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ABSTRACT

Motivation: Exome sequencing has proven to be an effective tool to

discover the genetic basis of Mendelian disorders. It is well estab-

lished that copy number variants (CNVs) contribute to the etiology of

these disorders. However, calling CNVs from exome sequence data is

challenging. A typical read depth strategy consists of using another

sample (or a combination of samples) as a reference to control for the

variability at the capture and sequencing steps. However, technical

variability between samples complicates the analysis and can create

spurious CNV calls.

Results: Here, we introduce ExomeDepth, a new CNV calling algo-

rithm designed to control for this technical variability. ExomeDepth

uses a robust model for the read count data and uses this model to

build an optimized reference set in order to maximize the power to

detect CNVs. As a result, ExomeDepth is effective across a wider

range of exome datasets than the previously existing tools, even for

small (e.g. one to two exons) and heterozygous deletions. We used

this new approach to analyse exome data from 24 patients with pri-

mary immunodeficiencies. Depending on data quality and the exact

target region, we find between 170 and 250 exonic CNV calls per

sample. Our analysis identified two novel causative deletions in the

genes GATA2 and DOCK8.

Availability: The code used in this analysis has been implemented into

an R package called ExomeDepth and is available at the Comprehen-

sive R Archive Network (CRAN).
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Supplementary Information: Supplementary data are available at
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1 INTRODUCTION

The improvement of DNA sequencing technologies in recent

years has radically changed the identification of genetic variants

associated with human diseases and in particular, rare disorders

(Ng et al., 2010). The use of sequence capture technologies to

target protein-coding regions in the human genome followed by

high-throughput DNA sequencing (known as exome sequencing)

currently provides a cost-efficient approach to discover causal

mutations in patients with Mendelian disorders. The majority

of published work using exome sequence data focuses on single

nucleotide polymorphisms (SNPs) or small insertions/deletions

(indels), mostly because short read DNA sequencing technolo-

gies are best suited to call these variants. Nevertheless, copy

number variants (CNVs), e.g. larger chromosomal indels, also

significantly contribute to the aetiology of Mendelian disorders.

Three general strategies exist to call CNVs from short read

sequence data (Medvedev et al., 2009): split reads (Karakoc

et al., 2011; Ye et al., 2009), paired-end reads (Zeitouni

et al., 2010) and read depth approaches (Krumm et al., 2012;

Sathirapongsasuti et al., 2011; Xie and Tammi, 2009). Read

depth analysis is particularly effective for exome data as it does

not rely on sequencing into or near the CNV breakpoints.

Generally speaking, read depth-based approaches for CNV call-

ing compare the number of reads mapping to a chromosome

window with its expectation under a statistical model.

Deviations from this expectation are indicative of CNV calls.

Similar to the array comparative genomic hybridization

(aCGH) methodology, the ratio of read count between a test

and a reference sample is usually preferred to a single-sample

analysis in order to control for the typically extensive variability

in capture efficiency across exons (Krumm et al., 2012;

Sathirapongsasuti et al., 2011; Xie and Tammi, 2009). Most of

the existing tools for CNV calling that are based on read depth,

such as ExomeCNV (Sathirapongsasuti et al., 2011) and

CNV-seq (Xie and Tammi, 2009), make Gaussian assumptions

about the distribution of read count ratio. In the absence of

technical variability, the proportion of reads matching to a spe-

cific sample should follow a binomial distribution whose success

rate is determined by genome-wide read count ratio between the

test sample and the reference set, as well as the potential presence

of CNVs. Additional covariates, such as GC content, can alter

this success rate in situations where the effects of these covariates

vary across samples (Marioni et al., 2007).
Here, we evaluate two different exome sequence datasets and

show that Gaussian assumptions generally do not hold. Techni-

cal variability at the library preparation, capture and sequencing

creates noise that affects the numbers of reads matching to*To whom correspondence should be addressed.
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particular exons in a sample-specific manner. As a result, the

observed variance exceeds what is predicted by a binomial

model that affects the CNV calls. Motivated by this observation,

we propose a modified and more robust statistical framework for

CNV calling. We apply this model to provide guidelines for the

construction of an optimized reference sequence dataset for CNV

calling purposes, as well as realistic power estimates. We find

that two main factors improve statistical power: increasing the

read depth and controlling for any source of technical variability

across samples at the capture and sequencing steps. We have

developed and coded a new set of tools in an R package called

ExomeDepth. We then illustrated its efficiency by discovering

novel small causative CNVs in two patients with primary immu-

nodeficiencies, a heterozygous deletion of two exons of the

GATA2 gene and a single-exon homozygous deletion in the

DOCK8 gene.

2 SYSTEM AND METHODS

2.1 Fitting a robust beta-binomial model for the read

depth data

We analysed the read count data for 24 exome samples from

primary immunodeficiency patients (divided into two datasets,

Supplementary Table S1 and Section 3). An overview of a nor-

malized measure of read depth [matching fragments per million

reads and per kilobase, FPKM, (Mortazavi et al., 2008), Fig. 1A]

showed extensive exon–exon variability. Inference of CNV status

can therefore, not rely on the highly variable single-sample read

count data. However, a comparison between pairs of exome

datasets (Fig. 1A) demonstrates the high level of correlations

of the normalized read count data across samples (squared

FPKM correlation coefficients 0.98–0.988 among 15 exomes in

Dataset 1 and 0.72–0.987 for the 9 exomes in Dataset 2). It is

therefore possible to use one exome or combine several exomes

to construct a reference set to base the CNV inference on.

Initially, we analysed pairs of exomes and fitted a binomial

model to the genome-wide distribution of read depth data for

the reference and the test sample (see Section 3). For the purpose

of parameter estimation (but not for subsequent CNV calling

steps), we removed exons located in regions harbouring

common CNVs (Conrad et al., 2010) to limit the possibility

that copy number variable regions increase the variance of the

read count ratio. The outcomes of two representative compari-

sons between a pair of exomes from Dataset 1 and a pair of

exomes from Dataset 2 are shown in Figure 1B and C, respect-

ively. The larger variance observed in Figure 1C compared with

1B illustrates that the outcome of this analysis varies extensively,

depending on how sequencing and capture were conducted.
The larger variance observed in Figure 1C compared with 1B

illustrates that the outcome of this analysis varies extensively

depending on how sequencing and capture were conducted. To

quantify the variability between B and C, we defined the statistic

Rs as the ratio between the standard errors of the beta-binomial

model and the binomial model (Section 3). This statistic can be

intuitively understood as the ratio between the typical distances

separating the blue and red curves in Figure 1B and C.
Our results show that a binomial model fails to properly cap-

ture the extensive variability in read count ratio across samples.

Even in the best case scenario of two well-matched exomes (red

line in Fig. 1B), 6.8% of the exons were located outside of the

99% confidence interval. When two exomes were poorly

matched (red line in Fig. 1C), a total of 23.2% of exons were

outside of the 99% confidence interval. We therefore modified

this binomial model and fitted instead a beta-binomial distribu-

tion (seeSection 3) to account for the over-dispersion in read

count ratio. We further modified the model to account for

observed correlations between depth of sequencing and the

over-dispersion parameter (Supplementary Fig. S1). This

beta-binomial model significantly improved the fit (blue line in

Fig. 1B and C). The proportion of exons outside of the 99%

confidence interval was reduced to 1.8% for the well-matched

pair of exomes and to 2.3% for the poorly matched pair (blue

lines in Fig. 1B and C, respectively) To quantify this noise in the

sequence data, we defined the statistic Rs as the ratio between the

standard errors of the beta-binomial model and the binomial

model. This statistic can be intuitively understood as the ratio

between the typical distances separating the blue and red curves

in Figure 1B and C. For each sample in Datasets 1 and 2, we

estimated the optimum reference set (see below for a description

of this procedure) and computed the Rs statistic. For Dataset 1

typical values of Rs varied between 1.5 and 2, depending on the

sample, with an average value of 1.62. For Dataset 2,

typical values of Rs varied between 2 and 4.5 (average: 2.76).

Fig. 1. (A) Comparison of fragment per kilobase and million base pairs

(FPKM) between two exomes (FPKM squared correlation coeffi-

cient¼ 0.992). (B) Total read depth for two typical well-matched

exomes (y-axis) as a function of the proportion of reads mapping to

one of two exomes (x-axis). The red lines show the 99% confidence inter-

val assuming the best fitting binomial distribution for the read count

data. The blue lines show the same 99% confidence interval assuming

the best fitting beta-binomial robust model for the same dataset.

(C) Same as (B) but for two typical exomes that are poorly matched to

each other. (D) Rs statistic (x-axis) and correlation between FPKM

values (y-axis), both of them computed for each exome with its associated

reference set
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The Rs statistic measures the correlations across samples and can

be well approximated using the squared pairwise correlation co-

efficient of FPKM values between the test sample and its asso-

ciated reference set (Fig. 1D). We hypothesized that some of the

differences between samples might be explained by a differential

effect of the DNA sequence GC content on capture and sequen-

cing efficiency. Therefore, in the regression analysis, we added

GC content as a percentage. The noise reduction was consistent

but relatively limited: in Dataset 1, the average Rs decreased

from 1.62 to 1.59. In Dataset 2 the average Rs decreased from

2.76 to 2.45.

2.2 Power study and optimization of the reference

exome set

The different levels of noise illustrated in Figure 1B and C have

large implications for the power to detect CNVs. We used a

single-exon heterozygous deletion as a typical CNV and esti-

mated the expected value of the posterior probability for this

heterozygous deletion given different sets of parameters. We con-

sidered three scenarios: Rs¼ 1 (absence of any technical bias),

Rs¼ 1.6 (typical of Dataset 1) and Rs¼ 2.5 (typical of Dataset 2).
The construction of the optimum reference set is coded in the

select.reference.set function of the ExomeDepth package. To

summarize briefly, for each test exome we rank the remaining

samples by order of correlation with the test exome. Samples are

then added sequentially to the aggregate reference set. At each

iteration we fit our robust model and compute the expected value

of the posterior probability in favour of a single-exon heterozy-

gous deletion call. This process of adding samples to the aggre-

gate reference stops once the posterior probability stops to

increase. This optimization is essentially a trade-off between lim-

iting the variance (by increasing the size of the reference set) and

increasing the bias (by adding exome samples to the reference in

spite of being less correlated). In Dataset 1 (Fig. 2A) we found

that the optimum size of the reference set was �10. In several

instances adding further samples in the reference set actually

decreased the power.
Figure 2B investigates the role of read depth on the power to

detect a CNV. For Datasets 1 and 2, we selected the optimum

reference sets and extracted the parameters associated with this

fit. We investigated the effect of read depth by changing the

expected number of reads that map to the heterozygous deleted

exon in the test sample. In contrast with Figure 2A, this compu-

tation holds the Rs parameter constant, i.e. we assume that all

additional exome samples are similarly correlated with the test

exome. It therefore only considers the role of read depth and not

the added complexity of adding exome samples that are not

necessarily as well correlated with the test exome. This analysis

showed strong differences between Datasets 1 and 2. In Dataset

1, 300 reads mapping to an exon in the test sample were sufficient

to provide complete power, whereas for Dataset 2, the posterior

probability in favour of the deletion call could never exceed 30%,

even with more than 500 reads. This result indicates that an

increase in the read depth cannot compensate for low levels of

correlations between the exomes. Using 100-bp paired-end reads,

and assuming a 500-bp long exon, 300 mapping reads amount to

an average read depth of�100. This read depth would need to be

twice larger (i.e. 200) if the exon was only 250-bp long. To

provide a more general boundary for the size of the reference

set, we investigated in Figure 2C and D the behaviour of the

power estimates as the size of the reference set increases. As

for Figure 2B, we used the optimum parameters estimated in

Figure 2A for the median samples in Datasets 1 and 2 and

kept the Rs parameter constant. Hence, no bias is created by

adding less correlated exome samples and only the effect of the

size of the reference set is evaluated. We considered two scenarios

of moderate and high read depth (Fig. 2C and D). With these

assumptions, while the power keeps increasing, the increase be-

comes slow once the reference:test ratio reaches a value of 10.

This result suggests that very large reference sets would provide

only limited increase in power to detect heterozygous deletions.

In all tested scenarios, the difference between the power curves

estimated from the bias-free model (black line in Fig. 2B–D)

compared with the estimates in either of the datasets (red and

blue lines) was large. Datasets 1 and 2 also showed substantial

difference in power (Fig. 2C and D). These observations

A B

C D

Fig. 2. Power study showing the expected posterior probability for a

heterozygous deletion call. (A) Expected value of the posterior probability

(averaged over all exons) for the 15 exomes in Dataset 1 as a function of

the (test:reference) read count ratio (which is closely approximated by the

number of exomes in the aggregate reference set). Each line shows a

different test exome sample and the most correlated exome is added to

the reference at each step. (B) The expected number of reads that would

be mapping to a normal copy number exon varies (along the x-axis) but

the (reference:test) sequencing depth remains constant at 10 (i.e. the ref-

erence set approximately consists of an aggregate of 10 exomes). Other

parameters, including the level of correlations between test and reference

exome, are kept constant. Power estimates assume a typical exome from

each of the two Datasets 1 and 2 (the median value of the posterior

probability is shown). (C), (D) The number of exomes in the aggregate

reference set varies but the expected number of reads mapping to a

normal copy number exon for the test sample is set to 100 (C) and 200

(D). For (B), (C) and (D), the black line refers to an optimum dataset in

the absence of sample-to-sample technical variability (Rs¼ 1), longer

dash to the typical dispersion parameter estimated from Dataset 1

(Rs¼ 1.6) and shorter dash for the typical dispersion parameter estimated

from Dataset 2 (Rs¼ 2.5)
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illustrate an important effect of variability between individual

exomes in a dataset, which is captured by the Rs statistic, on

the power to detect CNVs. Note that the power to detect

single-exon heterozygous deletions in Dataset 2 remains very

low and would not reach 1 in any realistic scenario, because

the level of noise is too high. Therefore, in Dataset 2 CNVs

need to overlap multiple exons to be detectable. Power estimates

for heterozygous duplications were much lower than for hetero-

zygous deletions (Supplementary Fig. S2), a difference also com-

monly observed for all array-based CNV assays. Both datasets

lacked power to detect single-exon heterozygous duplications

(Supplementary Fig. S2A–D), but larger duplications could be

identified. For example, in Dataset 1, and to some extent in

Dataset 2, a three-exon heterozygous duplication typically can

be detected (Supplementary Fig. S2E–H). Homozygous deletions

are naturally easier to detect than heterozygous deletions.

Although quantifying the power is complicated by the arbitrary

parameterization of the background level of mapping reads, we

found that under most realistic assumptions, an expected number

of reads greater than 30 mapping to an exon in the test sample

was sufficient to identify a homozygous deletion in either of the

two datasets.

2.3 Characteristics of CNVs and comparison with

other tools

The probability for the hidden Markov chain to enter a cn 6¼ 2

state sets the sensitivity/specificity balance of ExomeDepth. We

parameterized this value using the expected number of CNV calls

for an exome sequence (Section 3 and Supplementary Fig. S3).

We found the total number of CNV calls to be relatively stable

over the range of parameters considered (Supplementary

Fig. S3), only increasing sharply for a prior expectation of

1000 CNV calls genome-wide. The ExomeDepth default param-

eter uses a relatively stringent prior expectation of 20 CNV calls

per exome sequence. With this choice, ExomeDepth called a

median number of 213 CNVs per sample in Dataset 1, including

62.3% deletions. Consistent with the more limited power in

Dataset 2, ExomeDepth identified a lower median number of

177 CNV calls in this dataset (62.9% of them deletions), in

spite of a 31.5% larger target region (50Mb versus 38Mb).

CNVs called by ExomeDepth in Datasets 1 and 2 included a

median number of five exons and a median length of 10.6 kb.

About 10% of the CNV calls were longer than 100kb and 0.1%

were longer than 500kb.
Comparison with other algorithms is complicated by the ab-

sence of a ‘gold standard’ dataset and the bias inherent to CNV

calls in available CNV databases. Nevertheless, the majority of

CNVs called in our data should be present in a large-scale data-

base such as the Database of Genomic Variants (DGV), (Zhang

et al., 2006). We defined a CNV as previously reported in DGV if

a CNV listed in DGV overlaps more than 50% of our CNV call

(after excluding DGV CNV calls larger than 500kb). We found

that 13.5% of CNVs in Dataset 1 (20% respectively in Dataset 2)

were absent from DGV (Table 1).
To estimate the false negative rate, we used an additional

dataset of 12 high-depth exome samples (1000 Genomes

Project) for which an independent experiment generated CNV

calls using a high-density Nimblegen CGH array [(Conrad

et al., 2010) and Section 3]. Combining all 12 samples, the

aCGH experiment identified 1344 exonic CNV calls (303

unique calls). Conrad et al. (2010) estimate that 40% of CNVs

can be genotyped with their experimental design that translates

into an approximate expected number of 280 exonic CNV calls

per sample, which is broadly consistent with our findings.
To compare our algorithm with existing tools, we first tested

ExomeCNV (Sathirapongsasuti et al., 2011). Its underlying

model assumes that the distribution of read count ratio between

the test and reference exome is Gaussian and a similar assump-

tion is made by CNV-Seq (Xie and Tammi, 2009). Second, we

tested exomeCopy (Love et al., 2011), which uses a negative bi-

nomial model that is related to our beta-binomial approach. In

each case, we followed the methods suggested by these publica-

tions and we used the suggested default parameters. Venn dia-

grams summarizing the overlap between calling algorithms are

shown in Supplementary Figure S4.
Comparison between these three tools using a dataset of 12

exomes from 1000 Genomes and the two datasets from this study

highlighted a clear trend. First, ExomeDepth is more conserva-

tive than the other tools, with the median number of CNV calls

between 177 and 246 per exome, whereas exomeCopy and

ExomeCNV called numerous additional CNVs (Table 1 and

Supplementary Fig. S4). Second, ExomeDepth detected 75.2%

of the known exonic CNVs in the 12 exome samples from the

1000 Genomes Project (CNVs identified by the independent

aCGH experiment). This was markedly higher than the fraction

of CNVs identified by exomeCopy (52.8%) and ExomeCNV

(41.2%; Table 1), indicating a higher sensitivity. Interestingly,

the difference between our analysis and exomeCopy was more

limited for Dataset 1, for which the exomes are better matched to

each other, than for Dataset 2 and the 1000 Genomes dataset,

consistent with the fact that the aggregate reference optimization

Table 1. Comparison between our package (ExomeDepth) and two other

tools: exomeCopy and ExomeCNV

exomeDepth exomeCopy exomeCNV

Dataset 1 (n¼ 15)

Median nb of CNVs 213 495 2256

Percentage in DGV 86.5 67.8 16.3

Median CNV size (kb) 8.9 1.83 0.16

Median CNV size (exons) 5 3 1

Dataset 2 (n¼ 9)

Median nb of CNVs 177 1228 11 046

Percentage in DGV 80 36.9 26.6

Median CNV size (kb) 12.2 10.04 0.26

Median CNV size (exons) 5 5 1

1000 Genomes (n¼ 12)

Median nb of CNVs 246 641 5261

Percentage in DGV 66 37.2 34.2

Median CNV size (kb) 1.7 9.75 0.34

Median CNV size (exons) 3 4 1

Percentage of known

CNVs found 75.2 52.8 41.2

We define a CNV called from exome data as ‘in DGV’ (or a ‘known CNV’ in

the 1000 Genome analysis) when the CNV in the database overlaps450% of our

CNV call.
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step implemented in ExomeDepth is more helpful when the vari-
ability across samples is larger.

2.4 Discovery of two novel and likely disease-causing

deletions in the GATA2 and DOCK8 genes in

patients with primary immunodeficiency

We then investigated if any of the newly discovered rare CNVs in

our data affects genes that previously have been involved in pri-

mary immunodeficiencies. In patient P1 ExomeDepth identified

a heterozygous deletion of the consecutive exons 6 and 7 of the

GATA2 gene with a read count ratio50.5% quantile (Fig. 3A).
Independently, each exon would yield a posterior probability for

the deletion call of 77% (exon 7) and 15% (exon 6). The com-

bined CNV call has a posterior probability 499.9%. We then

designed a custom CGH array (Supplementary Data) containing

26 probes in the GATA2 gene region. In this patient we validated
a heterozygous deletion of 6 kb that included GATA2 exons 6

and 7 (Fig. 3B). We then amplified the breakpoint region,

sequenced it and mapped the exact boundaries of this 5797-bp

deletion (Fig. 3C; coordinates chr3: 128, 196, 444-128, 202, 240).
The clinical presentation for this patient was consistent with pre-

vious reports of heterozygous variants in the GATA2 gene

(Ostergaard et al., 2011), indicating that this two exons deletion

is very likely to be causal for P1 (Supplementary Data for clinical

details).
In another patient (P2), ExomeDepth identified a deletion of a

single exon 8 of the DOCK8 gene (Supplementary Fig. S5A).

This CNV call had a posterior probability499.99%. Complete
absence of reads mapping to exon 8 is indicative of a homozy-

gous deletion. We sequenced the deletion breakpoints and iden-

tified the exact boundaries of a 3197-bp deletion (Supplementary

Fig. S5B; coordinates chr9: 323, 591–326, 787). The clinical pres-
entation is consistent with previous reports involving homozy-

gous mutations in the DOCK8 (Zhang et al., 2009) indicating

that this variant is almost certainly causal (Supplementary Data

for clinical details).

3 IMPLEMENTATION

3.1 Primary immunodeficiency patients

We investigated 24 patients who suffered from severe and/or

disseminated recurrent infections, and have been diagnosed
with primary immunodeficiencies (PIDs). Of these patients, 13

were of European descent and 11 patients were of Asian descent,

of which, 5 originated from consanguineous families. All mater-

ial from patients was obtained with informed consent from
adults and from the parents of children who participated in the

study in accordance with the Declaration of Helsinki and with

approval from the ethics committees (04/Q0501/119, amendment

2; 06/Q0508/16 and 10/H0906/22).

3.2 Exome data

We isolated DNA samples from blood or peripheral blood
mononuclear cells (PBMCs). Exome sequence data have been

generated in two batches. Dataset 1 comprises exomes from 15

patients and Dataset 2 comprises exomes from 9 patients. For

exome target enrichment Agilent SureSelect 38Mb and 50Mb

kits have been used for samples in Datasets 1 and 2, respectively.

Samples in both datasets have been sequenced using Illumina

HiSeq with 94-bp paired-end reads. Reads were aligned to the

hg19 reference sequence using the software novoalign (www

.novocraft.com). Single sample summary statistics are provided

in Supplementary Table S1.

A

B

C

Fig. 3. (A) Heterozygous deletion of exons 6 and 7 of the GATA2 gene

identified by ExomeDepth in the exome sequence data. The red crosses

show the ratio of observed/expected number of reads for the test sample.

The grey shaded region shows the estimated 99% confidence interval for

this observed ratio in the absence of CNV call. The presence of two

contiguous exons with read count ratio located outside of the condfidence

interval is indicative of a heterozygous deletion in this sample.

Independently, each exon would yield a posterior probability for the

deletion call of 15% (exon 6) and 77% (exon 7). The combined CNV

call has a posterior probability499.9%. (B) Validation of a 6-kb deletion

using a targeted array CGH (Agilent 15K format) containing 26

probes in the GATA2 gene region. Each cross indicates a probe and

red crosses indicate probes located in the region of a heterozygous dele-

tion. (C) Sequencing of the deletion breakpoints identified the exact

boundaries of this 5797-bp deletion overlapping exons 6 and 7 of the

GATA2 gene
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3.3 Read count computation

Exon locations were defined using the Ensemble database release

version 57 (human genome build hg19). We only considered
autosomal chromosomes (chr1–22) to avoid the additional com-

plication of gender (in which case, male and female samples
would need to be analysed separately). Analysis of the GC con-

tent for each exon uses the same Ensembl release and the Perl
Ensembl API tool. We used the R package Rsamtools to extract

the read count information from the individual BAM files. All
reads were paired-end. We only included consistent paired reads

(i.e. both reads located51000bp away from each other and in
the correct orientation) and with Phred scaled mapping quality

�20. The location was defined by the middle location between
the extreme ends of both paired reads. Exons closer than 50bp

were merged into a single location owing to the inability to prop-
erly separate reads mapping to either of them. After merging

close exons, we considered a total number of 229 056 autosomal
exons.

3.4 Statistical model

We denote the exonic read count X for the test sample and Y for

the aggregate reference. Assuming that the distribution of the
read count ratio X=ðXþ YÞ is only determined by the relative

read depth of the test and reference samples, an appropriate
model is binomial with the probability that a random read is

assigned to the test sample is:

logitð�iÞ ¼ �þ �i þ �GC ð1Þ

where �i ¼ E½Xi=ðXi þ YiÞ� is the probability that a random read

belongs to the test sample (rather than the reference). The inter-
cept parameter � is estimated separately for each test sample. GC

refers to the GC content. The index i denotes the exon and the
covariate �i relates to the copy number status for the exon i: the

proportion of reads mapping to the test sample for deletions/
duplications is computed based on the expected proportion for

normal copy number and assuming a read ratio of 0.5 (for a
deletion) or 1.5 (for a duplication). A motivation for our work

is the fact that this binomial model does not fully capture sample
specific biases. We propose instead the robust beta-binomial

model (Agresti, 2002):

�i � Betað�i, ’=1� ’Þ ð2Þ

Xi � Binomialðp ¼ �i, n ¼ Xi þ YiÞ ð3Þ

where the over-dispersion parameter ’ is numerically estimated
from the read count data. Assuming this model, the mean value

of the beta binomial variable X remains unchanged but its vari-
ance becomes varðXiÞ ¼ ni�ið1� �iÞ½1þ ðni � 1Þ’� where

ni ¼ Xi þ Yi, adding to the binomial variance an additional
over-dispersion term. Last, the addition of GC content to the

model contributes to predicting individual specific biases.
However, an analysis of the data showed that a single ’ typ-

ically could not fully summarize the read count variance over the

full range of read depth (Supplementary Fig. S1). We therefore,
modified the model to allow the parameter ’ to take different

values depending on the total read count. We used a linear ex-
trapolation to combine these estimates over the full range of read

depth. The number of intervals for the read count data is set to

two by default and can be modified by the user. Supplementary

Figure S1 describes this fitting process in more details.

3.5 Numerical estimation

We fitted the binomial logistic model described in Equation (1)

using the glm function in R. We fitted the beta-binomial model

described in Equations (2) and (3), including the maximum like-

lihood estimation of the over-dispersion parameter ’, using a

maximum likelihood approach implemented in the R package

aod. The procedure estimates for each exon, an expected read

ratio �i and a genome-wide over-dispersion parameter ’. This
parameter estimation is done assuming cn¼ 2 for all exons. In a

second step, and for each exon, covariates for deletions/duplica-

tions are added to estimate the likelihood of the read count data

for the scenarios cn¼ 1 and 3. In the beta-binomial models ex-

pressed in Equations (2) and (3), the beta-binomial distribution is

usually parameterized using two parameters a and b [mean

a=ðaþ bÞ and variance ab=ðaþ bÞ2ðaþ bþ 1Þ]. The regression

formulation of the model described above links to this distribu-

tion with ai ¼ �ið1� ’Þ=’ and bi ¼ ð1� �iÞð1� ’Þ=’. Prior to

fitting these models (Fig. 1B and C), we removed exons located

in regions harbouring common CNVs (Conrad et al., 2010) to

limit the possibility that such CNVs significantly increase the

variance of the read count ratio.

3.6 Hidden Markov chain and choice of prior probabilities

For each exon, our beta-binomial model generates a likelihood

value under three distinct scenarios (copy number¼ deletion,

normal, duplication). To combine the likelihood across multiple

exons we used a hidden Markov model. Each step of the hidden

Markov state corresponds to one exon in the human genome.

This model serves the double purpose of merging CNV calls

across exons, as well as specifying a prior probability of obser-

ving a CNV for each exon. This prior probability is coded into

the transition probability of the hidden Markov chain between

the normal copy number state (cn¼ 2) and either of the copy

number variable states (cn¼ 1 or cn¼ 3). We parameterized this

before using the expected number ne of CNVs a-priori, i.e. the

probability of transitioning from cn¼ 2 to cn¼ 1 or cn¼ 3 is

P ¼ ne=n where n¼ 229 056 is the total number of exons. We

set the default model such that, from the hidden state cn¼ 2,

the probability to move into a deletion state is the same as the

probability to move into a duplication state. In a deletion/

duplication state, the underlying Markov chain has a default

probability 0.5 to revert back to cn¼ 2 and a probability 0.5

to remain in the same deletion/duplication state. To provide a

set of calls for each sample, we use the maximum likelihood

Viterbi algorithm. Each version of our statistical models in

Equations (1–3) generates a likelihood under the cn¼ 1, 2, 3

scenarios. For CNV with lower (cn¼ 0 for homozygous dele-

tion) or higher (cn � 4) number of DNA copies, the model with

cn¼ 1, 2 and 3 hidden rejects the null with added confidence

compared with the simpler scenarios cn¼ 1 or cn¼ 3. Hence, we

found no benefit in considering additional copy number states

(besides, cn¼ 1, 2 and 3). Rather, we estimate copy number

state using the read count ratio after the CNV is detected.

Importantly, copy number is always estimated with respect to
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the reference and the absolute value cannot be estimated by this
procedure.

3.7 Power estimates

Owing to the common particular interest in discovering loss-of-

function variants we considered a heterozygous deletion as a

typical scenario for our power estimations (Fig. 2). The hetero-
zygous duplication case is considered in Supplementary Figure

S2. Following the parameter estimation step, we can generate for

each CNV, and given the test and reference read count data X

and Y, a Bayes factor BF¼PðX,Yjcn ¼ 1Þ=PðX,Yjcn ¼ 2Þ.

Using our selected prior distribution (P¼ 10�4 of observing a

CNV, i.e. corresponding to an expected number of 20 CNV
calls genome-wide), we compute the expected value of the pos-

terior distribution for the CNV call.

3.8 Choice of samples for the comparative analysis

We downloaded from the 1000 Genomes a dataset of 12

high-depth exome samples generated using the Solid sequencing
technology (single-end reads), for which an independent experi-

ment generated CNV calls using a high-density Nimblegen CGH

array (Conrad et al., 2010). These 12 samples are NA18502,

NA19099, NA19239, NA19240 (Yoruba) and NA06985,

NA1199, NA11995, NA12004, NA12044, NA12156, NA12414,

NA12489 (CEPH).

3.9 Parameters of ExomeCNV/exomeCopy in the

comparative analysis

To apply ExomeCNV we followed the instructions provided by

the user guide, using 0.9999 as threshold for sensitivity and spe-

cificity, with the software set to optimize the specificity. For each
test sample (labelled tumour sample in the ExomeCNV analysis),

the aggregegate reference set (labelled as normal) consisted of the

remaining exomes from the same dataset. We then applied the

classify.eCNV function with default parameters setting the ad-

mixture rate to 0 (because we are not concerned by a mixture

with tumour DNA). Finally, multi.CNV.analyze was used to

obtain the final list of merged calls from the list of exonic
CNV calls. For exomeCopy the read count data was estimated

using the R built-in functions provided by this package. For each

sample, the background noise was estimated on the basis of GC

content and the read count data from the other exomes in the

same dataset. We fitted the negative-binomial model and the

hidden Markov chain using the steps recommended in the pack-
age vignette and the default parameters. For the exomeCopy

analysis, the recommendation to split long exons into smaller

units (and therefore, get more uniform numbers of reads in

each bin) increased the number of CNV calls and the concord-

ance with DGV dropped, strongly suggesting that this step did

not improve the overall accuracy. We therefore used our set of

exon delimited regions to compute the read count.

4 DISCUSSION

We have developed a novel CNV calling methodology using read

depth information from exome sequence data and implemented

it within an R package called ExomeDepth. This allowed us to

maximize the statistical power to detect even small CNVs in the
presence of technical variability inherent to high-throughput
DNA sequencing technologies. As a consequence, compared

with other tools, we found the greatest improvement for datasets
that show more technical variability across samples. Although
ExomeDepth is designed to be used as a standalone software, the

contruction of a reference set is a problem shared across all read
depth CNV calling algorithms for exome data. Therefore, addi-
tional refinements proposed by other CNV calling algorithms to

improve calling accuracy could potentially be applied after
ExomeDepth has identified the optimum aggregate reference set.
Because ExomeDepth assumes that the CNV call is not pre-

sent in the reference sample, it is best suited to call rare CNVs.
Nevertheless, our analysis of exome samples from the 1000
Genome Project indicates that it can call common CNVs as

well, even though some power is lost when the allele frequency
is high. Our computations indicate that the power to detect rare
CNVs is maximized for a reference:test ratio of �10:1. Hence,

while we find no obvious benefit in using a very large dataset
(4100 exomes), it is essential to generate exome data in batches
of six or more samples.

Our analysis shows that a Gaussian model for the read count
data is not appropriate for exome sequence data, which is likely
to explain the discrepancy with the observed larger number of

CNV calls generated by ExomeCNV. The discrepancy with
exomeCopy is more surprising, because exomeCopy fits a
robust negative binomial model related to our model.

Additionally, in the exomeCopy analysis, we used the optimized
reference set identified by the ExomeDepth analysis. The default
parameters of the exomeCopy hidden Markov chain were also

similar. Comparing both methods, we find that the main differ-
ence is that exomeCopy essentially takes a profile likelihood ap-
proach: it uses the median normalized read depth at each exon to

account for the variability in exon capture efficiency, which is a
nuisance parameter. However, the median read depth can be
unreliable, if the sample size is small and/or the data are noisier

(e.g. in Dataset 2). Instead, in ExomeDepth we used a logistic
model, which deals with that nuisance parameter by conditioning
on the total read count for each exon. We hypothesize that

exomeCopy would show results more similar to ours, if the
exon-specific parameters were estimated within the negative
binomial model rather than prior to model fitting. However,

the number of exons, and therefore, the number of parameters
to estimate, would be large which makes it difficult in practice.
In our study the statistical power to detect CNVs varied

extensively between two datasets and was largely determined
by sample-to-sample variability within datasets that emerged
either at the exome capture or at the sequencing step. This fea-

ture of the data cannot be detected by commonly used
single-sample quality metrics: it is the correlations across samples
rather than the single-sample summary statistic that are relevant.

Owing to its essential role for CNV calling, we argue that a
measure of sample-to-sample consistency (e.g. correlation be-
tween FPKM values) should be provided by sequencing facilities

when exomes are analysed in sufficiently large batches.
Finding of the GATA2 and DOCK8 deletions illustrates the

power of ExomeDepth to identify even heterozygous and small

CNVs comprising just one to two exons. We conclude that redu-
cing technical variability between the samples and using
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bioinformatics tools that maximize statistical power of CNV de-
tection, such as ExomeDepth, will allow efficient CNV identifi-
cation and will increase the value of the future exome sequencing
experiments.
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