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Abstract: Elucidation of cell-level transport mediated by vesicles within a living cell provides key
information regarding viral infection processes and also drug delivery mechanisms. Although the
single-particle tracking method has enabled clear analysis of individual vesicle trajectories, informa-
tion regarding the entire cell-level intracellular transport is hardly obtainable, due to the difficulty in
collecting a large dataset with current methods. In this paper, we propose a visualization method of
vesicle transport using optical flow, based on geometric cell center estimation and vector analysis,
for measuring the trafficking directions. As a quantitative visualization method for determining the
intracellular transport status, the proposed method is expected to be universally exploited in various
biomedical cell image analyses.

Keywords: vesicle transport; optical flow; visualization

1. Introduction

Vesicle refers to the package of intracellular nanoparticles that plays the role of a
courier in a living cell [1]. Through constant interaction with the environment, cells en-
gulf extracellular molecules and discharge unnecessary molecules based on the vesicle
transports [2]. In particular, the uptake process, which is known as endocytosis, has been
considered to include essential information for understanding the cell signaling and its
regulation [3].

Since such information is closely related to elucidating the mechanism of intracellular
communication between virus-infected cells and uninfected cells, signal cascades, and drug
delivery [4,5], studies have been conducted to reveal the precise movement of vesicles, not
only from the molecular analysis of motor proteins but also from the numerical analysis of
the vesicle motion itself. Motor proteins indicate kinesin, dynein, and myosin, which di-
rectly carry the cargoes and mediate the interaction between vesicles and cytoskeletons [6].
The concept of vesicle internalization and transport by motor proteins in living cells is
depicted in Figure 1. Majority of the studies on motor proteins have performed to measure
their various physical properties, including stiffness and step size [7–9]. On the other hand,
considerable analyses of three-dimensional vesicle trajectories using the single-particle
tracking method have also been performed from the viewpoint of vesicle-cytoskeleton
interaction [10–13].

Our understanding of the precise motion of vesicles in living cells has been greatly
increased owing to the single-particle tracking method, as it detects the rotational motion
of the vesicle along the cytoskeletal network [14–16] and categorizes the type of navigation
between the cytoskeletons using machine learning approach [17]. However, though these
studies have contributed to our current knowledge of single vesicle movement, the entire
cell-level vesicle transport is not clearly understood yet.
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The primary reason the cell-level image analysis for intracellular transport has not
shown much progress is that the amount of vesicle trajectory data acquirable per cell
using the single-particle method is limited. Analysis of a single vesicle trajectory does
not offer enough information regarding the entire movement pattern of the vesicles at
the whole cell level. Furthermore, fluctuation in the fluorescent dye intensity, which is
inevitably caused by axial dynamics of the target vesicle, hinders us from finding a sufficient
number of trackable cases. Therefore, it is inefficient to collect individual trajectories of
vesicle using a single-particle tracking approach for understanding the whole cell-level
intracellular transport.

Figure 1. Concept of vesicle transport in a living cell. (A) Diagram of intracellular transport of quantum dot-labeled vesicle
from cell cross-sectional view. Vesicles (White-colored circles with arrows) are internalized from the cellular membrane and
then transported as they interact with cytoskeletal network, such as actin filament and microtubule. (B) Two different types
of motor proteins, dynein and kinesin, for microtubule-based transport: Kinesins deliver vesicles in outward direction from
the cell center, which is toward the plus end of the microtubule, while dyneins carry vesicles toward the microtubule minus
end, which is approximately inward direction with respect to the cell center.

One of the most promising solutions for the aforementioned problem is to apply
computer vision techniques to cell image data analysis. In particular, optical flow, which is
a computational method for detecting and estimating the pattern of the motions that ap-
peared in a series of images, has been widely exploited in biomedical image analysis [18–21].
For the cell image analysis, optical flow has played a central role in the quantitative esti-
mation of the embryonic cell aggregation and segregation [22], mitochondrial transport
in neurons [23], the accumulation of specific proteins [24], cardiomyocyte contractile
function [25], and the network sequence of cytoskeletal structures [26]. These applications
have critically tested the performance and the applicability of the optical flow method for
cell microscopy image data analysis.

In our previous study, we attempted to introduce the optical flow method for intracel-
lular vesicle transport analysis, as a preliminary step to understand the whole cell-level
vesicle trafficking pattern [27,28]. In the present study, we built a detailed model to apply
the optical flow method combined with cell center estimation that can represent the direc-
tion of vesicle movement, implying motor protein involvement. Since the two types of
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major motor proteins, kinesin and dynein, move in opposite directions on microtubules,
which spread from the central area of the cell, a diverging color map is suggested as a
visualization method instead of conventional color space representation. In particular,
we show the possibility of the intracellular transport analysis from the perspective of the
distance from the cell center, by converting the cell image to a polar coordinate system.

2. Materials and Methods
2.1. Live Cell Imaging

The cell line used in the live cell imaging is KPL-4 human breast cancer cells, which
was kindly provided by Dr. Kurebayashi [29] (Kawasaki Medical School, Kurashiki, Japan).
The dish containing the cells was cultured in a complete growth medium (Dulbecco’s
modified Eagle’s medium with high glucose, Nacalai Tesque, Inc., Kyoto, Japan) with
10% of fetal bovine serum (Thermo Fisher Scientific, Inc., Waltham, MA, USA), 1% of
L-glutamine (Wako Pure Chemical Industries, Ltd., Osaka, Japan), and 1% of penicillin-
streptomycin (Thermo Fisher Scientific, Inc., Waltham, MA, USA), and then stored in
the incubator maintaining the temperature at 37 ◦C and CO2 level at 5%. To label the
vesicles, 4 nM of carboxyl quantum dots (Qdot 655 ITK Carboxyl Quantum Dots, Thermo
Fisher Scientific, Inc., Waltham, MA, USA) were added to induce endocytosis of cells for
enhanced affinity to the cellular membrane [30,31]. Ten minutes after the incubation with
the quantum dots, the cells were washed twice with PBS solution and heated with a heater
(IN-ONI-F1, Tokai HIT, Shizuoka, Japan) installed on the microscope stage (IX70, Olympus,
Tokyo, Japan), to maintain the physiological conditions.

To capture the images near the middle of the cell, the axial position of the objective
lens was adjusted and fixed with a capacitive sensor-based stage stabilizer, which controls
the axial vibration within 4 nm in terms of standard deviation [32]. Cell images taken
at the mid-height were preferred because internalization of the quantum dots is much
more recognizable here compared with that at other cross-sections, such as those from
the bottom or top of the cell. At the lowest section of the cell, since the quantum dots
are likely to be attached not only to the cell membrane but also to the glass-bottom dish
(Matsunami Glass Ind., Ltd., Osaka, Japan), the region of the cell is hardly recognizable.
Additionally, if the images are taken at an excessively high axial position (as compared to
images taken at the middle height of the cell), the cross section of the cell becomes smaller.
In the experiment, considering the signal-to-noise ratio of the cell image with respect to the
background, the position of the image plane from the bottom was empirically determined
at 4 µm. A comparison between two cell images taken at the bottom and the middle of the
cell height is illustrated in Figure 2A.

In the imaging system, quantum dot-labeled vesicles are excited by laser at 532 nm
and emit the ray at approximately of 650 nm. The cross section of the target cell was taken
with confocal microscopy for reduced signal-to-noise ratio, using a confocal scanner unit
(CSU-10, Yokogawa Electric Company, Tokyo, Japan) and an EMCCD camera (Andor Ixon
885, Belfast, Northern Ireland) with an exposure time of 500 ms of for a total of 6 minutes
at 1 Hz. Figure 2B shows the overall imaging system used in the live cell experiment.

2.2. Optical Flow Computation

After the cell images were acquired through time-lapse confocal imaging, the opti-
cal flows of the cell image data between adjacent frames were computed, based on the
Lucas-Kanade method [33]. We chose the Lucas-Kanade method among various other
schemes available for optical flow computation (such as Horn and Schunk method [34] and
Farnebäck [35] scheme) because it is simple and efficient [19,36,37] and is proven suitable
for biomedical image analysis, such as that of calcium signaling in a living cell [38].



Sensors 2021, 21, 522 4 of 13

Figure 2. (A) Comparison between two cell images captured at the bottom and middle of the cell height. The imaging plane
was empirically determined at 4 µm, considering the trade-off between signal-to-noise ratio and the intracellular area to be
analyzed. (B) Structure of imaging system based on fluorescence confocal microscopy.

The optical flow calculates the local displacement vectors between two subsequent
image frames at each pixel. For fluorescence microscopy, which acquires localization
information from the intensity distribution, optical flow can provide the direction and
velocity information of the target. For an arbitrary pixel, x, y, with intensity I(x, y, t) in
the image taken at time t which is displaced to I(x + δx, y + δy, t + δt) in two-dimensional
image plane after δt, the optical flow vector V(x, y) = (δx/δt, δy/δt) satisfies Equation (1)
based on brightness constancy premise [18,33].

∇I(x, y, t) ·V(x, y) +
∂I(x, y, t)

∂t
= 0 (1)

This is because the first order of Taylor expansion for the constraint, I(x, y, t) =
I(x + δx, y + δy, t + δt), produces Equation (2).

∂I
∂x

Vx +
∂I
∂y

Vy +
∂I
∂t

= 0 (2)

where Vx and Vy indicate the x and y components of V(x, y), respectively. Using this
constraint, the Lucas-Kanade method computes the optical flow vector V(x, y) to minimize
a weighted least-square fit of the constraint equation, after dividing the image into smaller
section Ω, as shown in Equation (3).

∑
x,y∈Ω

W2(x, y)
[
∇I(x, y, t) ·V(x, y) +

∂I(x, y, t)
∂t

]2

(3)

where W indicates the window function to apply more weight to the center in each section.
Therefore, the optical flow vector V(x, y) can be computed using Equation (4).
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[
Vx
Vy

]
=

[
ΣW2 I2

x ΣW2 Ix Iy
ΣW2 Iy Ix ΣW2 I2

y

]−1[−ΣW2 Ix It
−ΣW2 Iy It

]
(4)

In this study, the optical flow vectors V(x, y) for cell imaging data were calculated
using the MATLAB function estimateFlow for the objects generated by the function op-
ticalFlowLK which creates the optical flow objects based on the Lucas-Kanade method.
The optical flow computation in the entire image processing procedure is as shown in
Figure 3A.

Figure 3. Workflow for estimating the direction of intracellular vesicle using optical flow and
cell center estimation. (A) Optical flow computation based on Lucas-Kanade scheme [33] for the
image stack. For simplicity of notation, let Vi, Vj represent the acquired optical flow at the pixel
pi,j. (B) Geometric cell center (Cx, Cy) as the mean coordinates of the area where intensity STD,

σi,j, is smaller than one STD of the STD distribution, (σi,j)s.
−→
PCi,j is the vector from pi,j to (Cx, Cy).

(C) Evaluation of angles α and β computed by four-quadrant inverse tangent of
−→
PCi,j and Vi,j.−→

PCi indicates the x-component and
−→
PCj refers to the y-component of the vector

−→
PCi,j, respectively.

(D) Comparison of α and β to estimate the direction of vesicle with respect to the cell center.
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2.3. Geometric Cell Center Estimation

To analyze the direction of optical flow with respect to the cell center, estimation of
the geometric cell center is required. In this study, we exploited the distribution of intensity
information of labeled vesicles inside the cell, as an example method to determine the
cell center. Since the vesicles are internalized from the cellular membrane and gradually
transported into the central area of the cell where the microtubule organizing center (MTOC)
is located [39,40], the intensity fluctuation due to the movements of quantum dot-labeled
vesicles can be considered to appear the least near the cell center, particularly in the early
stage of endocytosis. On the other hand, the intensity fluctuation appears to be high in the
periphery, including the membrane area. Therefore, time-series analysis of the imaging
data is required to estimate the geometric center of the target cell.

For this purpose, the intensity standard deviation (STD) of the image stack can be
used to estimate the cell center in the imaging data by comparing the STD values computed
at each pixel. The standard deviation for a pixel pi,j of total N-frame cell image stack can
be defined as σi,j and calculated using Equation (5).

σi,j =

√√√√ 1
N − 1

N

∑
k=1

(Ik(i, j)− Ī(i, j))2 (5)

where Ik(i, j) is the intensity of the pixel pi,j at kth frame and Ī(i, j) indicates the mean
intensity value of pi,j for the entire N frames. In practice, the intensity standard deviation of
each pixel for the entire imaging time, σi,j, was calculated using the image processing tools
in ImageJ [41]. After the σi,j for each pixel was acquired, the geometric center of the cell was
estimated as the mean coordinates of the intracellular area, where the σi,j is smaller than
threshold value. The threshold value was determined again using the STD obtained from
the distribution of σi,j. The threshold, σs, was defined as the STD of whole STD distribution
and can be described as shown in Equation (6).

σs =

√√√√ 1
mn− 1

m

∑
i=1

n

∑
j=1

(σi,j − σ̄i,j)2 (6)

where m and n respectively refer to the total number of rows and columns of the image,
and σ̄i,j indicates the mean value of the STD distribution. To define the geometric cell center
as Cx, Cy, we introduce a weight function at each pixel pi,j as shown in Equation (7), wi,j,
for the sake of simplicity.

wi,j =

{
1 if σi,j < (σ̄i,j − σs)
0 else

(7)

Then, Cx and Cy can be computed as mean coordinates of the area where wi,j = 1.
With the definition of ∑m

i=1 ∑n
i=j wi,j = ∑ wi,j, the geometric cell center coordinate was

calculated as shown in Equation (8).

Cx

Cy

 =


∑(wi,j · i)

∑ wi,j

∑(wi,j · j)
∑ wi,j

 (8)

where i and j indicate the row and column of the pixel pi,j in the image, respectively. The
processes of geometric cell center estimation for an image stack are shown in Figure 3B.
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3. Result
3.1. Whole Cell Area Visualization Using Vector Comparison

As explained in the introduction section, intracellular transport of vesicles is mediated
by motor proteins, dynein and kinesin, which work in opposite directions, for the majority
of vesicles on the microtubules. Using the optical flow vector and the location of the
geometric cell center, it is possible to visualize the vesicle movement at the cell level,
estimating the time-series local distribution of motor proteins.

To do this, for each pixel pi,j in the image, a vector
−→
PCi,j, the direction of which

indicates the cell center, was computed. Then, the angle between
−→
PCi,j and the optical flow

Vi,j at pi,j was calculated using vector analysis. For simplicity, let the four-quadrant inverse

tangent [42] of
−→
PCi,j and Vi,j be α and β, respectively. Because the α and β indicate the

angles with respect to the x-axis by this computation, the degree of coherence for
−→
PCi,j and

Vi,j can be defined by comparing α and β. The movement estimation at pi,j based on the
comparison between α and β is as shown in Equation (9) and Figure 3C,D.{

Inward direction, if 0 ≤ |α− β| ≤ π
2

Outward direction, if π
2 < |α− β| ≤ π

(9)

Therefore, |α− β| can play a role as a parameter in estimating whether the optical
flow at pi,j is moving toward the cell center or not, which is closely related to the type of
motor protein involved in the vesicle movement. In particular, the above categorization is
a good match with the diverging color map [43], which consists of two contrasting colors
with tone gradient, for visualizing the intracellular transport at the cell level.

Figure 4 demonstrates the efficiency of the diverging colormap for visualizing the
vesicle movement with respect to the cell center, compared with the conventional HSV
color space expression. As shown in Figure 4A, the orientation of the optical flow vector
at each pixel is colored with the corresponding hue, the saturation of which indicates
the magnitude of the vector, in the HSV color space. With this, however, as the hue
varies from 0◦ to 360◦ in two dimensions, biologically meaningful movement, which is
closely related to the radial structure of intracellular transport, is hardly recognizable. In
contrast, diverging colormap using |α− β| enables direct identification of the converging
and diverging movement of the vesicle, with respect to the cell center.

3.2. Visualization of Endocytosis

Using the process hitherto for acquiring the inward and outward movement of vesicle
transport, endocytosis of living cells can be visualized from various perspectives. Figure 5
shows the examples of such applications. As shown in Figure 5A, in addition to the total
numbers and magnitudes of the optical flow itself, the proportion of inward and outward
movement of the vesicle with respect to the cell center can be obtained, as demonstrated
with three sample cells.

Furthermore, by rearranging the cell area according to the distance from the center, it
is possible to analyze which direction is more dominant at a specific time, which can be
interpreted as the employment of motor proteins.



Sensors 2021, 21, 522 8 of 13

Figure 4. Comparison of visualization methods for vesicle movement in a living cell. (A) Conventional method using HSV
(Hue, Saturation, Value) color space for optical flow. Hue indicates the orientation of optical flow vector, and saturation
refers to the magnitude of the optical flow vector. (B) Suggested method using diverging colormap with two contrast colors.
Blue color indicates the outward movement, while red color indicates inward movement with respect to the estimated
cell center.

Polar transformation is one method can rearrange the cell image in terms of the
distance from the cell center and the angle. The polar representation of the intracellular
area can be performed using polar transformation of the image [44]. Based on the cell
center, (Cx, Cy), each pixel in the original Cartesian coordinates can be transformed into a
polar image, as shown in Equation (10).

(x, y) = (Cx + Rcosθ, Cy + Rsinθ) (10)

where R and θ indicate the distance and the angle between the cell center and the pixel
(x, y), respectively. Therefore, in the polar representation, the original images with x and y
coordinates in Cartesian coordinate system can be transformed into R and θ coordinates,
which respectively indicate the distance and the angle with respect to the cell center.
Figure 5B shows the process of polar transformation using fluorescent cell image (left) and
the changes in vesicle transport direction in cell 1 as represented in the diverging colormap.
In the converted polar coordinate system, users can easily recognize the feature of vesicle
movement in terms of the distance from the cell center, which can be used in time-series
image analysis-based cell experiments, such as virus infection test.
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Figure 5. Direction of vesicle movement analysis using the suggested method. (A) Total numbers and magnitude of optical
flow vectors detected over time for three sample cells (upper) and the proportion of diverging and converging movement
over time (lower). (B) Polar transformation [44] of cell image to visualize the vesicle movement in terms of the distance from
cell center (right). Vesicle movement of inward direction colored in red and outward in blue, after polar transformation
is applied.

4. Discussion

Analyzing and understanding the movement of nanoscale particles, such as vesicle
transport in living cells, has been a challenging topic in the field of biomedical image
analysis. From individual vesicle tracking based on point spread function (PSF) analysis to
recent integrated deep-learning approaches [45], various methods have been applied to
explain the vesicle movement.

Although the tracking of each vesicle may have revealed the properties of individual
vesicle transport, there remained shortcomings in complete understanding of the entire
cell-level vesicle movement pattern. Optical flow is one of the promising computer vision
techniques that can be applied to the vesicle transport imaging data analysis. Therefore,
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there have been many studies that exploited optical flow approach to understand cellular
dynamics quantitatively: embryonic cell motion pattern analysis, velocity measurement
for mitochondrial transport [22], to name a few [23]. However, optical flow approach in
the previous studies has usually been used as a tool to calculate local dynamics in a cell,
not from the view of the entire cell-level. In addition, visualization of optical flow with
conventional HSV scale hardly relates to the intracellular structure, in that the optical flow
vector represents the absolute angle in the image but not the biologically relevant angle in
the cell.

Using the visualization method, in this study, we aimed to understand the pattern of
vesicle transport at the whole cell level, based on the relative angle of optical flow and the
estimated position of the cell center. Because the suggested method combines the optical
flow approach with the cell center estimation algorithm, the computed optical flows now
can represent the biologically meaningful direction, as determining whether or not the
vesicle is moving toward cell center, which is the direction of endocytosis. Additionally,
compared to the conventional visualization of optical flow using the HSV space, this new
method enables visualization of the direction of the vesicle with respect to the cell center
using two contrast colors, which can be interpreted as the involvement of motor proteins
for the vesicle transport. Since the detailed features of two major types of motor proteins,
dynein and kinesin which carry cargoes in the opposite directions along microtubules,
have not yet been clearly understood in the whole cell-level, visualization method using
contrasting colormap is expected to significantly help future analysis on the involvement
status and the dynamics of the motor proteins in living cells.

While we estimated the geometric center of the cell as the mean position of the
intracellular area where the standard deviation of the intensity fluctuation appears the
least, imaging MTOC with installing additional optical path may improve the accuracy of
cell center detection. Although the MTOC was not imaged in this study so as not to reduce
the imaging intensity in confocal microscopy, direct localization of MTOC can contribute to
a more accurate calculation of directions of the vesicles. The range of errors in the direction
angles according to the possible error size of the cell center localization is demonstrated in
Figure 6. Because the larger discrepancy of cell center localization in pixels causes a larger
error range in the |α− β| angle calculation, as we tested with 1, 2, 5, and 10 pixels, accurate
localization of the cell center is one of the important factors for practical applications of the
suggested method.

Along with the accuracy issue regarding the cell center position, approximate parame-
ters for optical flow computation and noise level of the image should be considered before
applying the suggested method. Because these issues depend upon the specific imaging
conditions of each user, and many studies have already dealt with related methods [18–21],
discussing the details of such parameters is beyond the scope of this work.

One of the concerns of the users who consider applying the suggested method to their
system might be regarding the image region of the cell that can be subjected to the analysis.
Although we basically recommend users to use individual cells that are separated, image
processing method for detecting active contour such as Snakes [46] is expected to help find
the cellular area of a specific target cell. In addition, because the proposed method assumes
the vesicles moves within the depth of the image plane, three-dimensional movements of
some vesicles that can be shown as appearing or disappearing in the image plane might be
wrongly detected. In this case, multi-plane imaging [47] is expected to help exclude such
spurious detection, by comparing the images acquired from vertically separated nearest
image planes.
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Figure 6. Influence of cell center estimation error in applying the suggested method. (A) Concept of discrepancy in cell
center estimation for 1, 2, 5, and 10 pixels. (B) Representative result of computing the error sizes of |α− β| for a single cell
experiment. (C) Discrepancy in movement direction represented in percentage compared to the ground truth, according to
the discrepancy in cell center estimation in pixels.

One of the major advantages of adopting the suggested methods is that various cell ex-
periments conducted to examine the features of biological processes including endocytosis
can be analyzed visually. In particular, virus infection, drug delivery, cell communica-
tion, signal cascade, and inhibition tests for a living cell, which require time-series whole
cell-level analysis, can benefit from the visualization method proposed in this study. For
example, in the inhibition experiment, users can quantitatively analyze the overall intracel-
lular transport from the membrane to the nucleus periphery by measuring the direction
changes using different reagents and juxtaposing the control experiment results. In par-
ticular, the proposed method can accelerate our understanding of fundamental cellular
processes that occur with the bidirectional or radial property. Not only the elongation of
the fibrils from the initial seed [48] but also the radial capillary flows which is also known
as coffee ring effect [49] can be visualized with the suggested approach to understand
the precise kinetics of the protein self-assembly, measuring the overall dynamics in the
growth of the target structures. Furthermore, we expect that the presented method can be
applied to quantification of the cytoplasmic structure, by supplementing the readout of
the biosensor [50] regarding the position inside the cell, if the process is automated and
computationally optimized for video-rate tracking [51], which remains as our future work.

5. Conclusions

In this paper, we have presented an endocytosis visualization method to examine
the vesicle movement toward the cell center. Based on the conventional optical flow of
the cell image, the location of the cell center was estimated using intensity changes. By
comparing the angle between the optical flow vector and the cell center-oriented vector,
each movement was analyzed to represent the relational direction, exploiting the diverging
color map. Because the two major motor proteins, dynein and kinesin, which deliver
intracellular cargoes, move in opposite directions on microtubules organized in the cell
center area, the proposed method is expected to significantly help understand intracellular
transport under various scenarios, including virus infection process and drug delivery.
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