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Over the past two decades, obesity has been one of the major public health concerns in most countries. In the search for new
molecules that could be used for the treatment of obesity, good perspectives have been opened up for polyphenols, a class of
natural bioactive phytochemicals. Experimental and limited clinical trial evidence supports that some polyphenols such as
quercetin, curcumin, and resveratrol have potential benefit functions on obesity treatment. This brief review focuses on the main
functions of the above-named polyphenols on adipose tissue. These polyphenols may play beneficial effects on adipose tissue under
obese condition by alleviating intracellular oxidative stress, reducing chronic low-grade inflammation, inhibiting adipogenesis and
lipogenesis, and suppressing the differentiation of preadipocytes to mature adipocytes.

1. Introduction

Over the past decades, obesity has been one of the major pub-
lic health threats in most developed countries and in an
increasing number of developing countries [1]. Obesity is
caused by the imbalance between energy intake and expendi-
ture, which promotes the hypertrophy of adipocytes and
results in adipose tissue dysfunction [2]. It is well known that
obesity is a strong risk factor for type 2 diabetes mellitus
(T2DM) and cancer, and T2DM is linked to the development
of cardiovascular diseases, such as hypertension and athero-
sclerosis [3, 4]. Furthermore, obesity was associated with
higher disability rates and mortality rates in the elderly
[5]. A better understanding of the molecular basis of obesity
will lead to establish strategies for prevention and treatment
of obesity.

Adipose tissue is composed of many kinds of cell types,
including adipocytes, macrophages, endothelial cells, and
stem cells. In addition, as the major energy storage organ,
adipose tissue also is a very important endocrine organ [6].
To maintain the function on energy regulation, adipose tissue
produces adipokines, such as adiponectin and leptin, and
proinflammatory cytokines, such as tumor necrosis factor-
(TNF-) α and interleukin- (IL-) 1β [6]. Under normal phys-
iological lean state, when the body takes excessive energy,
adipose tissue can be rapidly enlarged by increasing the adi-
pocyte size (hypertrophy) and numbers (hyperplasia), which
were accompanied by an increase of blood vessels (angiogen-
esis) to supply more oxygen (O2) and nutrients to the whole
tissue [7]. However, under pathological obese state, adipose
tissue will undergo a process named “adipose tissue remodel-
ing,” which was characterized by reduced angiogenesis,
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increased hypoxia levels and extra cellular matrix (ECM)
levels, and induced higher levels of immune cell infiltration
and subsequently induced a low-grade chronic inflamma-
tion. All of these pathological events will lead to adipocyte
dysfunction, cell death, and systemic insulin resistance [7].

There are two types of adipose tissue, white adipose tissue
and brown adipose tissue. The excess energy was mainly
stored in the white adipose tissue in the form of triglycerides
(TAGs). The function of brown adipose tissue is to directly
transfer energy from nutrients to heat by uncoupling protein
(UCP) 1, which mediates uncoupling of oxidative phos-
phorylation from ATP synthesis (conferred thermogenesis)
[8–10]. In vitro and in vivo studies demonstrated that the
activation of brown adipocytes is an effective and efficient
way for excess energy metabolism [11–15]. Human studies
showed that activation of brown-like adipocytes is a poten-
tial way to counteract obesity [12, 13, 16–19].

Oxidative stress is referred to an event resulting from the
imbalance between the intracellular oxidation system and
reduction system, the redox system [20]. The imbalance
between oxidant and antioxidant enzymes/substrates will
result in a series of oxidation-reduction reactions, which will
subsequently induce cytotoxicity by inducing cellular stress
responses and stimulating cell death [21]. A series of studies
have revealed that oxidative stress is related to the develop-
ment of obesity. Excess levels of reactive oxygen species
(ROS) might lead to the dysfunction of mitochondria by
inhibiting respiration process and result in a reduction on
the energy expenditure in adipocytes and conversely enhance
the energy storage in adipose tissue [22]. Oxidative stress also
suppresses the endocrine functions of adipose tissue by dis-
rupting the secretion of adipokines such as adiponectin
[23]. Antioxidants can protect cells from oxidative stress by
trapping free radicals and restoring cell functions. In recent
years, chemical antioxidants derived from natural plants,
which are named as “phytochemicals,” have gained interest
by researchers for preventing and treating diseases, including
obesity and obesity-related metabolic diseases [24–29].

Among the phytochemicals studied, researchers pay
more attention on polyphenols, which are derived from diet
food such as vegetables and fruits, as well as beverages such
as juice, coffee, and tea [30–35]. Studies showed that poly-
phenols such as quercetin, curcumin, and resveratrol exerted
beneficial effects on lipid and energy metabolism and poten-
tial body weight change. In this review, we will focus on the
roles of and the mechanisms of polyphenols including quer-
cetin, curcumin, and resveratrol and on obesity and adipose
tissue function.

2. Quercetin

Quercetin is the most abundant of flavonoids and is found in
vegetables, fruits, tea, and wine [36].

2.1. Effects on Cell Culture Models of Obesity. The first in vitro
study investigating the potential antiobesity effect of
quercetin on obesity was performed on primary adipocytes.
Kuppusamy and Das found that quercetin induced lipolysis
of primary rat adipocytes in a dose- and time-dependent

manner by increasing cyclic adenosine monophosphate
(cAMP) levels and hormone-sensitive lipase (HSL) activity
[37]. In addition to the inductive effect on lipolysis, quercetin
can also suppress lipogenesis by reducing the incorporation
rate of fatty acids into adipocyte triacylglycerols in rat fat
pads [38] and by inhibiting the gene expression levels of fatty
acid synthase (FAS) and the activity of acetyl-CoA carboxyl-
ase (ACC) [39]. Quercetin also can inhibit adipogenesis by
decreasing gene expression levels of the key adipogenic fac-
tors peroxisome proliferator-activated receptor γ (PPARγ)
and CCAAT/enhancer binding protein α (C/EBP α) [39].
Recently, using hypertrophied 3T3-L1 adipocyte model,
Herranz-López et al. showed that quercetin can rapidly
reduce the intracellular ROS levels, which was correlated
with the higher levels of quercetin metabolite [40]. Moreover,
in human SGBS adipocytes, quercetin can significantly
reduce levels of adipokines ANGPTL4, adipsin, and PAI-1
as well as of glycolysis-associated enzymes ENO2, PFKP,
and PFKFB4, all of which are associated with obesity and adi-
pose tissue dysfunction [41]. Adipocyte browning is a prom-
ising strategy for the prevention of obesity [14, 42–44]. In
3T3-L1 adipocytes, quercetin (50 μM) induced the expres-
sion of brown adipocyte-specific genes such as UCP-1 and
cell death-inducing DNA fragmentation factor-alpha-like
effector A (CIDEA) by the activation of AMP-activated
protein kinase (AMPK) [45], which is a key checkpoint to
control the energy balance in adipocytes by suppressing the
activity of ACC; as a result, the levels of lipid in adipocytes
were decreased [46].

2.2. Effects on Animal Models of Obesity. Animal studies
showed that quercetin can protect mice or rats from high-
fat diet- (HFD-) induced body weight gain and adipose tissue
accumulation [47–49]. In HFD-fed mouse model, Stewart et
al. showed that quercetin can transiently increase energy
expenditures which may relate to the upregulation of UCP-
1 [49]. In HFD-fed rat model, quercetin suppressed adipo-
genesis by reducing the key adipogenic factor C/EBP α gene
expression levels and reduced lipogenesis by downregulating
the gene levels of FAS and ACC [50]. Quercetin also has anti-
inflammatory effects on adipose tissue. Stewart et al. found
that long-time treatment with quercetin can reduce the levels
of inflammatory markers IFNγ, TNFα, IL-1, and IL-4 in mice
[49]. Quercetin suppresses the accumulation and activation
of immune cell and improves mitochondrial functions in adi-
pose tissue of HFD-induced obese mice by increasing the
levels of oxidative stress-sensitive transcription factor and
antioxidant enzymes [51]. Moreover, Dong et al. found that
quercetin attenuated mast cell and macrophage infiltration
into epididymis adipose tissues (EATs) through the AMPK
α1-silent information regulator (SIRT) 1 pathway in HFD-
fed mice [52]. In Wistar rats, quercetin suppressed the
expression of oxidative stress and inflammatory markers,
including nuclear factor kappa B (NF-κB), nuclear factor-
related factor- (Nrf-) 2, and heme oxygenase- (HO-) 1 [53].
In another study, quercetin (10mg/kg of body weight)
improved the inflammatory status of visceral adipose tissue
by suppressing the expression of TNF-α and enhancing the
levels of adiponectin, which indicates the recovery of the

2 Oxidative Medicine and Cellular Longevity



functions of the adipose tissue, in obese Zucker rats, a genet-
ically obese rat model [48].

2.3. Human Studies and Clinical Trials Using Quercetin to
Treat Obesity. Although many cell culture and animal studies
focused on the beneficial effects of quercetin in obesity, there
are only a limited number of human studies and clinical trials
that have been performed to evaluate the effects of quercetin
on obesity treatment. In a 12-week, randomized, double-
blind, placebo-controlled study, Lee et al. demonstrated that
quercetin (100mg/day/subject) significantly decreased the
total body fat, particularly in the percentage of fat in the
arm, and decreased the body mass index (BMI) of overweight
or obese subjects [54]. Another study evaluated the effects of
quercetin on obesity in overweight-obese subjects with
various apolipoprotein E (APOE) genotypes; the authors
reported that quercetin (150mg/day/subject) decreased the
waist circumference and triacylglycerol concentration [55].
In addition to these findings, one study showed that 12-
week of onion extract (quercetin-rich extract) intake
decreased body weight, percentage of body fat, and BMI of
10 female university students [56]. However, another study
reported that 12-week of onion extract intake has no effect
on body fat composition and BMI of the female university
students [57], indicating that the experiment period of the
study is important for the effects of the onion extracts on
body weight change. Currently, there is one clinical trial that
is still under phase II stage investigation; the purpose of this
study is to investigate whether quercetin changes the absorp-
tion of glucose by the body in obese subjects and obese dia-
betic subjects [58]. Although quercetin suppressed oxidative
stress in obese rodent models [51, 53], Shanely et al. reported
that quercetin has no effect on oxidative stress and antioxi-
dant capacity during a 12-week consuming period of high
doses of quercetin (500 or 1000mg/day/subject) in obese
subjects [59]. Future research need to further investigate
the bioactive effects and bioavailability of quercetin in the
treatment of obesity.

3. Curcumin

Curcumin is derived from and is the most bioactive polyphe-
nol in the spice turmeric [60]. Curcumin exerts several biolog-
ical functions including antioxidation, anti-inflammation,
and antiangiogenesis in different organs including adipose
tissue [60].

3.1. Effects on Cell Culture Models of Obesity. Curcumin may
have a significant effect on adipogenesis. In primary human
adipocytes and murine 3T3-L1 adipocytes, curcumin treat-
ment suppressed the expression of adipogenic genes peroxi-
some proliferator-activated receptor γ (PPARγ) and C/EBP
α [61]. In addition to the antiadipogenic effects, curcumin
also suppresses the differentiation of preadipocytes to mature
adipocytes. Ahn et al. demonstrated that curcumin inhibited
3T3-L1 adipocyte differentiation by inhibiting activities of
mitogen-activated protein kinases including ERK, JNK, and
p38 [62]. Another report showed that the inhibition effect
of curcumin on adipocyte differentiation might have been

mediated by the suppression of PPARγ expression in a
dose-dependent manner in human adipocytes [63]. More-
over, curcumin also showed anti-inflammatory effects.
Curcumin pretreatment inhibited the secretion of monocyte
chemoattractant protein- (MCP-) 1, a proinflammatory
cytokine, from 3T3-L1 adipocytes [64].

3.2. Effects on Animal Models of Obesity. Curcumin showed
beneficial effects on body weight reduction and energy
metabolism. Two weeks of high dietary curcumin supple-
mentation feeding in rats reduced epididymal adipose tissue
and increased fatty acid β-oxidation, indicating the increase
of energy expenditure after curcumin treatment [65]. Curcu-
min also showed anti-inflammatory functions. In HFD-
induced obesity and in genetic obesity (ob/ob mice) models,
curcumin reduced adipose tissue inflammation by reducing
macrophage infiltration into adipose tissue and by increasing
adiponectin production [66, 67]. Curcumin also showed
antioxidant effects. Dietary curcumin (0.2–1 g/100 g diet)
suppressed high-fat-induced lipid accumulation in epididy-
mal adipose tissue [65].

3.3. Human Studies and Clinical Trials Using Curcumin to
Treat Obesity. Unlike the studies on the effects of curcumin
in cells or animals, studies on obese subjects are limited.
The first clinical trial using curcumin for obesity treatment
was conducted by Mohammadi et al. [68]. In this study,
obese subjects were treated with a commercial formulation
of curcumin (C3 Complex®, 1 g/day) supplemented with a
bioavailability enhancer, piperine (5mg/day) for a month.
Although there were no changes in weight, body mass index
(BMI), or body fat, serum triglyceride levels were signifi-
cantly decreased after curcumin treatment, indicating the
improvement of insulin actions [68]. In another randomized,
double-blind, crossover trial, Ganjali and Sahebkar showed
that 30-day treatment of C3 Complex (500mg/day) plus
piperine (5mg/day) reduced serum levels of inflammatory
cytokines IL-1β and IL-4 of obese individuals [69], indicating
the anti-inflammatory activity of curcumin in obesity ther-
apy. Moreover, oral curcumin supplementation (1 g/day for
30 days) was effective in reducing oxidative stress burden in
obese individuals [70].

Although curcumin has been used for clinical trials in
obesity treatment, the multifaceted pharmacological nature
of curcumin and its pharmacokinetics and the side effects
of curcumin in obesity therapy need to be carefully investi-
gated. The recommended maximum daily usage of curcumin
is 1mg/kg body weight by a joint report of the World Health
Organization and the Food and Agriculture Organization
[71]. However, a few studies showed that the chronic use of
curcumin can cause liver toxicity [72] and high doses of cur-
cumin can induce gastrointestinal upset, inflamed skin, and
chest tightness in a phase II trial in patients with advanced
pancreatic cancer [73].

4. Resveratrol

Resveratrol (3,5,4′-trihydroxytrans-stilbene) is a small poly-
phenolic compound, which was well known as constituent
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of red grapes, red wine, peanuts, and ground nuts [74, 75].
Resveratrol showed antioxidant and anti-inflammatory
actions [76] and showed beneficial effects in preventing
the development of many diseases including obesity and
diabetes [77].

4.1. Effects on Cell Culture and Ex Vivo Adipose Tissue
Culture Models of Obesity. Resveratrol can inhibit adipogen-
esis by reducing the stability and transcriptional activity of
PPARγ [78, 79] and prevent triglyceride accumulation via
enhancing the expression of sirtuin1 (Sirt1), which is an
important molecular target regulating cellular energy metab-
olism and mitochondrial homeostasis [80] in 3T3-L1 adipo-
cytes. Moreover, resveratrol enhanced lipolytic activity in
human and rat adipocytes; this effect was mediated by β-
adrenergic activation and the induction of cAMP levels [81,
82]. In addition, to enhance lipolysis, resveratrol also can
inhibit lipogenesis by downregulating the expression of lipo-
genic genes in human adipocytes [83]. Kang et al. found that
resveratrol pretreatment suppressed secretion of TNF-α and
IL-6 from 3T3-L1 adipocytes and inhibited the activation
of inflammatory-related proteins such as extracellular
receptor-activated kinase (ERK) and NF-kappaB (NF-κB),
indicating that resveratrol has anti-inflammatory effects in
adipocytes [84]. In human adipocytes, resveratrol reversed
IL-1β-stimulated expression of proinflammatory adipokines
including IL-6, IL-8, monocyte chemoattractant protein-
(MCP-) 1, and plasminogen activator inhibitor- (PAI-) 1
[85, 86]. Moreover, reports showed that resveratrol inhibited
adipose tissue inflammation by downregulating the protein
levels of IL-6, IL-8, MCP-1, and the inflammatory-related
adipokine leptin in human adipose tissue in vitro [86, 87].

4.2. Effects on Animal Models of Obesity. Dietary treatment
of rodents with resveratrol protected mice against HFD-
induced body weight gain and obesity by increasing energy
expenditure which was partly mediated by stimulating intra-
cellular mitochondrial functions (fatty acid oxidation) in
adipose tissue and by the suppression of fatty acid synthesis
[88–90] and by inducing brown-like adipocyte formation in
white adipose [91–94]. The in vitro anti-inflammatory effect
of resveratrol was also confirmed in animal models. In mice,
resveratrol attenuated HFD-induced inflammation of WAT
by downregulating the protein levels of proinflammatory
cytokines TNF-α, IFN-α, IFN-β, and IL-6 [89]. In addition,
resveratrol reduced adipose tissue macrophage infiltration
[95] and prevented the suppression of the production of reg-
ulatory T cells (Tregs, the negative regulators of inflamma-
tion) [96] in HFD-induced obese mice. In Zucker rats,
resveratrol suppressed the protein levels of IL-6 and the
activity of NF-κB in adipose tissue by reducing macrophage
infiltration [97]. Interestingly, Jimenez-Gomez et al. showed
that resveratrol showed similar effects on high-fat-treated
adult rhesus monkey model as effects on HFD-induced
obese rodent models, suppressed the activation of NF-κB,
and decreased the mRNA levels of IL-6, TNF-α, IL-1β,
and adiponectin in the visceral adipose tissue of high-fat-
treated monkey model [98]. Resveratrol also showed antiox-
idant effect in animal models. Lv et al. found that resveratrol

attenuated diet-induced oxidative stress in epididymal white
adipose tissue partly by the reduction of Sirt1 and manga-
nese superoxide dismutase (Sod2) levels [99].

4.3. Clinical Trials Using Resveratrol to Treat Obesity.
Although several clinical trials that examine the effect of res-
veratrol on obesity are currently ongoing (see http://
clinicaltrials.gov) or have finished (see Review [100]), none
of them were designed specifically to test the effects of resver-
atrol on body weight change of obese subjects. In a random-
ized double-blind cross-over study, Timmers et al. showed
that 150mg/day of resveratrol treatment increased energy
expenditure, reduced serum inflammatory markers, and
decreased adipose tissue lipolysis and plasma fatty acid and
glycerol levels of obese men [101]. In another study, Konings
et al. investigated the effects of 30 days resveratrol treatment
(150mg/day) on the adipocyte size and gene expression
patterns in obese men. The authors found that resveratrol
treatment decreased the size of abdominal subcutaneous adi-
pocytes [102]. However, another report showed that high
levels of resveratrol supplementation treatment had no effect
on energy expenditure, adipose tissue content, and metabolic
events [103]. The reason for the reversed results obtained
from the two reports may possibly lie in the administered
doses of resveratrol they used for obesity treatment. The lat-
ter report used 1500mg/day for the trial [103]; this dose was
ten times of the dose Konings et al. used in the study [102].

5. Concluding Remarks

In the search for new molecules that could be used for the
treatment of obesity, good perspectives have been opened
up for polyphenols. Current knowledge from cell cultures
and animal models suggests that polyphenols, including
quercertin, curcumin, and resveratrol, play beneficial effects
under obese condition potentially by alleviating intracellular
oxidative stress, reducing chronic low-grade inflammation,
inhibiting adipogenesis and lipogenesis, and suppressing
the differentiation of preadipocytes to mature adipocytes.
Although investigators have obtained limited results from
clinical trials, there is still no sufficient data to support the
high-dose and long-term usage of these polyphenols in obe-
sity treatment.
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