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Background: Gallbladder cancer (GBC) is a rare malignancy of the digestive tract, characterized by a 
remarkably poor prognosis. Currently, there is a controversy on the relationship between type 2 diabetes 
(T2D) and GBC. Additionally, no definitive conclusions were established regarding the causal relationships 
between alcohol intake frequency (AIF), age at menarche (AAM) and GBC. The objective of this study was 
to elucidate the causal association between T2D, AIF, AAM, and GBC.
Methods: Single-nucleotide polymorphisms (SNPs) associated with exposures and outcomes were sourced 
from the Integrative Epidemiology Unit (IEU) Open Genome-Wide Association Study (GWAS) database. 
Specifically, the data of GBC comprised 907 East Asians (pathological results of all cases were registered 
into Biobank Japan) and 425,707 SNPs; T2D comprised 655,666 Europeans with 5,030,727 SNPs; AIF 
comprised 462,346 Europeans and 9,851,867 SNPs; AAM comprised 243,944 Europeans and 9,851,867 
SNPs. The measurement of exposure traits is collected uniformly from the UK Biobank (UKB) database 
and presented in the form of standard deviation (SD) or the logarithmic form of the odds ratio (logOR). We 
employed a two-sample Mendelian randomization (MR) analysis to discern the causalities between T2D, 
AIF, AAM, and GBC. Sensitivity analyses were conducted to identify and address potential heterogeneity, 
horizontal pleiotropy, and outliers.
Results: Our findings indicated that T2D reduced GBC risk [odds ratio (OR) =0.044; 95% confidence 
interval (CI): 0.004–0.55; P=0.015, inverse variance-weighted (IVW)]. However, no causal relationship was 
observed between AIF (OR =0.158; 95% CI: 5.33E−05 to 466.84; P=0.65, IVW), AAM (OR =0.19; 95% CI: 
0.0003–140.34; P=0.62, IVW), and GBC. Sensitivity analysis revealed no evidence of horizontal pleiotropy, 
heterogeneity, or outliers, suggesting the robustness and reliability of our conclusions.
Conclusions: T2D emerged as a potentially protective factor against GBC, whereas neither AIF nor AAM 
demonstrated a causal relationship with GBC risk. Regulation of glucose metabolism may be one of the 
methods for preventing GBC.
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Introduction

Gallbladder cancer (GBC) is the predominant malignancy 
of the biliary tract and is notorious for its exceptionally 
poor survival prognosis (1-4). Often diagnosed at 
advanced stages due to its deep anatomical positioning 
and nonspecific symptoms, numerous patients with GBC 
miss the opportunity for potentially curative surgical 
interventions (5-8). With the deepened understanding of 
GBC, various risk factors including chronic inflammation 
and biliary tree abnormalities have been identified (1). 
However, the relationship between type 2 diabetes (T2D) 
and GBC remains ambiguous. Although some observational 
studies have suggested that T2D might increase the risk of 
GBC, confounding factors such as body mass index (BMI) 
and gender disparities make establishing a clear causal 
connection challenging (9-12). Indeed, a study has reported 
evidence refuting a direct causal relationship between T2D 
and GBC (13). Although alcohol consumption is recognized 
as a risk factor for various types of cancer (14-17), the 
link between alcohol intake frequency (AIF) and GBC 
remains understudied. The higher prevalence of GBC in 
females is thought to be influenced, in part, by estrogen. 

This hypothesis is backed by both preclinical research and 
epidemiological data (18-21). High exogenous estrogen 
exposure seems to increase the risk of biliary tract cancer (18), 
pointing to a possible association between age at menarche 
(AAM) and GBC via its effect on estrogen levels.

Despite previous studies plausibly indicating the presence 
of physiological connections between T2D, AIF, AAM, and 
GBC, the possibility of confounders and biases puts into 
doubt a clear causal link (22-24). Hence, a robust statistical 
method is strongly needed to verify these associations. 
Mendelian randomization (MR), which employs single-
nucleotide polymorphisms (SNPs) as instrumental variables 
(IVs) that correlate strongly with the exposure under 
investigation, may be such a method. MR can be used 
to establish a causal relationship between exposures and 
their outcomes (25). The strength of MR stems from the 
random distribution of alleles during meiosis, rendering 
MR analyses less susceptible to the effects of unobserved 
confounders and thus a reliable tool for determining 
causality (26). In this study, two-sample MR was employed 
to characterize the causal relationships between T2D, AIF, 
AAM, and GBC. We present this article in accordance with 
the STROBE-MR reporting checklist (available at https://
jgo.amegroups.com/article/view/10.21037/jgo-24-358/rc).

Methods

Study design and procedure

SNPs associated with T2D, AIF, and AAM were identified 
as IVs to determine the causal effects of these factors on 
GBC. The MR analysis in this study strictly adhered to 
three primary assumptions: (I) the chosen SNPs were 
strongly associated with the exposures of interest; (II) the 
IVs were not related to potential confounders; and (III) 
the genetic variants employed as IVs were not associated 
with any alternative pathways influencing the outcomes. 
The overall study framework is depicted in Figure 1, and a 
summary of the study procedure is presented in Figure 2.
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Exposure data and outcome data selection

SNPs associated with exposures (T2D, AIF, and AAM) and 
the outcome (GBC) were retrieved from the Integrative 
Epidemiology Unit (IEU) Open Genome-Wide Association 
Study (GWAS) database (https://gwas.mrcieu.ac.uk/). The 
data for T2D (GWAS ID: ebi-a-GCST006867) comprised 
655,666 Europeans with 5,030,727 SNPs, the data for AIF 
(GWAS ID: ukb-b-5779) comprised 462,346 Europeans 
and 9,851,867 SNPs, and the data for AAM (GWAS 
ID: ukb-b-3768) comprised 243,944 Europeans and the 
same number of SNPs. For GBC, the data set (GWAS 
ID: ieu-a-1057) comprised 907 East Asians (pathological 
results of all cases were registered into Biobank Japan) and 
425,707 SNPs. The measurement of all exposure traits is 
collected uniformly from the UK Biobank (UKB) database 
and presented in the form of standard deviation (SD) or the 
logarithmic form of the odds ratio (logOR).

IV selection

To ensure the validity of the MR analysis, a stringent 
selection process was conducted to identify which IVs met 
the three assumptions of the MR analysis. This rigorous 
selection process aimed to obtain representative IVs that 

could provide reliable estimates of causal effects. We 
employed a genome-wide significance threshold (P<5×10−8) 
to identify SNPs with a strong exposure correlation. This 
stringent threshold ensured the selection of SNPs with 
robust associations with the exposure variable. Next, we 
took measures to ensure the independence of the selected 
SNPs by removing those in linkage disequilibrium (LD) 
from our analysis. Specifically, we applied a threshold of 
r2=0.01 within a window of 10,000 kb to exclude SNPs 
that were in high LD with each other. This approach 
minimized the potential biases caused by the inclusion of 
correlated SNPs in the analysis. We then used the F test to 
assess the strength of IVs, as documented previously (27). 
Strong genetic variants (F>10) were retained for further 
analysis. Finally, we applied PhenoScanner (http://www.
phenoscanner.medschl.cam.ac.uk/) to avoid horizontal 
pleiotropy (28). Any pleiotropic SNPs related to the risk 
factors of GBC, including BMI, body fat percentage, and 
C-reactive protein, were manually removed (Figure 1) (29).

MR analysis

To assess causality, several statistical methods were 
employed, including the inverse variance-weighted (IVW) 

Assumption 3

Exposures Outcome

Confounders

Assumption 1

Assumption 2

• Type 2 diabetes 
• Alcohol intake frequency
• Age at menarche

Instrumental
variables

• Body mass index
• Body fat percentage
• C-reactive protein

• Gallbladder cancer

Figure 1 Overall design of the MR study. The MR analysis strictly adhered to three assumptions: [1] all selected SNPs were strongly 
associated with exposure; [2] selected IVs were not correlated with confounders; [3] and genetic variants were not associated with other 
pathways that were related to the outcome. SNPs related to potential confounders including BMI, body fat percentage, and C-reactive 
protein were manually removed. MR, Mendelian randomization; SNP, single-nucleotide polymorphism; IV, instrumental variant; BMI, body 
mass index.
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GWAS summary data of exposure
• Type 2 diabetes 
• Alcohol intake frequency
• Age at menarche

Selection of SNPs strongly 
associated with exposure

Removal of SNPs in LD

Removal of weak SNPs

Removal of SNPs with  
horizontal pleiotropy

GWAS summary data of outcome
• Gallbladder cancer

Mendelian randomization
IVW, MR Egger, weighted median, simple mode, weighted mode

Sensitivity analysis

IVW MR-Egger regression MR-PRESSO Leave-one-out method

T2D
14 IVs

AIF
8 IVs

AAM
21 IVs

Figure 2 Major procedures of the MR analysis. GWAS, genome-wide association study; SNP, single-nucleotide polymorphism; LD, linkage 
disequilibrium; T2D, type 2 diabetes; AIF, alcohol intake frequency; IV, instrumental variant; AAM, age at menarche; IVW, inverse variance-
weighted; MR-PRESSO, Mendelian Randomization Pleiotropy Residual Sum and Outlier. 

method, weighted median estimate, weighted mode estimate, 
simple mode estimate, and MR-Egger regression (30). 
The IVW method was used as the primary estimation 
method to calculate the aggregated effect of all selected 
SNPs. This method assumed the absence of pleiotropy 
and heterogeneity, and it provided an overall estimate of 
the causal effect by weighting the individual SNP effects 

based on their inverse variances (30). The weighted median 
estimate could provide causal estimates consistent with the 
ultimate effect even in the presence of up to 50% invalid 
SNPs (31). Weighted-mode estimate and simple-mode 
estimate were two additional MR methods employed to 
evaluate the robustness of the results that violated the 
assumptions of the IVs (32). The effect estimate obtained 
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through MR-Egger regression could provide an estimate of 
the true causal effect when all IVs were invalid (33).

Sensitivity analysis

MR-Egger regression was used to assess the presence of 
horizontal pleiotropy (33). For MR-Egger regression, if 
the vertical intercept was close to zero and statistically 
nonsignificant (P>0.05), the absence of horizontal pleiotropy 
was indicated. Scatter plots were used to visualize the 
results of the horizontal pleiotropy test and to demonstrate 
the relationship between the IVs and the outcome variable. 
Additionally, funnel plot analyses were performed to 
evaluate both the pleiotropy and robustness of the results. 
We employed the leave-one-out method to identify SNPs 
with substantial effects on the total causal effects. After 
sequential removal of each SNP, the pooled effects of the 
surplus SNPs were computed. To assess heterogeneity, both 
MR-Egger regression and IVW analysis were conducted. 
If the P value associated with the Cochran Q statistics 
was below 0.05, the presence of heterogeneity among the 
estimates derived from different IVs was indicated. To 
identify the presence of horizontal pleiotropy and outliers, 
we employed the Mendelian Randomization Pleiotropy 
Residual Sum and Outlier (MR-PRESSO) global test and 
MR-PRESSO outlier test (34).

Statistical analysis

In the presence of significant heterogeneity, a random-
effects model was employed; otherwise, a fixed-effects 
model was used (35). To assess the causality between 
exposure and outcome, we applied the Bonferroni 
correction method to set the significance threshold for 
the P value. This method adjusts the P value threshold, 
accounting for multiple comparisons and minimizing the 
likelihood of false-positive results. P<0.016 (0.05/3 exposures) 
was considered statistically significant. For other tests, the 
threshold for statistical significance was defined as P<0.05. 
All MR analyses were conducted using the MR-PRESSO and 
two-sample MR packages in RStudio (version 4.1.1).

Ethics statement

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013) (36).

Results

IVs included in the study

For T2D, AIF, and AAM, 14, 8, and 21 IVs were selected, 
respectively, to assess their relationship with GBC. 
Table S1 shows the characteristics of the included IVs. 
The F statistics for these genetic variants exceeded 10, 
indicating that all IVs were strongly correlated with 
their corresponding exposures. Additionally, all included 
IVs affected outcomes through exposures and were not 
associated with other confounders.

MR estimates of T2D, AIF, and AAM 

The MR analysis suggested that T2D has a negative 
association with GBC [odds ratio (OR) =0.044; 95% 
confidence interval (CI): 0.004–0.55; P=0.015, IVW; Figure 3], 
indicating that T2D acts as a protective factor against GBC. 
This observation was consistent with the findings from 
the simple mode and weighted mode methods. Although 
this pattern was not mirrored in the results of the MR-
Egger analysis (OR =0.041; 95% CI: 6.17E−07 to 2,692.92; 
P=0.58) or weighted median method (OR =0.036; 95% CI: 
0.0009–1.45; P=0.078), the overarching direction of the 
pooled effect from these two methods aligned with that of 
the IVW method.

Furthermore, our analysis revealed there to be no causal 
relationship between AIF and GBC risk (OR =0.158; 95% 
CI: 5.33E−05 to 466.84; P=0.65, IVW; Figure 3). This 
nonassociation was uniformly reflected across all four 
methods employed in this study. Similarly, no significant 
association was observed between AAM and GBC (OR 
=0.19; 95% CI: 0.0003–140.34; P=0.62, IVW; Figure 3).

Sensitivity analysis

The causal association between T2D and GBC displayed no 
signs of horizontal pleiotropy, as evidenced by an intercept 
close to zero and a P value greater than 0.05 in the MR-
Egger regression analysis (Figure 4, Table 1). Neither the 
IVW method nor the MR-Egger method detected any 
significant heterogeneity. Furthermore, the MR-PRESSO 
analysis did not identify any external IVs (Table 1). Funnel 
plots of T2D and AAM showed a symmetrical distribution 
(Figure S1). The leave-one-out test revealed that no 
individual IV exerted a disproportionate influence on the 

https://cdn.amegroups.cn/static/public/JGO-24-358-Supplementary.pdf
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pooled MR estimation (Figure S2).

Discussion

In this study, our objective was to investigate the causal 
associations between T2D, AIF, AAM, and GBC—three 
established risk factors for numerous types of cancers. Our 
findings indicated an inverse correlation between T2D 
and the risk of GBC. However, we observed no significant 
relationship between AIF, AAM, and GBC.

The causal relationship between T2D and GBC has been 
a controversial issue in prior observational studies. Some 
have reported an increased risk of GBC to be associated 
with T2D (10,11,37), while others posit that T2D might 
be a protective factor against GBC (38). Additionally, one 
study found no significant association between T2D and 
GBC (13). These divergent results underscore the lack 

of understanding in the T2D-GBC relationship. Several 
factors underpin these inconsistencies: (I) given that BMI is 
a widely recognized risk factor for both T2D and GBC, any 
disparity in baseline BMI between study groups introduces 
a confounding variable that might skew the perceived 
association; (II) besides BMI, the presence of gallstones, 
another risk factor for GBC, can also bias the results if 
not evenly distributed among baseline characteristics; 
(III) the design limitations of case-control studies make it 
challenging to deduce causality. The study conducted by 
Sheng et al. (39) revealed a negative correlation between 
T2D and GBC but a positive correlation between the 
homeostasis model assessment of insulin resistance 
(HOMA-IR) and GBC. Consequently, we hypothesized 
that insulin resistance, rather than diabetes itself, is the 
risk factor for GBC. This mechanism can be elucidated 
at the molecular level. Insulin can stimulate malignant 
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transformation and cancer cell proliferation as indicated 
in multiple studies (40,41). In insulin-resistant patients, 
augmented insulin production might drive the oncogenesis 
of GBC (42). This leads us to speculate that the protective 
effect of diabetes against GBC may stem from antidiabetic 
medications such as metformin, which enhance insulin 
sensitivity (43).

The literature offers conflicting views regarding the link 
between AIF and GBC. A study reported no significant 
association (44), while others reported a positive one (23). 
Although alcohol might prevent gallstone formation by 
reducing cholesterol levels in the bile (45), it could also 
boost GBC risk by inducing oxidative stress and DNA 
damage (23). The relationship between AIF and GBC 
merits further scrutiny. Our funnel plot’s reliability was 
hampered by the inclusion of only eight SNPs. However, 
previous testing has provided evidence ruling out the 
presence of heterogeneity and horizontal pleiotropy.

Given the higher GBC incidence in females, possibly due 
to the increased expression of estrogen receptors in GBC 
cells (46), we were motivated to explore the relationship 
between AAM and GBC. Several studies have consistently 
reported that a higher AAM is associated with an increased 
risk of GBC (24,47,48). It is important to acknowledge BMI 
as a potential confounder, influencing both puberty onset 
and the end result. One strength of MR is its capacity to 
diminish confounding effects through the random allocation 
of alleles, rendering our findings more robust against BMI’s 
influence.

Some limitations to this study should be acknowledged. 
Firstly, ethnic variations between European and East 
Asian populations might have introduced confounders due 
to allele frequency. Secondly, there are few IVs strongly 
related to exposure, and the sample size of GBC in this 
study suggests that larger samples are essential for more 
definitive conclusions. Lastly, it is worth noting that certain 
results exhibited broad CIs due to IV variations. Yet, the 
heterogeneity test conducted in our study indicated a lack 
of significant heterogeneity between these variables. The 
limited SNP count may explain these expansive CIs.

Conclusions

Our study demonstrated that T2D may serve as a 
protective factor, as it was linked to a reduced risk of GBC. 
Furthermore, we discerned no causal relationship between 
either AIF or AAM and GBC.
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Table 1 Sensitivity analysis for the MR estimation results

Exposure

Pleiotropy Heterogeneity
MR-PRESSO

MR-Egger Inverse variance-weighted MR-Egger

Intercept P value Q P value Q P value P value

T2D 0.0045 0.99 11.76 0.55 11.76 0.47 0.55

AIF −0.12 0.87 1.94 0.96 1.91 0.93 0.96

AAM −0.08 0.70 19.23 0.51 19.08 0.45 0.56

MR, Mendelian randomization; T2D, type 2 diabetes; AIF, alcohol intake frequency; AAM, age at menarche; MR-PRESSO, Mendelian 
Randomization Pleiotropy Residual Sum and Outlier. 
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