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Background: Atrial fibrillation (AF) is associated with cardiac fibrosis, which can now be measured
noninvasively using T1-mapping with cardiac magnetic resonance imaging (CMRI). This study aimed to
assess the impact of AF on ventricular T1 at the time of CMRI.
Methods: Subjects with AF scheduled for AF ablation underwent CMRI with standard electro-
cardiography gating and breath-hold protocols on a 1.5 T scanner with post-contrast ventricular T1
recorded from 6 regions of interest at the mid-ventricle. Baseline demographic, clinical, and imaging
characteristics were examined using univariate and multivariable linear regression modeling for an
association with myocardial T1.
Results: One hundred fifty-seven patients were studied (32% women; median age, 61 years [interquartile
range {IQR}, 55–67], 50% persistent AF [episodes47 days or requiring electrical or pharmacologic car-
dioversion], 30% in AF at the time of the CMRI). The median global T1 was 404 ms (IQR, 381–428). AF at
the time of CMRI was associated with a 4.4% shorter T1 (p¼0.000) compared to sinus rhythm when
adjusted for age, sex, persistent AF, body mass index, congestive heart failure, and renal dysfunction
(estimated glomerular filtration rateo60). A post-hoc multivariate model adjusted for heart rate sug-
gested that heart rate elevation (p¼0.009) contributes to the reduction in T1 observed in patients with
AF at the time of CMRI. No association between ventricular T1 and AF recurrence after ablation was
demonstrated.
Conclusion: AF at the time of CMRI was associated with lower post-contrast ventricular T1 compared
with sinus rhythm. This effect was at least partly due to elevated heart rate. T1 was not associated with
the recurrence of AF after ablation.

& 2015 Japanese Heart Rhythm Society. Published by Elsevier B.V. All rights reserved.
1. Introduction

Atrial fibrillation (AF) is a common disease that has been
identified as both a cause and consequence of adverse cardiac
electrical and structural remodeling [1,2]. Structural remodeling in
the form of cardiac fibrosis occurs in both the atria and ventricles,
and it is known to contribute to the development of AF [3–5].
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Diffuse myocardial fibrosis can now be measured using cardiac
magnetic resonance imaging (CMRI) post-contrast T1 relaxation
(T1) time. Gadolinium-based contrast accumulates in areas of
increased extracellular space, resulting in a shorter T1. The degree
to which contrast shortens T1 is, therefore, a reflection of the
extent of diffuse myocardial fibrosis. A shorter T1 in both the atria
and ventricles predicts AF presence and severity, and it may pre-
dict the clinical response to AF therapies such as catheter-based AF
ablation [5,6].

Given the increasing interest in exploring the potential clinical
applications of T1, it is important to understand the factors that
influence its measurement. Experimental evidence shows that at
reserved.
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the time of CMRI, cardiac rhythm abnormalities such as tachy-
cardia or irregularity may lead to an underestimation of T1 [7,8].
Tachycardia and irregularity are characteristic of AF; however, the
effect of AF on myocardial T1 in humans has not been previously
investigated. Accordingly, the primary goal of this study was to
test the hypothesis that AF at the time of CMRI is an independent
predictor of shortened ventricular T1 in patients with AF referred
for catheter-based ablation. As a secondary goal, given previous
reports of ventricular T1 predicting AF recurrence after ablation
[6], we sought to provide independent validation of that finding.
2. Material and methods

2.1. Study population

Subjects were enrolled in the Vanderbilt AF Ablation Registry
and provided written informed consent. The study protocol was
approved by the Vanderbilt Institutional Review Board. Patients
with data that met the following eligibility criteria were included
in our analysis: age418 years, AF ablation after 1/1/2008, a pre-
ablation CMRI performed at Vanderbilt University, and no prior
history of catheter-based or surgical ablation for AF. To explore the
association with AF recurrence, only subjects with at least
6 months of clinical follow-up after AF ablation were included.

2.2. CMRI protocol

As part of routine clinical care, a CMRI study was performed
prior to AF ablation to provide detailed assessment of cardiac and
PV anatomy and to generate a three-dimensional (3D) electro-
anatomic map. Imaging was performed using a 1.5-T Siemens
Avanto (Siemens Healthcare, Erlangen, Germany) with an
8-channel cardiac coil. Ventricular function was assessed using
breath-hold, electrocardiogram-gated, serial short-axis steady-
state free precession cine images as previously described [9].
Intravenous Gd-DTPA contrast (gadopentate dimeglumine,
Magnevist

s

, Bayer Healthcare Pharmaceuticals, Wayne, NJ, USA)
was administered at a dose of 0.2 mmol/kg. The size of the left
atrium was measured in the anterior–posterior orientation on
axial half-Fourier acquisition turbo spin-echo images. A Look-
Locker sequence was obtained in a short-axis plane at the level
of the papillary muscles 10 min after contrast administration with
these imaging parameters: field of view, 275–400�340–400 mm;
matrix, 66–96�192; slice thickness, 8 mm; flip angle, 30°; and no
parallel imaging. Standard Look-Locker imaging included 15–35
images acquired every other R-R interval with phase intervals of
approximately 30 ms. The images were electrocardiography gated
and acquired using a segmented k-space during breath-holds. For
the left ventricular (LV) volumes, ejection fraction, and mass
measurements, epicardial and endocardial contours were drawn in
end-diastole and end-systole on a Leonardo Workstation (Siemens
Healthcare, Erlangen, Germany).

2.3. Quantification of myocardial T1

The Look-Locker images were analyzed utilizing an open source
software program (MRMap version 1.3 [http://mrmap.sourceforge.
net]) [10,11]. The T1 map generated was saved as a Digital Imaging
and Communications in Medicine image and imported into
MatLab (MathWorks, Natick, MA, USA). Six regions of interest
were manually drawn in the midventricular segment corre-
sponding to the anterior, anteroseptal, inferoseptal, inferior,
inferolateral, and anterolateral walls in short-axis orientation. The
myocardial T1 values for each voxel in each of the 6 regions of
interest were then exported for averaging and analysis. A global T1
value was calculated by averaging the T1 from the 6 regions of
interest.

2.4. Catheter ablation

In brief, AF ablation was performed with the patient under
general anesthesia with continuous invasive monitoring of blood
pressure and oxygen saturation. A 3D mapping system (Carto,
Biosense-Webser, Inc., Diamond Bar, CA, USA) was used for non-
fluoroscopic catheter navigation, computed tomographic, or
magnetic resonance image integration as well as tagging of abla-
tion sites. Trans-septal access was obtained using fluoroscopy and
intracardiac or transesophageal echocardiographic guidance. An
irrigated-tip ablation catheter was used. Circumferential left atrial
(LA) ablation lines were placed around the antrum of the ipsi-
lateral pulmonary veins, and the demonstration of pulmonary vein
(PV) isolation was the major procedural endpoint. PV potentials
were recorded using a circular mapping catheter placed in each PV
to test for the absence of signals conducting into the PV during LA
pacing (entrance block) or into the LA from the PVs during PV
pacing (exit block). Additional ablation was performed until PV
isolation was achieved. Empiric linear lesions to the LA roof, basal
posterior wall, and mitral isthmus and/or ablation of complex
fractionated electrograms were placed based on operator discre-
tion. Anticoagulation with heparin was used in an attempt to
maintain an activated clotting time4300 s during LA access.

2.5. Follow-up

Patients were seen in clinical follow-up at 1, 3, 6, and 12
months. Ambulatory 48-h Holter (3-month) or 7-day auto-trig-
gered event monitoring (6- and 12-month) was performed to
assess for asymptomatic AF recurrence. Recurrence was defined as
430 s of AF, atrial tachycardia, or atrial flutter (AF/AT/AFL). As is
standard for AF ablation reporting, a 3-month blanking period was
used such that recurrences during that period were not counted
toward the arrhythmia recurrence endpoint [12].

2.6. Statistical analysis

Baseline patient characteristics are reported as the frequency
and percentage for categorical variables and as the median and
interquartile range (IQR) for continuous variables. Groups were
compared using a Wilcoxon sum rank test for continuous variables
and a Chi-square test or Fisher’s exact test for categorical variables.
The analysis for predictors of global T1 was performed using
multivariable linear regression. To avoid over-fitting our multi-
variable linear regression model, we calculated the number of
covariates based on a ratio of 415 subjects per degree of freedom.
Age and sex were pre-specified covariates for our final model, and
additional covariates were selected if the p value on univariate
analysis was o0.10. Covariates in the regression models were
evaluated for multicollinearity by calculation of the variance
inflation factor (VIF), and covariates were excluded when VIF
values were 42.5. Continuous variables were graphically assessed
for normality and log-transformed to improve the residuals. A
complete case analysis was performed, and records with a missing
value were excluded from the final analysis. As a secondary ana-
lysis, a Cox proportional hazards model was used to test the ability
of T1 to predict time to first occurrence of any atrial tachyar-
rhythmia after ablation. A 10:1 ratio of degrees of freedom to
events was used for the Cox proportional hazards model. The
assumptions of the Cox proportional hazards model were met
including: (1) censoring was non-informative; and (2) the
assumption of proportional hazards was examined using log–log
plots that demonstrated parallel curves with proportional
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Table 2
Magnetic resonance imaging data.

Eligible
Patients

Left atrial size (mm) 157 37 (33–43)
Left ventricular ejection fraction (%) 157 64 (56–72)
Left ventricular diastolic diameter (mm) 157 48 (43–52)
Atrial fibrillation during CMRI 155 47 (30%)
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separation. Age, sex, and global T1 were pre-specified covariates,
and additional covariates were selected based on their significance
on univariate analysis. Finally, a post-hoc analysis was performed
using multivariable linear regression to test for an association
between heart rate during CMRI, heart rhythm during CMRI, and
global T1. Two-sided p valuesr0.05 were considered statistically
significant in all of the analyses. Analysis was performed using
SPSS version 21 (IBM Corporation, Armonk, NY, USA).
Interventricular septum thickness (mm) 155 9 (8–10)
Left ventricular posterior wall thickness
(mm)

154 7 (6–8)

Global T1 (ms) 157 404 (381–428)
Anterior T1 (ms) 156 420 (392–448)
Anteroseptal T1 (ms) 157 395 (372–420)
Anterolateral T1 (ms) 155 407 (387–436)
Inferior T1 (ms) 154 391 (371–419)
Inferoseptal T1 (ms) 157 405 (376–431)
Inferolateral T1 (ms) 153 397 (367–424)

Continuous data are expressed as median (interquartile range). CMRI, cardiac
magnetic resonance imaging; T1, post-contrast T1 relaxation time.

Table 3
Univariate Predictors of Global T1.

Β-coefficienta P value

AF during CMRI �22 (�35, �11) 0.000
Age (per decade) �4 (�9, 2) 0.21
Sex (female) �28 (�39, �17) 0.000
Paroxysmal AFb 16 (5, 27) 0.005
Time since AF diagnosis (per 12 months) 0.5 (�0.4, 1.3) 0.26
Lone AF 14 (�4, 33) 0.13
Stroke 14 (�14, 42) 0.32
Body mass index (per 10 kg/m²) �11, (�21, �2) 0.02
Hypertension 2 (�11,14) 0.80
Coronary artery disease 1 (�13,16) 0.85
Diabetes mellitus �3, (�19, 13) 0.72
Congestive heart failure 26 (5, 47) 0.016
Renal dysfunction (eGFRo60) �14 (�29, 1) 0.06
Left atrial size (per 10 mm) �2 (�9, 5) 0.64
LV ejection fraction (per 10%) 4, (�2, 9) 0.16
LV diastolic diameter (per 10 mm) 8 (�1, 16) 0.08
LV interventricular septum thickness (mm) 0.8 (�2.2, 3.7) 0.61
LV posterior wall thickness (mm) 2.2 (�1.2, 5.7) 0.20

a The B-coefficient is the variation from the mean of the global T1 in milli-
seconds given the specified change in the independent variable.g

b Persistent AF is the reference group. AF, atrial fibrillation; CMRI, cardiac
magnetic resonance imaging; eGFR, estimated glomerular filtration rate; LV, left
3. Results

3.1. Patient characteristics

A total of 196 patients met the inclusion criteria; of them, 39
were excluded due to poor image quality of the myocardial T1 map
generated. Among the excluded patients, AF at the time of CMRI
was more common (61%, n¼22/36, p¼0.001; 3 patients had
indeterminate rhythm). The final cohort comprised 157 patients
(mean age, 6176 years; 68% men; 59% hypertensive; mean body
mass index [BMI], 29 kg/m2). Fifty percent (78/157) of the patients
were classified as having persistent AF (episodes47 days or
requiring electrical or pharmacologic cardioversion). A complete
list of patient characteristics is presented in Table 1.

3.2. Cardiac chambers, ejection fraction, and myocardial T1

Morphological and functional measurements as well as myo-
cardial T1 data are presented in Table 2. Average left atrial and
ventricular chamber sizes were within normal limits. The overall
LV ejection fraction was also normal. Thirty percent of patients
(n¼47) were in AF at the time of the CMRI study (8 of 78 patients
with paroxysmal AF, 39 of 77 patients with persistent AF). The
average global T1 for all patients was 404 ms. T1 was not mea-
surable in 0.9% of segments (10/1099).

3.3. Univariate and multivariate predictors of myocardial T1

The univariate analysis results of patient characteristics,
comorbidities, and imaging parameters are shown in Table 3. On
univariate analysis, sex, paroxysmal AF, BMI, congestive heart
failure (CHF), renal dysfunction, and rhythm during CMRI were
significantly associated with global T1. The majority of patients in
AF at the time of CMRI were classified as having persistent AF
Table 1
Patient characteristics.

Eligible
patients

Age (years) 157 61 (55–67)
Sex (female) 157 50 (32%)
Atrial fibrillation 157 157 (100%)
Paroxysmal atrial fibrillation 157 79 (50%)
Time since atrial fibrillation diagnosis
(months)

157 51 (20–102)

Lone atrial fibrillation 157 16 (10%)
Stroke 146 7 (5%)
Body mass index (kg/m²) 157 29 (26–34)
Hypertension 146 93 (59%)
Coronary artery disease 156 28 (18%)
Diabetes mellitus 146 25 (16%)
Congestive heart failure 145 12 (8%)

Preserved ejection fraction (LVEFZ50%) 12 8 (67%)
Renal dysfunction (eGFRo60) 147 30 (19%)

Continuous data are expressed as median (interquartile range) or number (per-
centage). Data for every parameter were not available for every patient. LVEF, left
ventricular ejection fraction; eGFR, estimated glomerular filtration rate.

ventricular; T1, post-contrast T1 relaxation time.
(83%, 39/47, p¼0.000). AF (as opposed to sinus rhythm) at the time
of CMRI remained a significant predictor of reduced T1 in the
persistent AF subgroup but was not significant in the paroxysmal
subgroup, although only 8 patients in this group presented in AF
(Fig. 1). The mean global T1 was shorter for patients with persis-
tent vs. paroxysmal AF (394733.6 ms vs. 410736.5 ms,
respectively).

To investigate the finding of shorter T1 in patients with per-
sistent AF, a limited multivariable regression analysis including
terms for paroxysmal AF status and rhythm during CMRI was
performed. The association between paroxysmal AF and T1 was no
longer statistically significant (paroxysmal: β-coefficient¼9 [95%
confidence interval (CI), �3 to 21] p¼0.13) when adjusted for
rhythm during CMRI (AF: β¼�19 [95% CI, �32 to �5] p¼0.006).
Clinical covariates included in our final multivariable model were
age, sex, rhythm during CMRI, paroxysmal AF, BMI, CHF, renal
dysfunction (estimated glomerular filtration rateo60 ml/min/
1.75 m2), and LV diastolic diameter (Table 3). In our fully adjusted
model, AF at the time of CMRI was found to statistically sig-
nificantly shorten the global T1 by 17 ms (95% CI, �29 to �4 ms,



Fig. 1. Cardiac rhythm as a predictor of ventricular T1. Cardiac rhythm (AF as opposed to sinus rhythm) was associated with reduced ventricular T1 in (a) all patients, (b)
persistent AF patients, and (c) paroxysmal AF patients, although this association missed statistical significance in the paroxysmal AF group. AF, atrial fibrillation; T1, post-
contrast T1 relaxation time.

Fig. 2. Multivariate analysis of global T1. After multivariate adjustment, female sex, higher BMI, and atrial fibrillation at the time of CMRI were associated with a reduced
myocardial T1 (n¼145). The clinical diagnosis of CHF was associated with an elevated myocardial T1. AF, atrial fibrillation; BMI, body mass index; CMRI, cardiac magnetic
resonance imaging; eGFR, estimated glomerular filtration rate; T1, post-contrast T1 relaxation time.
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p¼0.009). Female sex was also associated with a 28-ms reduction
in T1 (95% CI, �39 to �16, p¼0.000). A 10 kg/m2 increase in BMI
was associated with an 11 ms reduction in T1 (95% CI, �20 to �1,
p¼0.03). CHF was associated with a 23-ms increase in T1 (95% CI,
3–43, p¼0.02). Age (p¼0.83), paroxysmal status (p¼0.11), LV
diastolic diameter (p¼0.06), and renal dysfunction (p¼0.09) did
not significantly affect T1 after multivariate adjustment (Fig. 2).

To assess for other differences between patients with and
without AF at the time of CMRI, we ran a univariate analysis
between rhythm during CMRI (sinus rhythm vs. AF) and the
variables in Table 1. As expected, patients in sinus rhythm at the
time of CMRI were more likely to be paroxysmal (65% vs. 17%,
po0.001), have lone AF (12% vs. 2%, p¼0.048), and were less likely
to have CHF (5% vs. 15%, p¼0.028) or a prior stroke (2% vs. 11%,
p¼0.015) compared to patients in AF at the time of CMRI. Fur-
thermore, patients in sinus rhythm at the time of CMRI had
smaller left atria (mean7SD, 3.770.7 cm vs. 4.170.9, p¼0.005)
and higher LVEF (6678% vs. 56713%, po0.001). Patients in sinus
rhythm showed a non-significant trend toward being less likely to
have CAD (15% vs. 26%, p¼0.097). Sex, hypertension, diabetes, and
renal dysfunction showed no association with rhythm at the time
of CMRI.

In our post-hoc analysis performed to examine the influence of
heart rate during CMRI on the association observed between AF dur-
ing CMRI and global T1, patients in AF during CMRI had a statistically
significantly higher heart rate than patients in normal sinus rhythm
(median, 64 bpm [IQR, 55–70] vs. 80 bpm [IQR, 73–100] p¼0.000). On
univariate analysis, heart rate during CMRI decreased global T1 by
6 ms per 10 bpm increase in heart rate (95% CI, �9 to �3ms,
p¼0.000). On multivariate analysis, heart rate during CMRI and heart
rhythm during CMRI were both associated with a reduction in global
T1. The association between heart rate during CMRI and ventricular T1
was highly statistically significant (β¼�4ms per 10 bpm [95% CI, �8
to �1ms], p¼0.009). However, heart rhythm during CMRI missed
statistical significance (β¼�13ms [95% CI, �26 to 1 ms], p¼0.075).
Within the subgroup of patients in sinus rhythm at the time of CMRI,
the correlation between heart rate and ventricular T1 remained sta-
tistically significant (β¼�7ms per 10 bpm [95% CI, �12 to �2ms],
p¼0.004). However, in the subgroup in AF at the time of CMRI, this
correlation showed the same trend but was not significant (β¼�3ms
per 10 bpm [95% CI, �8 to 2 ms], p¼0.299).

3.4. Predictors of AF recurrence

AF/AT/AFL recurrence was observed in 47% of patients (74/157).
The mean time to recurrence was 168782 days. Results from the
univariate analysis of predictors of AF recurrence after catheter
ablation are shown in Supplemental Table 1. Global T1 was not a
statistically significant predictor of recurrence. Age, the only sig-
nificant predictor of recurrence on univariate analysis, increased
the risk of recurrence by 30% per decade (hazard ratio, 1.3 [range,
1.0–1.7], p¼0.03). Covariates included in the multivariable analysis
included age, sex, global T1, rhythm during CMRI, LVEF, parox-
ysmal AF, and CHF. No covariates were statistically significantly
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associated with AF recurrence on multivariate analysis (Supple-
mental Table 1).
4. Discussion

In this study, we found that being in AF at the time of CMRI
imaging was a significant predictor of a shorter ventricular T1
independent of other clinically relevant covariates. Recent reports
have demonstrated the clinical utility of T1 measurements in
populations with AF but have not accounted for cardiac rhythm at
the time of CMRI or excluded patients in AF [13,14]. Our study adds
to the existing literature by demonstrating a strong association
between cardiac rhythm at the time of CMRI and T1, and it high-
lights the need to understand whether this association results
from the identification of a subset of patients with AF and an
increased amount of diffuse ventricular fibrosis or technical lim-
itations involved with the image acquisition and analysis.

Several studies have examined the clinical utility of T1 mapping
as a noninvasive surrogate for diffuse myocardial fibrosis in sub-
jects with AF. Patients with a history of AF have shorter ventricular
T1 than controls without AF [15]. Evidence that this may result
from an increase in diffuse ventricular fibrosis due to episodes of
tachycardia is suggested by the finding that patients with a history
of focal atrial tachycardia have shortened ventricular T1 that
normalizes after successful ablation [16]. In this study, we expec-
ted to find that subjects with persistent AF had a shorter T1 than
those with paroxysmal AF due to a greater AF episode frequency
and duration. Although an association between paroxysmal/per-
sistent AF status was present in univariate analysis, it was no
longer significant when adjusted for the presence of AF at the time
of CMRI. We interpret this finding to suggest that either: (1) AF at
the time of CMRI better identified a subset of patients with a
higher AF burden (and, therefore, higher diffuse fibrosis) than the
classification of paroxysmal vs. persistent AF status; or (2) the
relative irregularity and faster cardiac rhythm associated with AF
at the time of CMRI resulted in artifactual shortening of T1.

Experimental evidence exists to support the possibility that AF
adversely affects myocardial T1 measurement accuracy. Specifi-
cally, a commonly used method for assessing myocardial T1 values,
the modified Look-Locker Inversion recovery, has been shown to
underestimate T1 in the presence of tachycardia or an irregular
cardiac rhythm, which are both characteristic of AF [7,8]. Our data
showed that patients in AF at the time of CMRI were significantly
more tachycardic compared to patients in sinus rhythm. Our post-
hoc analysis suggested that tachycardia appears to be a key factor
underlying the reduction in global T1 for patients in AF during
CMRI. The cardiac irregularity could not be quantified, but given
the strong trend toward an association between AF during CMRI
and global T1 (p¼0.075) when adjusted for heart rate, the
remaining contribution may be accounted for by irregularity.

4.1. Clinical implications

Our finding that AF during CMRI affects T1 measurement is
potentially an important finding because recent studies examined
the predictive power of T1 in AF populations [5,6]. In these studies,
AF at the time of CMRI was either not adjusted for or used as an
exclusion criterion [13,14]. If AF during CMRI shortens T1 mea-
surement irrespective of the degree of fibrosis, the results of these
studies may reflect an association with factors other than diffuse
fibrosis.

As previously reported, our study demonstrated that female sex
was a strong independent predictor of shorter myocardial T1
[17,18]. It has not been determined histologically whether this
finding is truly due to a greater degree of diffuse fibrosis in women
or some other variable, such as a thinner ventricular septum,
lower packed cell volume of the blood pool, or overall difference in
cardiac or body size [18].

Our results showed a seemingly paradoxical longer myocardial
T1 in patients with a clinical diagnosis of CHF. These results con-
tradict prior reports showing that heart failure and increased
myocardial stiffness are associated with shorter myocardial T1
[19–21]. Given that only 8% (12/145) of our patients had a CHF
diagnosis and the expected finding that CHF would be associated
with increased diffuse fibrosis, we suspect that the longer T1 in
CHF patients was due to a chance association.

Future directions of this study should aim to understand the
mechanism of the association between T1 and rhythm at CMRI.
Paired analysis of T1 from CMRI images during AF and normal
sinus rhythm may be informative. While repeating the CMRI 3–6
months after catheter-based AF ablation is common [12], at our
institution, follow-up CMRI studies were performed without a
repeat Look-Locker sequence, which precluded the measurement
of ventricular T1 post-ablation. Finally, our study failed to
demonstrate an association between T1 and arrhythmia recur-
rence after AF ablation, which was observed in other studies. It is
possible that a smaller effect exists, which our study was unable to
detect; however, our study was larger than previous reports of a
positive association [6]. The same is true of paroxysmal versus
persistent AF status, as paroxysmal AF showed only a non-
significant trend toward decreased recurrence in our study.
5. Conclusions

In a population of patients undergoing catheter-based ablation
for AF, the presence of AF at the time of CMRI was an independent
predictor of shortened ventricular T1. This appears to be partly
related to higher resting heart rates with patients in AF. As the
clinical utility of T1 is further explored, additional research will be
needed to determine if AF at the time of CMRI reflects an increased
level of diffuse fibrosis or simply a technical artifact.
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