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Abstract

Along with increasing amounts of big data sources and increasing computer performance,

real-world evidence from such sources likewise gains in importance. While this mostly

applies to population averaged results from analyses based on the all available data, it is

also possible to conduct so-called personalized analyses based on a data subset whose

observations resemble a particular patient for whom a decision is to be made. Claims data

from statutory health insurance companies could provide necessary information for such

personalized analyses. To derive treatment recommendations from them for a particular

patient in everyday care, an automated, reproducible and efficiently programmed workflow

would be required. We introduce the R-package SimBaCo (Similarity-Based Cohort genera-

tion) offering a simple, but modular, and intuitive framework for this task. With the six built-in

R-functions, this framework allows the user to create similarity cohorts tailored to the char-

acteristics of particular patients. An exemplary workflow illustrates the distinct steps begin-

ning with an initial cohort selection according to inclusion and exclusion criteria. A plotting

function facilitates investigating a particular patient’s characteristics relative to their distribu-

tion in a reference cohort, for example the initial cohort or the precision cohort after the data

has been trimmed in accordance with chosen variables for similarity finding. Such precision

cohorts allow any form of personalized analysis, for example personalized analyses of com-

parative effectiveness or customized prediction models developed from precision cohorts.

In our exemplary workflow, we provide such a treatment comparison whereupon a treatment

decision for a particular patient could be made. This is only one field of application where

personalized results can directly support the process of clinical reasoning by leveraging

information from individual patient data. With this modular package at hand, personalized

studies can efficiently weight benefits and risks of treatment options of particular patients.
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1 Introduction

Analyses of large, routinely collected data sources can support decision-making in new

patients whose data in turn contribute to that data source again [1]. Comparative effective-

ness research and personalized prediction of outcomes are two major analytical applica-

tions evaluating big healthcare data repositories such as statutory health insurance

databases [2]. Such information could guide medical treatment recommendations in situa-

tions with limited evidence from randomized controlled trials as frequently encountered in

frailty, multimorbidity, older patients, and also children [3]. The decisive information on

individual benefits and harms is similarly difficult to obtain from controlled observational

studies because averaged responses in heterogeneous treatment groups might not apply to

a particular patient, even if they were derived by appropriate methods approximating

causal inference [4]. Reasoning based on average responses of heterogeneous populations

thus tends to over-generalize effects in individual patients [5, 6]. As an intuitive solution,

the data source can be personalized in accordance with individual patient characteristics to

derive more specific subsets called precision cohorts. Analyses based on such precision

cohorts hold the promise to improve predictions compared to models developed from an

unselected source [7]. In order to achieve adequate (internal and also external) validity and

transportability, it is fundamental to generate a precision cohort in a reproducible and pref-

erably automated way [8].

Prominent examples of leveraging big data sources to inform decisions have success-

fully been used to support treatment decisions [3, 9]. While electronic health records

(EHR) are usually rich data from rather heterogeneous in-house records [10], claims data

are more similar within and across healthcare systems because they are much more stan-

dardized and structured and would thus enable common workflows to derive ready-for-

analysis datasets for personalized analyses in precision cohorts. Efficient programming

techniques are required, though, because claims data are usually large, often containing

millions of patients, and thus making any electronic processing computationally intensive.

Hence, simple and clean scripts are desirable to facilitate debugging, sharing, and repro-

ducibility [10].

To meet these requirements, we developed the R package SimBaCo (Similarity-Based

Cohort generation) for generating precision cohorts within a standardized and flexible work-

flow to be applied to claims data. Making use of parallel processing and best practices of effi-

cient programming [11], the package has been tested on simulated data, which are also

provided on its GitHub repository [12]. While the simulated claims data closely resemble the

structure of claims data from the German healthcare system, the functions can be readily

adapted to any other format (e.g., usage of ICD-9 instead of ICD-10 codes). In a methodology

section, we emphasize our aims introducing two exemplary patient cases, for whom a treat-

ment decision between two options is warranted. Our modular framework will be applied to

theses cases and treatment recommendation will be derived from simulated example data. Our

workflow starts with initial cohort selection and generation of corresponding data subsets.

Such cohorts can be further modified (e.g., by calculation of propensity scores) according to

individual user needs before they are eventually used to identify patients resembling a particu-

lar patient. Before creating similarity cohorts, we show how similarity in respect to a reference

population can be visualized. We then describe the similarity search with its distinct parame-

ters and functionalities to trim the precision cohort in the trade-off between larger sample

sizes and higher grade of similarity. After summarizing the results of our exemplary analysis,

we discuss potential applications and offer recommendations for the package’s implementa-

tion into research projects.
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2 Methods

2.1 Exemplary cases

We introduce two exemplary patient cases in order to illustrate how SimBaCo may improve

clinical decision making. Let’s assume that both exemplary patients are female and have two

pre-existing conditions. Patient 1 has a history of colorectal cancer and also suffers from high

blood pressure denoted by ICD-10 codes C26.0 and I10.0, respectively. Pharmacological treat-

ment of hypertension drugs acting on the renin-angiotensin-aldosterone system denoted by

the 3-digit ATC code C09. Patient 2 suffers from a mild form of diabetes mellitus type 2

(which is currently not treated with medication, but with a change of diet) and recurrent

depressive episodes denoted by ICD-10 codes E11.9 and F33.8, respectively. These comorbidi-

ties would have been identified by automated calculation of the Elixhauser Comorbidity Score

[13]. The year of birth of Patient 1 is 1935, Patient 2 is born in 1948.

Both patients were newly diagnosed with atrial fibrillation and therefore require appropri-

ate anticoagulation for stroke prophylaxis [14]. The prescriber would have to make an

(informed) choice what treatment option to provide. Our exemplary workflow highlights deci-

sive steps in the decision-making process offered by the package SimBaCo to clinicians. In par-

ticular, we use a virtual situation based on simulated data to derive personalized cohorts and

thus personalized evidence. In our constructed example, we aim to choose the best particular

DOAK (direct acting oral anticoagulant) for each of the exemplary patient cases to prevent sys-

temic embolism or stroke.

2.2 Software, installation, and performance

The SimBaCo package was developed using the R software environment in version 3.6.0 (R

Foundation for Statistical Computing, Vienna, Austria) and contains the six R functions

buildcohort(), Draw_Scale_Chart(), Find_Similar(), Search_IN_Data-
frame(), Search_After_Index(), and Data_Plot_Similarity(), as well as the

three data sets DIAGNOSES, INSURANTS, and PRESCRIPTIONS. The exemplary analysis

that we present throughout the next chapters took 42.42 seconds on our computer (HP Elite-

Desk 800 G2 SFF, processor: Intel(R) Core(TM) i5600 Quad-Core-processor @3.2 GHz, ram:

16GB DDR4 ram). SimBaCo was optimized by efficient programming techniques and

designed to run efficiently even in large data sets (such as common claims data). Among tech-

niques for efficient programming, parallel processing of the data was extensively applied. A

detailed instruction for the installation of SimBaCo can be found in S1 Appendix.

2.3 Reference data

The SimBaCo package is designed to work with claims data and its typical structure. Claims

data collected for administrative or billing purposes usually contain separate tables from differ-

ent sources (e.g., prescription claims, diagnoses from ambulatory and stationary care, or basic

demographics) [15]. Following this common structure, the SimBaCo package contains simu-

lated claims data in separate data objects related to outpatient prescriptions, outpatient or

inpatient diagnoses, and basic demographic information of 10,000 patients. For intuitive

understanding, these built-in data can be considered as minimal data sets, with the PRE-
SCRIPTIONS data frame consisting of the three variables ID (the patient unique identifier),

ATC code (Anatomical Therapeutic Chemical) of the prescribed drug, and the DATE of the

prescription. The DIAGNOSES data frame consists of the three variables ID, ICD code (Inter-

national Statistical Classification of Diseases and Related Health Problems) of the documented

diagnosis, and the DATE of diagnosis, and the INSURANTS data frame consists of the
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variables ID, SEX, DATEOFBIRTH (the patients’ dates of birth as calendar years), and

DATEOFDEATH. Example data were generated for i = 10,000 virtual patients (IDs) of whom

6148 were specifically designed to illustrate the example workflow used in this paper. Begin-

ning with the PRESCRIPTIONS data frame, the first 3233 IDs were randomly assigned 1 to

10 prescription redemptions belonging to ATC code B01AE07 (dabigatran) and IDs 3234 to

6148 were assigned between 1 and 10 prescription redemptions belonging to ATC code

B01AF01 (rivaroxaban). Likewise, to IDs 1 to 6148 we assigned 1 to 10 prescriptions starting

with the three-digit ATC code C07 and 1 to 20 prescriptions starting with C09. Further co-

medication was randomly selected by drawing between 2 and 5 ATC codes from a real-data set

of a large German statutory health insurance population (the data originates from the years

2011 to 2016) [15]. In the DIAGNOSES data frame, IDs 1 to 6148 received between 2 and 5

times the diagnosis atrial fibrillation (ICD10: I48.X). In addition, between 1 and 20 diagnoses

were randomly drawn from the mentioned real-data set [15] and assigned to these patients.

Likewise, diagnosis dates were also randomly drawn from this data source. In the INSUR-
ANTS data frame, sex of the patients was randomly assigned, and the date of birth of the

patients was randomly set to a year between 1930 and 1950. The patients’ date of death was

simulated as exponentially distributed survival times using the method of Bender and col-

leagues [16]. Assuming a baseline death hazard of 0.0005, the linear predictor to derive survival

times was designed with main effects attributed to age, the drugs with ATC codes B01AF01,

B01AE07, C07, and C09, the Elixhauser derived diagnosis groups [13] for uncomplicated

hypertension, diabetes, solid tumors, and metastatic cancers, as well as interaction terms

between the ATC codes B01AF01 and B01AE07 with age, diabetes, hypertension, and sex. The

example data created in this way will serve as an exemplary claims data basis in the following,

from which the therapy recommendation for the two example cases will be derived. The way

to access the example data is described in detail in S2 Appendix.

3 Results of an exemplary workflow

3.1 Initial cohort selection

Before a suitable therapy recommendation can be derived for one of the two example cases, it

is of great importance to form a suitable study cohort from the entirety of the data. Since the

above question is about determining the best possible DOAK therapy for patients with atrial

fibrillation at first prescription, a cohort (out of the data) with a new-user design and the index

date as the first prescription date of a DOAK is the best choice to derive decision support for

the exemplary cases from the data. Since the DOAK prescription is intended to serve as stroke

prophylaxis in patients with atrial fibrillation, the diagnosis of atrial fibrillation is another

important inclusion criterion. As usual in other data-based cohort studies, one year is used as

the preliminary period of observation and 18 years as the minimum age for inclusion. For this

task SimBaCo provides a fast working function to create an initial study cohort according to

the users intentions and requirements. The buildcohort() function enables to choose

between the common "new user design" and "prevalent user design". In addition, further inclu-

sion and exclusion criteria can be applied, such as minimum patient age or run-in period prior

to follow-up. An example on how to use this function can be found in the S3 Appendix. The

possible arguments of the buildcohort() function are described in more detail in S1

Table. When applying the exemplary default criteria, buildcohort() function returns a

cohort with 3513 patients with the respective start dates of inclusion (DATEIndex), the first

entry in the data set (STARTDATE), and the difference between these two (see S3 Appendix).

With this built-in feature, our package provides an easy-to-use, easy-to-customize, and repro-

ducible method for creating study cohorts out of claims data.

PLOS ONE Similarity-based cohort generation

PLOS ONE | https://doi.org/10.1371/journal.pone.0233686 May 29, 2020 4 / 12

https://doi.org/10.1371/journal.pone.0233686


3.2 Data subsets and similarity visualization

Based on this cohort selection, the subsets of the source data (example data) can be derived

including only those patients selected by the buildcohort()function. This can be accom-

plished via the function Search_IN_Dataframe(). This function returns all rows of a

source data frame for which the content from a specific variable can also be found in another

data frame within a specific variable. An example of this would be the selection obtained from

running the buildcohort() function. This general procedure can be applied to any suit-

able data frame (e.g., the Find_Similar() function described later). An example on how

to use this function can be found in the S4 Appendix. Of note, further steps of data preparation

can be inserted at this stage. For example, propensity scores may be added or data may be

matched and trimmed by means of these propensity scores. However, treatment allocation in

our exemplary data was completely at random and excludes any confounding by indication in

subsequent analyses by design; therefore, these options are not addressed here any further.

To demonstrate the typical procedure for comparing treatment options in personalized

cohorts with the SimBaCo package and its example data, we introduced two exemplary

patient cases for personalized analyses in two corresponding precision cohorts. The package

SimBaCo provides a function to visualize the similarity between a particular case and a refer-

ence population with means, medians, and further parameters describing the distribution of

variables in this sample. The reference population can be the initial study cohort obtained after

running the buildcohort() function or a subsequent selection of so-called nearest

patients. The Draw_Scale_Chart() function adapts the scale chart as introduced by

Cahan and Cimino [17]. The function arguments are described in more detail in S2 Table. An

example on how to use this function can be found in the S5 Appendix. Fig 1A presents such a

scale chart corresponding to the Patient 1. Similarly, a scale chart can be drawn for example

case two (Fig 1B). Both Fig 1A and 1B show selected characteristics (e.g. the age, prescribed

medications or comorbidities of the exemplary patient cases etc.), of the respective cases in

relation to the reference cohort. In total, neither of these two patients can be considered as a

totally ‘typical’ representative of the initial cohort because their characteristics do not always

match the means or most frequent values in the reference population. The aim of the next step

is thus to trim the reference population according to these characteristics and thereby obtain

precision cohorts that are more similar to the individual patient (considering the trade-off

between higher sample sizes and higher degree of similarity), to derive individual patient-

related individual therapy recommendations.

3.3 Generation of precision cohorts and analysis

The scale charts indicated that the starting cohort is not yet suitable for deriving individual ther-

apy recommendations for the exemplary patient cases. A personal treatment recommendation

would require that patients in the cohort much more resemble each exemplary Patient. The

SimBaCo package allows to derive suitable precision cohorts with the function Find_Similar()as

a fast and reproducible solution. The function offers two types of analyses: first, the selection of

closest patients as described by minimizing distance measures (e.g., the 5% of closest patients),

and second, a clustering procedure using partition around medoids [18, 19] to select similar

patients from the same cluster. The user can choose between two implemented distance mea-

sures, i.e., the GOWER distance and HEOM (Heterogeneous Euclidean Overlap Metric) [20,

21]. Concerning the distance-based options, this selection is guided by the fact that claims data

contain differently scaled variables (i.e., categorical, continuous, and binary variables), which

can be efficiently handled by these metrics. In brief, the GOWER distance uses the L1 distance

(Manhattan distance) for metrically scaled variables, the Dice distance for categorically or
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nominally scaled variables, and then combines these two distance measures into a numerical

value [20]. Concerning the cluster-based option, the K-medoids [18, 19] algorithm (in combina-

tion with the GOWER [20] distance) provides good comprehensibility and greater robustness

against outliers than alternative methods, such as the K-Means. The function arguments are

described in more detail in S3 Table. An example on how to use this function (to form precision

cohorts) can be found in the S6 Appendix. In our example analysis, we chose the distance-based

option (10% of the nearest patients) resulting in precision cohorts including 351 patients. Next,

we apply the Search_IN_Dataframe() function to subdivide our preliminary data and

draw again a scale chart now comparing Patient 1 and 2 with the precision cohort (Fig 2A and

2B). Comparing the scale charts before (Fig 1A and 1B) and after trimming the reference popu-

lation according to similarity criteria (Fig 2A and 2B) reveals that the precision cohorts indeed

more closely resemble the selected characteristics of the respective exemplary patient. Achieved

similarity depends on the cut-off values in the distance measure. In our example, the ten percent

nearest patients in their distance measure yielded an acceptable cut-off considering the trade-

off between larger sample size and higher grade of similarity.

Fig 1. Scale charts of Patient 1 (A) and Patient 2 (B) in the initial, unselected cohort. The scale chart compares a patient’s characteristics (red vertical line) to the

distribution of characteristics in the reference cohort (blue vertical bars). Each bar represents ranges derived from medians and interquartile ranges for continuous

variables, and relative frequency for categorical variables. Different shades of blue indicate different categories or ranges above and below the median, respectively.

https://doi.org/10.1371/journal.pone.0233686.g001
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After successful selection and trimming of the precision cohorts, we investigate overall sur-

vival as the clinical outcome in our exemplary application of comparative effectiveness. In

order to compare the overall survival in the different therapies in the precision cohorts of each

case, we choose the graphical method via the Kaplan-Meier-Plot. It should be noted in addi-

tion that there are of course many other methods of deriving a therapy recommendation from

the precision cohort (but these will not be discussed in detail here). Established code (Exem-

plary analysis code can be found in the S8 Appendix) can be applied to generate Kaplan-Meier

plots (Fig 3A and 3B) but must be executed separately for each patient (Patient 1 and Patient

2).

4 Discussion

After completing our exemplary workflow, two remarkably different Kaplan-Meier plots

resulted, indicating clearly different estimates of treatment effectiveness in dependence of the

precision cohorts’ characteristics. This generic example highlights how differently clinical deci-

sions will be made depending on the subpopulations whereupon analyses are based. Such find-

ings could indeed support clinical decision-making and clinical reasoning. Clinical reasoning

Fig 2. Scale charts of Patient 1 (A) and Patient 2 (B) from the respective personalized precision cohorts after the similarity search.

https://doi.org/10.1371/journal.pone.0233686.g002
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can be defined as the process by which a healthcare professional interacts with a patient when

interpreting patient data, weighting the benefits and risks of treatment options, and trying to

incorporate patient preferences to finally design a personalized treatment plan [22]. Prior

knowledge about similar patients could certainly guide such treatment decisions for the treat-

ment plan, as well. While the massive amounts of accumulating data far exceed our mental

data processing capability and capacity, efficient electronic tools can select, sort, count, and

weight data and timely provide us with the necessary information that we specifically request.

SimBaCo is a prototypical example of such a tool that can support clinical reasoning in many

ways, because its modular framework can be easily adjusted to various kinds of analyses.

While our exemplary project addressed a simplified situation, it may serve as a basic template

that can be further adjusted according to specific needs. Thus, confounding by indication as

the most important aspect in comparative effectiveness research [23] could be adressed by

additional interim data processing. The second major application of learning from big health-

care data is personalized prediction of outcomes [2]. Here, we are even more optimistic about

potential merits of predictive performance of analyses in precision cohorts compared to unse-

lected cohorts. While this is supported by recent proof-of-concept investigations of prognostic

modeling [7], it will be interesting to test whether this will also apply to predictive modeling. It

is indeed an open question if prediction models developed individually in respective precision

cohorts do actually perform better in situations of treatment effect modification [24] in a real-

world setting offered by claims data.

There are several reasons why we based our analysis on claims data. First of all, claims data

offer a large number of patients which in turn facilitates identification of a larger number of

similar patients and thus provides higher statistical power [25]. This is especially true for rare

disease cases. Compared to other observational data sources, the sheer size of claims data

Fig 3. Kaplan-Meier plots comparing overall survival between two treatments (ATC codes B01AE07 and B01AF01 in personalized precision cohorts trimmed for

Patient 1 (A) and Patient 2 (B)).

https://doi.org/10.1371/journal.pone.0233686.g003
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allows for simultaneous adjustment for some confounders even in complex multivariate mod-

els [25]. Generally, data preparation and selection can follow the needs of a particular problem:

Because claims data include very heterogeneous patient groups, it is likewise possible to focus

on respective subgroups, such as from different areas (outpatient and inpatient data), from dif-

ferent facilities, or over long periods of time [25]. In addition, claims data are usually in the

same structure, which makes it easier to standardize information retrieval processes [25].

However, they usually have limiations, as well. Because they are primarily collected for billing

purposes (and do not contain laboratory parameters), an assessment of the severity of the dis-

ease is often not possible or only with difficulty, for example [25, 26]. Misclassification prob-

lems may arise from misdiagnoses and mis-coding [25] and information before the

observation period are usually available [25, 26]. Hospital EHR, on the contrary, provide a

more complete picture of the patient [26] as they can be considered as a quasi-electronic form

of the patient record [27]. Those diagnosis codes are presumably more accurate and are com-

plemented by additional data sources such as laboratory values [28]. However, this informa-

tion is not standardized and therefore complicates subsequent analysis steps. With regard to

the predictive accuracy of models (generated from the two data sources), though, current evi-

dence studies suggest that the performance of EHR models is only slightly better [29].

While claims data is a very comprehensive, large, and cost-effective data source particularly

suitable for the formation of precision cohorts, data availability and data privacy are central

aspect to be accounted for when tools such as SimBaCo are to be implemented into routine

care. Unlike the clinical trial data with explicit informed consent, the situation with claims

data can be more complex in terms of data ownership, data privacy, or information identifying

patients. The same applies to EHR data, with the difference that EHR data usually contains

even more sensitive information. While considering the risk for misuse, adequate protection

should not preclude the incredible potential of accessible data for research [30]. Overall, one

could even think of a comparative evaluation of precision cohorts derived from EHR and

claims data.

In conclusion, SimBaCo is a highly efficient, modular tool that enables to rapidly generate

precision cohorts and apply various analysis methods to them. Derived personalized results

can directly support the process of clinical reasoning because they can help interpreting indi-

vidual patient data in the light of former patients by weighting benefits and risks of treatment

options of this particular patient. With this modular package at hand, personalized studies of

comparative effectiveness or personalized prediction models can be conducted efficiently and

it will be exciting to see what benefit can be expected from this currently rarely applied

technique.
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