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A B S T R A C T

Background: The functional performance of the human sense of smell can be approached via assessment of the
olfactory threshold, the ability to discriminate odors or the ability to identify odors. Contemporary clinical test
batteries include all or a selection of these components, with some dissent about the required number and
choice.
Methods: Olfactory thresholds, odor discrimination and odor identification scores were available from 10,714
subjects (3662 with anomia, 4299 with hyposmia, and 2752 with normal olfactory function). To assess, whether
the olfactory subtests confer the same information or each subtest confers at least partly non-redundant in-
formation relevant to the olfactory diagnosis, we compared the diagnostic accuracy of supervised machine
learning algorithms trained with the complete information from all three subtests with that obtained when
performing the training with the information of only two or one subtests.
Results: The training of machine-learned algorithms with the full information about olfactory thresholds, odor
discrimination and odor identification from 2/3 of the cases, resulted in a balanced olfactory diagnostic accuracy
of 98% or better in the 1/3 remaining cases. The most pronounced decrease in the balanced accuracy, to ap-
proximately 85%, was observed when omitting olfactory thresholds from the training, whereas omitting odor
discrimination or identification was associated with smaller decreases (balanced accuracies approximately 90%).
Conclusions: Results support partly non-redundant contributions of each olfactory subtest to the clinical olfac-
tory diagnosis. Olfactory thresholds provided the largest amount of non-redundant information to the olfactory
diagnosis.

Introduction

The functional performance of the human sense of smell is often
analyzed via (i) assessment of the lowest concentration at which an
odor can be smelled, which is the odor threshold (Cain et al., 1988a),
(ii) assessment of the ability to differentiate smells, which is the ability
of odor discrimination (Cain and Krause, 1979), and (iii) assessment of
the ability to name or associate an odor, which is odor identification.
While a more comprehensive assessment by inclusion of measurements
of olfactory recognition, magnitude estimation and hedonics (Henkin
et al., 2016, 2013) has been suggested, most comprehensive psycho-
physical test batteries aimed at assessing a subject’s olfactory perfor-
mance in clinical practice focus on olfactory thresholds, odor dis-
crimination ability and odor identification performance (Hummel et al.,
1997b).

Contemporary test batteries include either all components or a
subset of olfactory tests (Cain et al., 1988b; Doty and Agrawal, 1989;
Lam et al., 2006; Thomas-Danguin et al., 2003), i.e., they differ in the
number of components of olfactory function included. The most fre-
quent choice is the sole assessment of a subject’s odor identification
performance (Cain, 1979; Doty et al., 1984). This is also pursued in the
majority of short tests, developed to provide a quick band easily ob-
tained estimate of a subject’s olfactory function (Hummel et al., 2010;
Jackman and Doty, 2005; Lötsch et al., 2016b; Mueller and Renner,
2006; Toledano et al., 2009). Tests using a single other olfactory
functional dimensions are rarely found in clinical routine, at least when
considering the last 20 years (e.g., (Davidson and Murphy, 1997;
Yilmaz et al., 2017), for review see (Doty, 2015).

While it has been pointed out that olfactory tests, for all practical
purposes, measure a common source of variance (Doty et al., 1994b),
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many test batteries use more than one component. A recent position
paper on olfactory dysfunction (Hummel et al., 2017) suggested that
“Psychophysical assessment tools used in clinical and research settings
should include tests of odor threshold, and/or one of odor identification
or discrimination. Ideally, however, testing should include two or three
of these subcomponents”, still many authors use only tests with a single
component (Doty, 2015) or even the use of visual analogue scales is
discussed for the assessment of olfactory function (Kim et al., 2015).
The necessary complexity of olfactory test batteries has therefore re-
mained an active research topic maintained by suggestions that olfac-
tory test measure a common source of variance (Doty et al., 1994b)
based on statistics based methods such as correlations (Hedner et al.,
2010) or principal component analyses occasionally leading to different
conclusions (Doty et al., 1994b; Lötsch et al., 2008).

Considering the ongoing discussion, the present analysis used a
novel and alternative approach to assess whether the olfactory subtests
confer the same information or whether each subtests at least partly
confers non-redundant information relevant to the olfactory diagnosis
that is not already conferred by the other subtests. Specifically, the
present approach made use of computer-science based machine-
learning methods (Murphy, 2012; Shalev-Shwartz and Ben-David,
2014), which aim at optimization of the performance of algorithms to
predict a particular outcome such as the olfactory diagnosis. Therefore,
supervised machine-leaned algorithms were either trained with the
complete information from all three subtests, or with the information of
only two or one subtests. By comparing the diagnostic accuracy of the
algorithms among different training scenarios, the importance of the
subtests for the clinical olfactory diagnosis was assessed. Thus, in the
present analysis machine learning algorithms were used for knowledge
discovery about the problem of information redundancy in olfactory
subtests; a replacement of the simple and practicable sum score based
olfactory diagnosis by complex classifiers was not intended.

Methods

Study population

The study followed the Declaration of Helsinki and was approved by
the Ethics Committee of the Faculty of Medicine of the TU Dresden
(number EK251112006) covering anonymized retrospective and pooled
analyses. Informed written consent was obtained from all subjects.
Subjects (age: range 6–95 years, mean ± standard deviation:
52.2 ± 17 years; sex: 6004 males, 4710 females) were included since
they had presented at the Smell & Taste Clinic, Dept. of ORL, TU
Dresden with the symptom “olfactory loss”, or they had been tested in
the context of a clinical standard check or they were enrolled in re-
search projects as healthy participants. Subjects represented several
different etiologies associated with olfactory performance; however, a
previous analysis discouraged a strong relationship with the pattern of
olfactory subtest results (Lötsch et al., 2016a) and was therefore not
pursued again in the present analysis.

Olfactory testing

Olfactory function was assessed using the “Sniffin’ Sticks” (Hummel
et al., 1997b) test battery (Burghart, Wedel, Germany) that is composed
of three sets of felt-tip pens filled with solutions of odors. For olfactory
stimulation the pens are placed, with the cap removed, for approxi-
mately 3 s at 1–2 cm beneath the nostrils. A first set composed of 16× 3
pens, of which 16 contain the rose-like odor phenyl ethyl alcohol at 16
successive 1:2 dilution steps starting from a 4% solution in propylene
glycol, while the other pens contain just the solvent. During odor
thresholds assessment, triplets of one pen with phenyl ethyl alcohol and
two blanks were presented employing a three-alternative forced-choice
task and a staircase paradigm. The odor threshold was finally estimated
as the mean of the last four out of seven staircase reversals. A second set

of 16×3 pens contained triplets with two similar and one different
odor (for names of odors see (Hummel et al., 1997b)). During assess-
ment of odor discrimination performance, the triplets were presented
successively, and the subject’s task was to identify the pen that smells
different from the two others. The third test set comprises 16 pens
containing different odors (Hummel et al., 1997b), which for assess-
ment of the subject’s odor identification performance had to be re-
cognized in a four-alternative forced-choice task with presentation of a
list of four possible descriptors for each pen. Each of the subtests pro-
vided scores between 0 (identification, discrimination) or 1 (threshold)
as lowest values and 16 as the possible highest value. The final olfactory
diagnosis was derived from the sum of the three scores, i.e., [0,...,16]
for discrimination, [0,...,16] for identification, and [1,…,16] for
thresholds, as follows: Sum scores of TDI (Threshold, Discrimination,
Identification) ≤ 16 indicated anosmia. Normosmia was indicated by
scores of TDI≥ 30.5 in females and TDI≥29.5 in males, and the re-
maining TDI scores indicated hyposmia (Hummel et al., 2007b).

Data analysis

The contribution of each olfactory subtest result to the overall ol-
factory diagnosis was approached via creating machine-learned classi-
fiers able to obtain the correct diagnosis and subsequently analyzing,
for each olfactory subtest, how much the diagnostic accuracy decreased
when the respective subtest results were excluded from the diagnostics.
In other words, the machine learning was not applied to obtain the
diagnosis, which can be obtained straight-forward as the sum of the
subtest results. The machine-learning was applied to identify whether
the diagnosis can already be obtained by knowing only one of the three
numbers from which the sum score is obtained. If this was possible,
three subtests would be unnecessary as all the important information
was already contained in one single subtest. If, by contrast, the diag-
nosis not as accurately possible when using only one subtest result than
when using the full information of the three subtests, then it can be
concluded that each subtest provides relevant diagnostic information
not already completely contained in the other subtest.

Data were analyzed using the R software package (version 3.4.2 for
Linux; http://CRAN.R-project.org/ (R Development Core Team, 2008))
on an Intel Xeon® computer running on Ubuntu Linux 16.04.3 64-bit.
The acquired parameters included the results of the three olfactory
subtests quantifying the subject’s odor perception threshold, the per-
formance in odor discrimination and the performance in odor identi-
fication. Data were incomplete in a single subject who was excluded
from the analysis, which was performed in three main steps comprising
(i) data preprocessing, (ii) classifier building and performance testing
and (iii) estimation of the contribution of each olfactory subtest to the
clinical olfactory diagnosis. Quantile-quantile plots suggested a log-
transformation of the odor thresholds, which fits with the geometric
series of the dilution steps of phenyl ethyl alcohol. Further data pre-
processing consisted of standardizing into the [0,…,1] interval, which
was obtained by rescaling the data based on their respective minimum
and maximum values.

Subsequently to data cleaning and preprocessing, the data were
explored using standard statistics consisting of an analysis of variance
for repeated measurements (rm-ANOVA) and correlation analyses.
Specifically, the rm-ANOVA was designed with “subtest”, i.e., olfactory
threshold, odor discrimination and odor identification as within-subject
factor and “olfactory diagnosis”, i.e., anosmia, hyposmia or normosmia,
“gender” as between subject factors and “age” as covariate. In addition,
correlations between age, the single olfactory subjects, and the TDI sum
score, were assessed by means of calculating Spearman’s ρ (Spearman,
1904), separately for the three olfactory diagnoses.

Supervised machine-learning was used to create so-called classifiers
able to predict the three olfactory diagnoses anosmia, hyposmia or
normosmia from the results of the three olfactory subtests. Machine
learning addresses the so-called data space
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= = …D x y x X y Y i n{( , ) , , 1, , }i i i i including an input space X
comprising vectors xi =<xi,1,…,xi,d>with d>0 different para-
meters (here, the olfactory subtest results) acquired from n>0 cases
belonging to the output classes yi (here, the three possible olfactory
diagnoses). In supervised machine learning, an algorithm is trained on
data for which the class labels of the cases are known (training data
set), that is able to assign future cases for which this class label in-
formation is unknown to the right class (test data set; prediction, gen-
eralization (Dhar, 2013)). The necessary independent data sets were
obtained by splitting the original data set into independent training (2/
3 of the data) and test (1/3 of the data) data subsets, using the R library
“sampling” (https://cran.r-project.org/package=sampling).

In the present analysis, the mapping of the input space, given by the
selected olfactory subtest results prepared during data preprocessing, to
the output space, given by the olfactory diagnoses, was performed using
different methods of supervised machine learning. This was im-
plemented to avoid that the results depend on one particular method,
thus, for internal validation of the results in a biomedical context rather
than for comparative benchmarking of classification performances as
often applied in a computer science context. Specifically, supervised
machine-learning was implemented as (i) ordinal logistic regression
(Walker and Duncan, 1967), (ii) naïve Bayesian classifiers, (iii) classi-
fication and regression trees (Breimann et al., 1993), (iv) k-nearest
neighbors (Cover and Hart, 1967), (v) random forests (Breiman, 2001),
(vi) support vector machines (Cortes and Vapnik, 1995) and (vii) a
multilayer perceptron (Rosenblatt, 1958) as specified in the following.

First, ordinal logistic regression provides a method for estimating
the probability of the occurrence of an ordered dependent variable, i.e.,
olfactory diagnosis in improving succession, as a function of in-
dependent variables (McCullagh, 1980). This analysis was done using
the R library “MASS” (https://cran.r-project.org/package=MASS
(Venables and Ripley, 2002)). Second, naïve Bayesian classifiers were
used that provide the probability that a data point being assigned to a
specific class calculated by application of the Bayes’ theorem (Bayes
and Price, 1763). The calculations were done using the R package
“klaR” (https://cran.r-project.org/package=klaR (Weihs et al., 2005)).

Third, in classification and regression trees, a tree data structure is
created with conditions on variables (parameters) as vertices and
classes (diagnoses) as leaves. Tree structured rule-based classifiers (Loh,
2014) analyze ordered variables xi, such as the present results of ol-
factory subtests, by recursively splitting the data at each node into
children nodes, starting at the root node. The split of the variable x
takes the form of x≤ c with n – 1 possible splits in the data set (Morgan
and Sonquist, 1963). During learning, the splits are modified such that
misclassification is minimized. In the present form, the Gini impurity
was used to find optimal (local) dichotomic decisions as used for the
classification and regression tree method (CART) (Breimann et al.,
1993). The calculations were done using the “rpart” function of the
similarly named R package (B. Ripley; https://cran.r-project.org/
package=rpart).

Forth, the k-nearest neighbor (kNN) classification (Cover and Hart,
1967) provides a non-parametric method that belongs to the most
frequently used algorithms in data science although it is one of the basic
methods in machine learning. During kNN model building, the entire
labeled training dataset is stored while a test case is placed in the
feature space in the vicinity of the test cases at the smallest high di-
mensional distance. The test case receives the class label according to
the majority vote of the class labels of the k training cases in its vicinity.
The present analyses were performed und k=5 and the Euclidean
distance, which also corresponds to the default of the R package
“KernelKnn” (Mouselimis L, https://cran.r-project.org/package=
KernelKnn).

Fifth, random forests creates sets of different, uncorrelated and
often very simple decision trees (Breiman, 2001) with conditions on
features as vertices and classes as leaves. In contrast to CART (see
above), the splits of the features are random and the classifier relates on

the majority vote for class membership provided by a large number of
decision trees. In the present analysis, 1000 decision trees were built
containing sqrt(d) features respectively nucleotide positions as the
standard setting implemented in the R library “randomForest” (https://
cran.r-project.org/package=randomForest (Liaw and Wiener, 2002)).
The number of trees was based on assessing the out-of-bag error rate for
up to 1600 trees, which remained at a minimum of 0.02 from 200 trees
(Supplementary Fig. 1). As it is known that more trees do not confer a
risk of increasing errors (Svetnik et al., 2003), a larger number was
considered safe and merely consumed available computation time (see
also at the end of the methods section where measures against over-
fitting are described).

Sixth, support vector machines are supervised learning methods that
classify data mainly based on geometrical and statistical approaches
employed for finding an optimum decision surface (hyper-plane) that
can separate the data points of one class from those belonging to an-
other class in the high-dimensional feature space (Cortes and Vapnik,
1995). Using a kernel function, the hyperplane is frequently selected in
a way to obtain a tradeoff between minimizing the misclassification
rate and maximizing the distance of the plane to the nearest properly
classified data point. In the present analysis, a Gaussian kernel with a
radial basis was used. The analyses were done using the R library
“kernlab” (https://cran.r-project.org/package=kernlab (Karatzoglou
et al., 2004)).

Seventh, a perceptron, which was among the first algorithmically
described neural networks (Rosenblatt, 1958) was implemented. The
algorithm is built from artificial neurons that are provided with several
input channels, a processing level, and an output level that connects a
neuron to one or multiple other artificial neurons. Each neuron sums up
its weighed inputs plus an offset, or bias, and uses a linear combination
according to the input weights to determine its neuron’s activation
function, usually with a logistic sigmoid shape, which determines the
class association of a particular data point. During learning, weights
and biases are adapted from initial random values in a way that the
activation is shifted toward the desired output, i.e., the learning of a
perceptron takes place by adjusting the weighting of each neuron. In
the present analyses, a multilayer perceptron was used with 3 input
neurons receiving the results of the three olfactory subtests, a single
hidden layer composed of four neurons, and the output layer com-
prising three neurons given by the three output classes (anosmia, hy-
posmia, normosmia). Experiments using any combination of one or two
hidden layers with 2 to 32 neurons each indicated no improvement of
classification accuracy beyond four neurons in a single hidden layer.
The analyses were done using the R library RNNS (https://cran.r-
project.org/package=RSNNS (Bergmeir and Benitez, 2012)).

The analyses were applied on the original fully featured data set,
i.e., containing the results of all three olfactory subtests, and subse-
quently, on reduced-feature data sets from which one or two olfactory
subtest results had been omitted. This allowed assessing the classifica-
tion accuracy of the different machine-learned methods and data set
compositions for each olfactory diagnosis, i.e., the fraction of correct
hits per olfactory diagnosis, obtained by the single machine-learned
classifiers in the original data. In addition, it allowed estimating the
classification accuracy obtained by chance using the permutated data,
with the expectation that there in the diagnosis-specific classification
accuracy was 50% corresponding to flipping a coin. The classification
accuracy was primarily assessed as balanced accuracy (Brodersen et al.,
2010; Velez et al., 2007), which is the mean of prediction sensitivity
and specificity for each olfactory diagnosis and reflects the average of
the proportion corrects of each class individually. Further, secondary
measures of average classification performance across olfactory diag-
noses included test sensitivity, and specificity and negative and positive
predictive values calculated using standard equations (Altman and
Bland, 1994a; 1994b).

Machine learning is vulnerable to overfitting as discussed previously
(Lotsch and Ultsch, 2017), i.e., it may perform rote learning, obtain a
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perfect classification with a single data set but fail to classify similarly
structured new data, or end up in describing noise or irrelevant re-
lationships rather than the true relationship between features and
classes. In that case, only the actual data on which the mapping has
been learned are successfully classified, but the algorithm fails to
classify new data. This issue was addressed in the present analysis
fourfold. Firstly, prior to the data analysis, the classification algorithms
were tuned with respect to available hyperparameters. For example, the
number of k in kNN was tested between 3 and 9 and the best performing
variant was chosen. Similarly, the number of trees in the random forest
was assessed between 100 and 1600 and it was found that the out-of-
bag error remained at a minimum of 0.02 from 200 trees (Supple-
mentary Fig. 1); importantly, using more trees did not result in in-
creased error due to, possibly, overfitting. Indeed, random forests
achieves the error minimization by variance reduction. Therefore, as
stated elsewhere (Svetnik et al., 2003), there is no penalty for having
“too many” trees, other than waste in computational resources. Fur-
thermore, several sizes of the multilayer perceptron were tested in-
cluding one to three hidden layers with up to 20 neurons each. Sec-
ondly, analyses were performed in 100 cross-validation runs using
random splits of the original data set into training (2/3 of the data) and
test (1/3 of the data) data subsets. The reported classification perfor-
mances are the median of the performances obtained during the 100
runs. Thirdly, a negative control condition was created as described
above. A classification better than chance when trained with permuted
data would hint at possible overfitting. Fourthly, seven different clas-
sifiers were applied to avoid that the analysis relied on a single method
in which occasionally overfitting had occurred.

Results

Data of 10,713 subjects was analyzed, of whom 3662 had the ol-
factory diagnosis of anosmia, 4299 were diagnosed with hyposmia, and
2752 had normal olfactory function (normosmia). Descriptive data vi-
sualizations depicting the composition of the data set with respect to
olfactory diagnoses, etiologies underling possible olfactory problems

and gender, and the distribution of olfactory subtest results are shown
in Fig. 1. The analysis of variance (Table 1) resulted in expected sig-
nificant effects of the olfactory diagnosis, i.e., results obviously differed
among subjects with anosmia, hyposmia, or normosmia. The analysis
also identified well-known effects of gender and age on olfactory
subtest results, as reflected in significant main effects and interactions
of the respective factors or covariate, and it also found a significant
interaction of “subtest” by “olfactory diagnosis” by “gender”, which
reflects the fact that the olfactory diagnosis is derived from the sum
score of the three tests in a gender-specific manner. Furthermore, cor-
relation analyses provided statistically significant results for among
olfactory subtests or age, hover, not always as shown in Fig. 2. For
example, lack of correlation was observed between odor identification
and the olfactory threshold, or odor discrimination, in normosmic
subjects, or between olfactory thresholds and odor discrimination per-
formance in anosmic subjects.

Supervised machine-learning was applied on the three-class pro-
blem of predicting the olfactory diagnosis of anosmia, hyposmia or
normosmia by mapping the 10,713×3 sized feature space to the
output space. All machine-learned classifiers could be tuned to provide
approximately 98% correct (Table 2), except the naïve Bayesian clas-
sifier that performed slightly inferior with approximately 95% correct
diagnoses. By contrast, when training the classifiers on permuted data,
the prediction was consistently like guessing at a balanced accuracy of
approximately 50% (Table 2), making overfitting unlikely.

When omitting one of the olfactory subtests from the analyses
(Table 3 and Fig. 3), the largest drop in balanced classification accuracy
was observed when the olfactory threshold was excluded (only ap-
proximately 85% correct diagnoses in 100 cross-validation runs using
random resampling and seven different machine-learned classifiers).
Other combinations of two olfactory subtests indicated that when in-
cluding the olfactory threshold, the diagnosis was equally accurate
(approximately 91%). When training the classifiers with results of
single olfactory subtests, the best diagnostic performance was obtained
with odor thresholds (approximately 84% balanced accuracy) or odor
identification scores (approximately 85%), whereas the odor

Fig. 1. Original individual data shown in
“spaghetti plots”, separately for the three ol-
factory diagnoses for better visibility. The in-
dividual values of olfactory threshold, odor
discrimination and odor identification are
connected by straight lines. The data are
slightly jittered to enhance visibility by redu-
cing superimposition of data points. The bold
dashed black lines indicate the medians across
the whole cohort. The figure has been created
using the R software package (version 3.4.2 for
Linux; http://CRAN.R-project.org/ (R
Development Core Team, 2008)).
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discrimination score provided the least information for correct olfactory
diagnosis with a classifier performance of approximately 68%. Again,
when training the classifiers on permuted data in any combination
scenario, the prediction was consistently like guessing at a balanced
accuracy of approximately 50% (details not shown).

Finally, the observation was addressed why none of the machine-
learned classifiers provides a perfect olfactory diagnosis, even when
training the algorithms with the complete olfactory test results. Indeed,
the diagnosis is not only obtained as the sum of the scores obtained in
the olfactory subtests, but also depends on the subject’s sex, i.e., nor-
mosmia is defined as a sum score> 30.5 in females but> 29.5 in males
(Hummel et al., 2007b). Letting the classifiers train with the additional
parameter sex, scaled as [0,1] for females and males, respectively,
raised the accuracy of the olfactory diagnosis up to more 99% (Table 3),
and the addition of age (rescaled into [0..1]) raised this further, ap-
proaching but not perfectly reaching 100%. Age and sex alone provided
already a classification accuracy of around 60%, i.e., increased the
correct diagnosis above chance (further details not shown).

Discussion

In a previous analysis of the same data set using unsupervised ma-
chine-learning, a high-dimensional structure was shown that was su-
perimposable with the olfactory diagnoses of normosmia, hyposmia or
anosmia (Lötsch et al., 2016a). This indicated that results of the ol-
factory subtests separately, not just by their sum, contain information to

establish the clinical olfactory diagnosis. However, a frequently ob-
served high correlation of the three subtests had raised the question of
their redundancy in the past (Doty et al., 1994a; Lötsch et al., 2008),
which has been answered contrastingly. Indeed, results of statistical
analyses of the present data hinted at differences among subtests, such
as the significant main effect of the factor “subtest” in the rm-ANOVA or
the exceptions from correlation of subtest results. However, lack of
some correlations in anosmic or normosmic subjects might be explained
by subtest scores at the extremes of the scale. Hence, based on the re-
sults of statistical analyses, the question about non-redundant in-
formation in the subtests results was still difficult to answer. Therefore,
the present study used an alternative analytical approach consisting of
the training machine-learned algorithms to establish the olfactory di-
agnosis with either the complete information for olfactory subjects or
with parts of it, and to observe whether the diagnosis accuracy de-
creases when subtest information was omitted from the training. Thus,
applying methods of supervised machine-learning, the decrease in
classification accuracy when a subtest was left out from training was
taken to assess whether the three common olfactory subtests confer
only redundant information or whether there is an additional con-
tribution to the overall olfactory performance conferred by a particular
subtest above what is already conferred by any other subtest as well.

The results of the present analyses suggest that each olfactory
subtest contributes separate information relevant to the olfactory di-
agnoses. The information provided by the results of three separate
subtests of a comprehensive olfactory test battery suffices to draw the

Table 1
Results of the analysis of variance for repeated measurements (rm-ANOVA) and correlation analyses. Specifically, the rm-ANOVA was designed with “subtest”, i.e.,
olfactory threshold, odor discrimination and odor identification as within-subject factor and “olfactory diagnosis”, i.e., anosmia, hyposmia or normosmia, “gender” as
between subject factors and “age as covariate. Degrees of freedom, F-values and p-values are shown for main effects and interactions.

Effect Degrees of freedom F-value p-value

Subtest (threshold, discrimination, identification) 2,21412 70.742 2.38 · 10−31

Olfactory diagnosis (anosmia, hyposmia, normosmia)) 2,10706 27550.541 < 10−100

Gender (male, female) 1,10706 66.355 4.18 · 10−16

Age 1,10706 33.169 8.68 · 10−9

Subtest * olfactory diagnosis 4,21412 1035.703 < 10−100

Subtest * gender 2,21412 1.199 0.301
Subtest * age 2,21412 190.135 1.41 · 10−82

Subtest * olfactory diagnosis * gender 4,21412 2.385 0.049
Olfactory diagnosis * age 2,10706 4.386 0.012

Fig. 2. Explorative analysis of the correlations between age, the single olfactory subjects, and the TDI sum score, separately for the three olfactory diagnoses. At the
lower left parts, the correlations are shown as ellipses, with the direction toward positive (upwards) or negative (downwards) correlations, and colored according to
the color code of Spearman’s ρ (Spearman, 1904) shown at the bottom of the panels. At the upper right parts, the correlations are provided numerically as values of
Spearman’s ρ (colored). The p-values are shown in black numbers below the correlation coefficients; “0″ indicates p < 1 · 10−5. The figure has been created using the
R software package (version 3.4.2 for Linux; http://CRAN.R-project.org/ (R Development Core Team, 2008)) and the library “corrplot” (https://cran.r-project.org/
package=corrplot (Wei and Simko, 2017)).
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clinical olfactory diagnosis, but when the information of one or two
components is omitted, the diagnostic accuracy dropped by different
amounts. This has been consistently observed across seven different
machine-learned or artificial intelligence algorithms, which remarkably
agreed in their results and hinted at odor identification and odor
thresholds as providing most relevant information for the diagnosis
while odor discrimination contributed to a lower degree although its
omission could not be completely substituted for by the information
provided by the other two tests. Thus, the present analysis takes the
previous assessments (Lötsch et al., 2016a) a step further toward a more
detailed analysis of the observed association between patterns of ol-
factory subtest results and the olfactory diagnosis while the lack of si-
milar associations discouraged further inclusion of the etiologies un-
derlying the olfactory diagnosis in this analysis.

Based on the present data driven approach, which did not require
major prior assumptions about relationship or distributions of the in-
cluded parameters, the present results support non-redundant compo-
nents of the contributions of each olfactory subtest to the clinical ol-
factory diagnosis. This contrasts to some degree with suggestions that
tests of single components of olfactory function measure a common
source of variance (Doty et al., 1994b). That judgment had been based
on the Kaiser-Gutman criterion on the results of a principal component
analysis of the three olfactory subtest, advising to regard only principal
components with an eigenvalue> 1 of the covariance matrix (Guttman,
1954; Kaiser and Dickman, 1959). However, the Kaiser-Gutman cri-
terion was shown to occasionally disregard important factors (Ivanenko
et al., 2004; Ultsch and Lötsch, 2015) leading to the advice to retain
factors with eigenvalues higher> 0.5, or seeking calculated criteria
rather than setting a fixed border (Ultsch and Lötsch, 2015). Indeed,
when following this advice, a principal component analysis provided
support for independent contributions of olfactory subtests to the ol-
factory diagnosis (Lötsch et al., 2008). As discussed previously (Doty
et al., 1994a), one possibility to interpreted these observations is that
olfactory perception is multidimensional and that a variety of olfactory
tests tap, to a large degree, elements that are defined by most of the
olfactory tests. For this perspective, even the act of detecting an odorant
can be viewed as requiring to some degree of ability to remember the
odorant and to discriminate it from a blank. By contrast, in the present
analysis a particular cut-off criterion of a statistical test was not needed
as it used artificial intelligence and machine learning that have devel-
oped from computer science (Shalev-Shwartz and Ben-David, 2014;
Turing, 1950) while statistics can be regarded as a branch of mathe-
matics. The present analysis was centered on the performance of the
algorithms to provide the olfactory diagnosis based on full and reduced
sets of olfactory subtest results, rather than on the analysis of the
probabilities of the subtest results given a known underlying distribu-
tion.

The “Sniffin’ Sticks” comprise 3 different subtests, odor threshold,
odor discrimination, and odor identification. In numerous studies this
concept has been shown for over 2 decades to provide reliable and
useful data for the clinical diagnosis of olfactory dysfunction.
Normative data have been established in more than 3000 healthy
subjects for various age groups (Hummel et al., 2007b), and, im-
portantly, different from other tests, criteria for the interpretation of
tests results in terms of clinical improvement have been established
(Gudziol et al., 2006). While this is clearly a strength compared to other
tests that only look at one dimension of olfactory function, e.g., odor
identification, this may also be regarded as weakness because of the
differences between the individual subtests of the “Sniffin’ Sticks” in
terms of reliability, odor components, or task demands. However, such
criticism may also apply to other, single-dimensional tests where dif-
ferent odors (single molecules or mixtures) are used in odor identifi-
cation tests, and it is not exactly known to which degree each single
odor contributes to the overall diagnosis of the olfactory dysfunction of
an individual patient – because odor identification also depends on
numerous factors like verbal abilities, or familiarity with the individualTa
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odor (Hedner et al., 2010). This is the reason why odor identification
tests for clinical diagnostic procedures not only use one odor but sev-
eral. Having said this, when interpreting the results from the preset
study it has to be kept in mind that the “Sniffin Sticks” extended test is a
mixture of different concepts.

The present results point at a particular importance of olfactory
thresholds. A distinct role of olfactory thresholds had already been
suggested by a separate principal component in a previous assessment
in a different cohort (Lötsch et al., 2008). In the present analysis, their
importance was indicated by the most pronounced decrease in diag-
nostic accuracy of the machine-learned algorithms when olfactory
thresholds were omitted from the parameter set, and on their

comparatively good performance as a single predictive parameter
equaling that of odor identification. This result supports and encourages
the use of olfactory thresholds in unimodal olfactory test batteries,
which commonly tend to choose odor identification, including most of
the so-called short screening tests, while test batteries based on olfac-
tory threshold assessments are rare (Yilmaz et al., 2017). A possible
advantage of olfactory thresholds to odor identification performance
tests is the minor role of chance in the test outcome when a staircase
paradigm with reversals is used; for example, the present im-
plementation of 16 odors in a four-alternative forced choice assessment
of identification implies an average score of 4 due to chance. This re-
quires the addition of sufficient items to reduce the impact of chance on

Table 3
Balanced accuracy of the olfactory diagnosis of different machine-learned classifiers (ordinal logistic regression, naïve Bayes, classification and regression trees
(CART), k-nearest neighbors, random forests, support vector machines, multilayer perceptron) trained with data from the full data set comprising the results of three
olfactory subtests (assessment of olfactory threshold, odor discrimination and odor identification) acquired in 10,713 subjects, and with reduced data sets consisting
of the results of two or one olfactory subtests (olfactory threshold, T, odor discrimination, D, odor identification, I). In addition, the classification accuracy of age or
sex or combinations with the full data set has been assessed. Results represent the medians of the test performance measures from 100 model runs using random splits
of the data set into training data (2/3 of the data set) and test data (1/3 of the data set).

Subtests Complete None Threshold Discrimination Identification

+ Sex + Sex+ age Age and sex Alone + Discrimination + Identification Alone + Identification Alone
TDI TDI+ sex TDI+ sex+ age none T TD TI D DI I

Methods w/o identification w/o discrimination w/o threshold

CART 97.2 97.3 96.9 59 83.6 91.1 90.9 68.4 85.2 84.9
Random forests 97.8 98.3 98 59.4 83.6 91 91.1 68.4 85.5 84.9
k-nearest neighbors 97.7 97.7 96.4 55.3 82 90.1 90.4 65.9 84 83.2
Support vector machines 98.4 99.1 98.7 59.9 83.5 91.1 91.5 68.5 85.9 84.9
Ordinal logistic regression 95.4 95.5 95.6 55.5 84.2 89.3 91.3 67.2 83.9 85.1
Multilayer perceptron 98.2 99.1 99.1 59.7 83.5 91.3 91.4 67.5 85.8 85.1
Naïve Bayes 94.4 94.4 93.2 60.4 84.9 90 90.9 67.6 86.5 85.1

Fig. 3. Radar plot of the balanced accuracy of
different classifiers (ordinal logistic regression,
naïve Bayes, classification and regression trees
(CART), k-nearest neighbors, random forests,
support vector machines, multilayer percep-
trons) to establish the clinical olfactory diag-
nosis (anosmia, hyposmia or normosmia) from
olfactory subtest results. The classification
performance has been assessed in of 100 model
runs using random resampling with splits into
2/3 of the data (training data subset) and 1/3
(test data subset). The plot shows the balanced
accuracies in a spider web form. Each category,
i.e., machine-learning method, has a separate
axis, scaled from 60 to 100% balanced accu-
racy. The axes are arranged in a circle in 360
degrees evenly, and the values of each series
are connected with lines indicating the results
obtained with either of the three data sets, i.e.,
the fully featured set of olfactory subtest results
comprising the olfactory threshold, T, odor
discrimination, D, odor identification, I, or with
reduced-feature data sets from which one or
two olfactory subtest results had been omitted.
The figure has been created using the R soft-
ware package (version 3.4.2 for Linux; http://
CRAN.R-project.org/ (R Development Core
Team, 2008)) with the “radarchart” function
provided in the library “fmsb” (M. Nakazawa,
https://cran.r-project.org/package=fmsb).

J. Lötsch and T. Hummel IBRO Reports 6 (2019) 64–73

70

http://CRAN.R-project.org/
http://CRAN.R-project.org/
https://cran.r-project.org/package=fmsb


the overall test result (Lötsch et al., 2016b).
On a biological level, a distinction of olfactory thresholds from other

olfactory subtests hypothetically involves a cognitive component to a
lesser degree (Hedner et al., 2010). That is, although formally a three-
alternative paradigm is used, the pen containing the odor may be
identified immediately without necessary reference to the non-smelling
pens. By contrast, during odor discrimination performance testing, the
subject must memorize the smell of the other pens before completing
the task, and memorizing odors is also required, at least to some degree,
for odor identification. For example, this hypothesized difference in the
role of cognitive factors for threshold and discrimination/identification
testing is in line with the report that odor identification, but not
thresholds, were associated with AIDS-related dementia (Hornung
et al., 1998) and difficulty in identifying odors was shown to predict
subsequent development of mild cognitive impairment in older patients
(Wilson et al., 2007). In addition, an advantage of odor threshold
testing over testing of odor identification or odor discrimination per-
formance is the relative cultural or social independence of odor
thresholds. Both odor discrimination and odor identification strongly
depend on the familiarity with odors. This familiarity varies from re-
gion to region. For example, odors like “wintergreen” may be known in
the USA, but are unknown in most European countries, let alone the
Arabian world, so that odor identification tests need to be culturally
adapted (Croy et al., 2014; Oleszkiewicz et al., 2016).

However, dismissing odor discrimination and odor identification for
olfactory diagnosis due to their more pronounced cognitive and cultural
component as compared to olfactory thresholds would result in a dif-
ferent olfactory diagnosis for some subjects. Normal values of olfactory
thresholds in the present test battery of> 6 for males and> 6.5 for
females (Hummel et al., 2007a) have been exceeded by a n=24 sub-
jects assigned to the diagnosis of anosmia (Fig. 1). However, a clinical
diagnosis of functional anosmia may remain valid when considering the
possibility of olfactory agnosia, i.e., dissociation of olfactory acuity and
identification abilities, which have been described as a symptom of
Korsakoff's amnestic syndrome, lesions of the orbitofrontal cortex
(Potter and Butters, 1980) or schizophrenia (Kopala and Clark, 1990),
for the latter with disproved relation to task complexity of the olfactory
test (Kopala et al., 1995). A more complete regard of olfactory function
seems also supported by scenarios were professionals who rely on ol-
factory function such as chefs or perfumers would certainly be disabled
when they lose the ability to identify of discriminate odors regardless of
where they can still perceive the presence of an olfactory stimulus.

When accepting that the diagnostic accuracy dropped most when
omitting olfactory thresholds from the set of olfactory subtests, it can be
hypothesized that odor threshold reflects the basis of odor perception.
While alone it preforms as well as basing the diagnosis on odor iden-
tification only, almost completely accurate diagnoses depend on it more
than on the other two subtests. This suggests an advantage of tests of-
fering sole testing of odor thresholds over alternatives that are based on
identification only. However, more importantly the present results en-
courage more complex tests of olfactory function with separate tests of
odor thresholds, identification and maybe also odor discrimination
(Hummel et al., 1997a). This thought is also maintained in a recent
position paper on olfactory dysfunction (Hummel et al., 2017) where it
reads that “…assessing both odor threshold and suprathreshold tasks
adds to the diagnostic value of the psychophysical tool.”.

The present data analysis included machine-learning approaches;
regression and naïve Bayes based assignments to the olfactory diag-
noses were added as more classical algorithms. The use of different
algorithms aimed at internal validation, which was achieved with the
consistency of the results across all algorithms. Moreover, combined
with random resampling of disjoint data sets, the machine-learned al-
gorithms did not base the diagnoses solely on prior knowledge but re-
established it from raw threshold, discrimination and identification
data. While resampling-based cross-validation is not unique to ma-
chine-learning but a standard in many mathematical-modeling based

data analysis approaches in biomedical research, the as far as possible
avoidance of pre-established limits seems to have provided an ad-
vantage over a classical statistical approach to the present problem.
That is, the focus of establishing normative values in the Sniffn’ Sticks
test battery was laid on the sum score, and most publications mainly
used the sum score as the basis for their analyses. For the subtest,
normative values have only been addressed twice. Specifically, limits
separating hyposmia from normosmia have been reported as scores of
6.5, 10 and 11 for odor threshold, discrimination and identification,
respectively (Hummel et al., 2007b). The respective limits between
hyposmia and anosmia were reported earlier and at scores of 1, 8 and 8
(Kobal et al., 2000). Diagnostic accuracies of 78.4, 66.7 and 84.4%
were achieved when using these classical limits for establishing the
olfactory diagnosis. This was below the best values of balanced ac-
curacies of 84.9, 68.5 and 85.1% reached with machine-leaning, naïve
Bayes or regression-based classifiers run with one single subtest result
(Table 3). The classical limits had been set at the 10th or 90th per-
centiles of distributions observed in the data used for establishing
normative values. While this has been a sound statistical approach, it
nevertheless implied a decision about the percentiles. This kind of de-
cision was attempted to be avoided as much as possible in the present
analysis, hence, the use of supervised machine learning where the di-
agnosis was learned from the training data sets rather than given by
pre-established limits. A more objective approach at establishing limits
in odor thresholds, discrimination and identification scores would have
been, for example, using Bayesian decision borders. Indeed, this has
been implicitly implemented in the main analysis. Explicit calculation
of these border from the whole data set resulted in new thresholds
between anosmia and hyposmia, and between hyposmia and nor-
mosmia of 2.8 and 8.6 for odor thresholds, of 7.6 and 12.8 for odor
discrimination, and 6.4 and 11.3 for odor identification. Using these
data-based limits, the diagnostic accuracy of the single subtest for the
clinical olfactory diagnosis raised to 83.9, 67.3 and 85.1 for thresholds,
discrimination and identification, respectively. Of note, the differences
to the results obtained with Naïve Bayes classifiers may be attributed
partly to the resampling strategies used in Table 3, whereas the values
above are simply calculated form the whole data set.

However, the present study was not intended to revise published
limits; nevertheless, the above demonstrations emphasizes the utility of
a data-driven approach to the present problem, conceptually possibly
superior to pure statistical calculations. Nevertheless, both approaches
came to the same main conclusions, which indicates that despite the
criticism expressed above about the establishment of the classical limits
for olfactory subtests and the demonstration that it could be easily
improved, the historical approach was not completely misleading.
Again, it has been an explicit aim of the present analysis to use as few as
possible decisions or pre-established rules, to base the diagnosis mainly
on the data analysis, and to show that the results are not attributable to
a single algorithm but prevail across a variety of implementations.

To the presently observed distinction of odor thresholds adds the
observed difficulty of IPD patients to identify or recognize odors
(Masaoka et al., 2007), while they are still able to detect odors. This
further emphasizes the need to test different aspects of olfaction rather
than relying on just one component in neurological diagnosis. As in-
dicated above, such differential approaches to the diagnosis of olfactory
loss have been proposed (Henkin, 1971; Henkin et al., 2013). However,
in clinical practice the present, possibly simplified, approach using
three subtests to establish an olfactory diagnosis, is still a standard.
Moreover, a certain interest is focused on even more simple tests as
reflected in proposals of several short tests of olfactory function
(Hummel et al., 2010; Toledano et al., 2009) (Hummel et al., 2010;
Mueller and Renner, 2006).

Conclusions

In a large data set of 10,713 subjects tested with a three-component
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olfactory test where a previous machine-learned analysis has shown
data structures in the olfactory subtest results that agreed with the ol-
factory diagnosis but not the underlying etiology (Hummel et al.,
1997b), the present analysis applied supervised machine learning
methods (Murphy, 2012; Shalev-Shwartz and Ben-David, 2014) to take
the analysis a step further toward the assessment of the relative im-
portance of subtest results for the olfactory diagnosis. The underling
idea was to assess this relative importance by comparing the diagnostic
accuracy among classifiers trained either from the full set of olfactory
subtest results or from a reduced number of olfactory subtests. The
importance of an olfactory subtest was assessed via the drop in diag-
nostic accuracy when the respective parameter was omitted from the
classifier training. This focused on the utility of each single subtest for
the complete olfactory diagnosis in possible automatized implementa-
tions (Lotsch et al., 2018), rather than on merely calculating the ac-
curacy of one or two olfactory test in providing the diagnosis. In ad-
dition to straight-forward statistical approaches, the use of several
different algorithms, nonredunant to earlier approaches that also
decided to not to rely solely on simple calculations of separate diag-
nostic accuracies (Doty et al., 1994b), and the massive use of data re-
sampling provided internal validations of the results.

The results of the analyses indicated that the information provided
by the results of three separate olfactory subtests suffices to train an
artificial intelligence or related machine-learned algorithm that can
establish the clinical olfactory diagnosis almost perfectly. Moreover,
seven different machine-learned classifiers provided highly consistent
results supporting partly non-redundant contributions of each olfactory
subtest to the clinical olfactory diagnosis and pointing at olfactory
thresholds as providing - within the currently studied diagnostic pro-
cedure, disregarding aspects of test-retest reliability - the least negli-
gible information to the overall olfactory diagnosis.
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