
in these low variability conditions is there a significant increase from 
time bin one to time bin two, preceding the switch. Both of these find
ings suggest that when variability is low, prediction error is allowed to 
increase for a comparatively longer period of time before the participant 
decides to switch. This may reflect more reliance on priors in such en
vironments, which allow stable accumulation of evidence for a given 
hypothesis, and a reluctance to abandon hypotheses in the face of sen
sory evidence to the contrary. 

By looking at the relationship between participants’ agency reports 
and the trend in prediction error over time, our results suggest that 
participants could be using these trends to inform their judgement of 
agency. Agency judgements, whether correct or not, were associated 
with a more negative prediction error slope. Under the predictive pro
cessing account, a correct judgement of agency should be associated 
with a negative trend in prediction error, and a correct judgement of no- 
agency should not be associated with prediction error minimisation, as 
the participant cannot effectively control the stimuli to reduce predic
tion error. These hypotheses were fully borne out for participants with 
low AQ scores – when participants correctly judged that they had no 
agency, the slope of the prediction error was more positive (i.e. failed 
prediction error minimisation) than when they incorrectly said that they 
had no agency. 

Traditionally, internal representations of agency have been explained 
using a comparator model. In this model, upon movement, the neural 
system creates an efference copy of motor commands, which predicts 
“future states of the motor system and the sensory consequences of 
movement” (Moore & Obhi, 2012)p. 549). This is then compared with 
incoming sensory information. In both the comparator and predictive 
processing accounts, agency is associated with small prediction error, or a 
match between expected and actual outcomes of actions. The comparator 
however focuses on net retrospective prediction error and cannot account 
for hypothesis switches in the face of accumulating prediction error or 
other changes in future action based on inferences of agency (see also 
Zaadnoordijk, Besold, and Hunnius (2019)). The predictive processing 
account positions agency in a broader theory of action and policy selec
tion. So, if the projected reliability of policy-outcome mappings over time 
under a particular hypothesis (occurrent agency) changes, this account is 
consistent with a threshold in accumulating prediction error after which 
the agent switches hypotheses and is especially well equipped if this 
threshold is sensitive to environmental volatility. Our hypothesis switch 
ERPE suggests that hypothesis switching is sensitive to volatility when 
variability is low, with more prediction error around a hypothesis switch 
when volatility is high. 

These results provide a reminder that agents’ ability to discern, and 
make judgements about, agency arises as they actively close the action- 
perception loop, not just in passive perceptual processes. The results also 
offer an indication of how agents do this, namely through exploratory 
titration of prediction error, in a pattern that is sensitive to variability 
and volatility. It may be that affording agents the opportunity for 
exploration of the action-perception loop is critical for agency inference 
and judgement. 

Comparing the two levels of uncertainty manipulated here, changes 
to variability caused the most broad-reaching effects. Under high vari
ability, participants were less accurate but spent longer sampling the 
environment, moved slower but accelerated more quickly, switched 
hypotheses less frequently and turned less, compared to the low vari
ability conditions. The finding that participants move more under 
increased variability is consistent with the findings by Wen and Haggard 
(2020) in a similar judgement of agency paradigm. 

While volatility was expected to have effects independent from 
variability, most of the significant effects for volatility were interactions 
with variability; volatility only showed two main effects. The first main 
effect indicated that prediction error was reduced more quickly under 
high volatility. In our manipulation, the timing of volatile switches was 
unpredictable, so this effect is likely due to an increased vigilance or 
sensitivity to incoming information manifesting as an increased learning 
rate under high volatility (Mathys, Daunizeau, Friston, & Stephan, 
2011). The second main effect of volatility indicated that higher vola
tility was related to higher prediction error in the epoch surrounding 
hypothesis switches, however this was only true when variability was 
low. In two further cases, the effect of volatility was only seen in low 
variability; specifically that participants move faster and switch hy
potheses more in high volatility than low. This could reflect an attempt 
to garner more evidence about the current state of the world before it 
changes. Lower volatility also magnified the effect of variability on the 
number of turns made during each trial. Higher volatility, on the other 
hand, increased the effect of variability on task accuracy. Future studies 
should consider ways of highlighting changes in volatility to enhance 
the potential effect of higher order uncertainty, such as making them 
large enough to stand out more saliently to the participant. 

It is important to keep in mind too that our analyses of prediction 
error were limited to a behavioural proxy (combining eye-tracking and 
mouse movement) for prediction error that does not directly reflect 
changing internal representations of environmental uncertainty. This 
also affects what conclusions we can draw about the relationship be
tween certain kinds of uncertainty and prediction error where the un
certainty strongly affected accuracy. For example, in our statistical 
model of the rate of prediction error minimisation split by uncertainty 
conditions, the effect of accuracy on the slope of prediction error was 
nearly identical to the effect of decreased variability on the slope of 
prediction error. This means that our results cannot distinguish between 
steeper prediction error minimisation due to an easier task or lower 
variability (see Supplementary Materials for statistical models including 
and removing the random effect of accuracy). To address the question of 
the effect of variability (independent of accuracy) on the rate of pre
diction error minimisation in this kind of task, difficulty across condi
tions could be titrated for each participant by adjusting other features 
which may affect task difficulty (such as distracter similarity or number, 
as in Williams and Happé (2009) and Grainger et al. (2014)). Including 
more levels of variability (rather than simply high and low), may also 
help to statistically distinguish the effect of accuracy and variability for 
future experiments. Future research should also consider using neural 
estimates of prediction error or computational modelling that appro
priately changes priors with uncertainty. 

Here, we found no difference in accuracy of judgement of agency 
between healthy participants across a range of autism traits, consistent 
with previous research comparing autistic and healthy participants on 
similar measures (David et al., 2008; Grainger et al., 2014; Russell & 
Hill, 2001; Williams & Happé, 2009; Zalla et al., 2015). As previously 
noted by Perrykkad and Hohwy (2020b) and Zalla and Sperduti (2015), 
this is in contrast to sense of agency in autism being shown to be reduced 
under typical experimental paradigms (Sperduti, Pieron, Leboyer, & 
Zalla, 2014; van Laarhoven, Stekelenburg, Eussen, & Vroomen, 2019). 
Our study also shows no main effects of AQ on other outcomes, except 
for a negative association with acceleration. 

To our knowledge, Zalla et al. (2015) is the only other case where 
variability of a similar kind (which they labelled ‘turbulence’) was added 
in a judgement of agency task pertaining to autism, in their case con
trasting participants with and without an autism spectrum diagnosis. 
Their results demonstrated that the accuracy of autistic participants’ 
agency judgements was less sensitive to differences in variability than 
the neurotypical group. This study supports our hypothesis that the 
addition of uncertainty has a distinctive effect on judgement of agency 
related to autistic traits. While we do not show any significant in
teractions with AQ in accuracy, our results showed participants with 
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high autism traits were less sensitive to differences in variability in their 
average prediction error. Since this measure is behavioural, this suggests 
that participants with high AQ were moving (that is, exploring the 
environment) in a way that did not reflect underlying differences in 
variability. Further, AQ was negatively associated with prediction error 
in the 200 ms window surrounding hypothesis switches. This suggests 
participants with high AQ are switching hypotheses earlier than par
ticipants with low AQ, or tolerating less uncertainty before abandoning 
their current hypothesis (see also Lawson et al. (2017)). 

By additionally manipulating volatility, we could demonstrate 
further effects of uncertainty dependent on AQ. Participants with high 
AQ were more sensitive to differences in volatility such that only for this 
group was increased volatility associated with more time spent moving 
(if only in high variability) and more flexibility in policy selection. This 
might reflect less consistent or shallower internal models (Perrykkad & 
Hohwy, 2020b), which leads to less precision over all policies in high 
volatility, and so the selection of one over another fluctuates more 
frequently. This pattern is the opposite of the low AQ group, where high 
volatility was associated with more dominant policy use (but only in low 
variability). This is also consistent with Lawson et al. (2017), who 
showed that autistic participants update their learning in response to 
volatility more readily than neurotypical participants. 

Of note, our findings with respect to autism are limited to scores on a 
trait-based measure, which may not generalise to diagnosed autistic 
populations. Our sample had a high average AQ score compared to what 
is expected in the general population (Baron-Cohen et al., 2001), so our 
results for “low” AQ may actually be more representative of “average” 
AQ individuals. While overall the sample size in post-hoc analyses is 
low, the omnibus interactions were based on modelled trends in the full 
dataset of continuous AQ scores. Nevertheless, environmental uncer
tainty might be particularly relevant to action selection for different 
levels of autistic traits and we do show interactions between uncertainty 
and AQ. These are worth following up in future studies in diagnosed 
samples. 

In summary, this suggests autistic traits are related to 1) subtle dif
ferences in more abstract action policies, which are more sensitive to 
volatility, 2) smaller differences in prediction error between variability 
conditions, and 3) a greater propensity to switch hypotheses at a lower 
prediction error threshold when inferring agency. Notably, despite these 
differences, there was no significant effect of AQ on overall number of 
hypothesis switches or on accuracy. 

4. Conclusion 

This experiment shows that uncertainty in the mapping between 
actions and their outcomes changes not only how effectively partici
pants can identify which stimuli they have control over, but also changes 
the actions they make and the overall strategies they employ. These 
changes have downstream impacts on the prediction error which can be 
used to inform their next action, and their overall response in each trial. 
In addition, our data illuminates subtle differences in this perception- 
action loop dependent on autism traits. 
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