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Neuroimaging studies suggest that older adults may compensate for declines in brain
function and cognition through reorganization of neural resources. A limitation of prior
research is reliance on between-group comparisons of neural activation (e.g., younger
vs. older), which cannot be used to assess compensatory ability quantitatively. It is also
unclear about the relationship between compensatory ability with cognitive function or
how other factors such as physical exercise modulates compensatory ability. Here, we
proposed a data-driven method to semi-quantitatively measure neural compensation
under a challenging cognitive task, and we then explored connections between neural
compensation to cognitive engagement and cognitive reserve (CR). Functional and
structural magnetic resonance imaging scans were acquired for 26 healthy older
adults during a face-name memory task. Spatial independent component analysis (ICA)
identified visual, attentional and left executive as core networks. Results show that the
smaller the volumes of the gray matter (GM) structures within core networks, the more
networks were needed to conduct the task (r = −0.408, p = 0.035). Therefore, the
number of task-activated networks controlling for the GM volume within core networks
was defined as a measure of neural compensatory ability. We found that compensatory
ability correlated with working memory performance (r = 0.528, p = 0.035). Among
subjects with good memory task performance, those with higher CR used fewer
networks than subjects with lower CR. Among poor-performance subjects, those using
more networks had higher CR. Our results indicated that using a high cognitive-
demanding task to measure the number of activated neural networks could be a useful
and sensitive measure of neural compensation in older adults.

Keywords: neural compensation, cognitive reserve, aging, ICA, gait speed, fMRI methods

INTRODUCTION

With the global increase in the aging population, there is an urgency to better understand neural
mechanisms of age-related cognitive decline and resilience in order to promote healthy brain
aging (Christensen et al., 2009). While brain regional volume loss typically occurs with aging,
brain reorganization in older adults may compensate for neural deterioration (Gutchess, 2014;
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Morcom and Johnson, 2015). Functional neuroimaging studies
have reported that, compared with young adults, neural activity
increases in older adults in a variety of aging-vulnerable
brain regions including the prefrontal cortex, posterior parietal
cortex and right parahippocampal gyrus/lingual gyrus (Rajah
and D’Esposito, 2005; Greenwood, 2007; Park and Reuter-
Lorenz, 2009; Steffener et al., 2009; Lighthall et al., 2014).
To accommodate these changes in activity, the brain may
be able to reorganize its functioning to counteract neural
decline and to maintain performance (Chanraud and Sullivan,
2014). In many studies, this over-activation is accompanied by
better performance, raising the possibility that the additional
activity serves a beneficial, compensatory function without which
performance decrements would result. However, the processes
underlying neural compensation and how it benefits cognitive
performance remain unclear (Morcom and Johnson, 2015).

A notable construct related to neural compensation is
cognitive reserve (CR). The concept of CR suggests that innate
intelligence or aspects of life experience may supply reserve, in
the form of a set of skills or repertoires that allows some people
to cope with progressing Alzheimer’s disease pathology better
than others (Scarmeas and Stern, 2003). From the perspective
of neuroimaging, the following definition of CR is proposed: the
ability to optimize or maximize performance through differential
recruitment of brain network, which perhaps reflect the use
of alternative cognitive strategies. CR may be based on either
more efficient utilization of brain networks or of enhanced
ability to recruit alternate/compensatory brain networks (Stern,
2002). Better understanding of neural compensation would
support the concept of CR. Typically, CR is measured indirectly
by experiences across the lifespan, including educational and
occupational attainment, leisure activities and IQ (Stern, 2012).
However, these CR proxies are themselves correlated with each
other and they cannot show changes with time. Reed et al.
(2010) recently proposed to quantify CR using a residual memory
score after regressing out memory components corresponded
to demographic and brain structural variables. Since CR has
been shown to predict development of Alzheimer disease, it
is important to examine whether neural compensatory ability
contributes to CR. In the present study, we examined the
relationship between the number of activated neural networks
and CR defined by Reed et al. (2010). We propose that the
relationship between CR and compensatory ability measured by
the number of activated neural networks may differ depending
on challenging task performance. When task performance is
poor (or there exists clinical symptoms of cognitive impairment),
CR should be reduced compared with a condition of good task
performance with preserved cognitive function. Among subjects
with poor task performance, those who have activated more
networks during performing the task should have higher CR than
those with fewer networks due to limited brain resources. On the
other hand, among subjects with good task performance, those
who have fewer networks (need less effort to complete the task)
should have higher CR than those activated more networks.

Few studies have investigated factors influencing
compensatory function beyond educational level and
occupational attainment. Physical activity level, including

gait speed is important to life quality of older adults. Physical
exercise improves executive function (Colcombe and Kramer,
2003; Lautenschlager et al., 2008; Ji et al., 2017), and gait
ability has been shown to be associated with global and executive
cognitive function (Atkinson et al., 2007), as well as the activation
level of executive network in older adults (Jor’dan et al., 2017).
These findings support studying the relationship between gait
speed and neural compensatory capability.

Therefore, we hypothesized that, if the number of activated
neural networks can reflect neural compensation, then:
(1) greater damage to core task-relate neural networks should
evoke greater number of neural networks as a compensatory
mechanism; (2) those individuals who have activated more
networks should have better cognition than those who lost
capacity to activate additional networks; and (3) factors such
as physical activity and gait speed might influence brains’
compensatory function.

MATERIALS AND METHODS

Subjects
Participants included 26 cognitively normal adults (age:
73.23± 6.68, male/female = 1) and older, who were either retired
professors from Tsinghua University or their spouses, the latter
having education levels less than 16 years. Exclusion criteria
for the study were: (1) magnetic resonance imaging (MRI)
contraindications and claustrophobia; (2) severe or unstable
medical disorders, conditions, or drugs that may cause any
condition that in the investigators’ opinion might make the
patients unsuitable for participating in the study (e.g., clinically
significant cirrhosis, or heart disease); (3) any known current
or past diagnosis of psychiatric disorders; (4) active suicidality
or current suicidal risk; (5) significant handicaps that would
interfere with neuropsychological testing or the inability to
follow study procedures; and (6) any other factor that in the
investigators judgment may affect patient’s safety or compliance.

We used a score of 26 and below on the Mini-Mental State
Examination (MMSE: 28.8 ± 0.8) to exclude those with possible
mild cognitive impairment (MCI). The study protocol was
approved by Institutional Review Board of Tsinghua University
School of Medicine. All participants were well informed about
the study and gave written informed consent.

Assessments of Cognitive Function, Mood
and Physical Activity
In addition to the MMSE, a neuropsychological test battery
was used to assess cognitive function for all subjects. The
battery included the Chinese Rey Auditory Verbal Learning
Test (RAVLT; Guo et al., 2009), Chinese version of Logical
memory subtest of the Wechsler Memory scale (LMT; Guo
et al., 2009), WAIS-III Digit-Symbol Substitution Modality Test
(DSST), WAIS-III Digit span (Wechsler, 1997), Trail Making
Test (Trails A and Trails B; Reitan, 1958), and Benton visual
retention test (BVRT; Benton, 1974). Subjects’ performance
scores were standardized based on normative data (Gong, 1992).
Subdomains were assessed using RAVLT, LMT, BVRT and

Frontiers in Aging Neuroscience | www.frontiersin.org 2 March 2018 | Volume 10 | Article 71

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Ji et al. Neural Compensation and Cognitive Reserve

FIGURE 1 | Illustration of the fMRI task. The task was modified from Zeineh’s article (Zeineh et al., 2003). The pictures were taken from the Chinese Facial Affective
Picture System (Gong et al., 2011).

delayed recall scores for memory; Trails B for executive function;
DSST and Trails A for information speed; and Digit span for
working memory.

Mood state was evaluated using the Positive and Negative
Affect Schedule (PANAS; Watson and Clark, 1999), the Geriatric
Depression Scale (GDS; Yesavage and Sheikh, 1986), and
the Profile of Mood State (POMS; Grove and Prapavessis,
1992). Tension, depression, anger, vigor, fatigue and confusion
sub-scores of POMS were calculated.

The International Physical Activity Questionnaire (IPAQ1)
was used to evaluate subjects’ basic physical activity level. A
six-min walking test (6MWT) was employed to examine gait
speed (Enright, 2003) as the level of physical activity. Twenty-two
subjects completed the 6MWT.

Imaging Acquisition
MRI scans were conducted at Tsinghua University on a Philips
3 Tesla (T) TX Achieva scanner (Philips Healthcare, Best,
Netherlands) for each participant. During each neuroimaging
session, the following image acquisition protocols were
used. First, sagittal T1-weighted spin-echo images were
collected to identify landmarks for reference. Second, a
T1-weighted sequence provided high-resolution anatomical
images with 180 slices, slice thickness = 0.9 mm, acquisition
matrix = 256 × 256 × 180. Third, task-related fMRI was
acquired using EPI sequence with the following parameters:
TR = 2000 ms, TE = 30 ms, flip angle = 80 degree, acquisition
matrix = 64 × 64 × 34 slices, voxel size = 3.5 × 3.5, slice
thickness = 3.5 mm with a gap of 0.5 mm. A total 188 volumes
were acquired.

The memory task was a block-event mixed design (Figure 1),
which included memory encoding, memory retrieval and
distraction blocks. In a memory-encoding block, there were six

1http://www.ipaq.ki.se

face-name pairs presented sequentially. Each face was associated
with a name beneath it. Subjects were asked to remember the
faces and associated names during a memory-encoding block,
and to choose the correct name (out of four name choices)
associated with a face during amemory-retrieval block. The same
encoding and retrieval block pairs were repeated four times to
examine subjects learning ability. The task was modified from
Zeineh’s article (Zeineh et al., 2003). The pictures were taken
from the Chinese Facial Affective Picture System (Gong et al.,
2011). Typically, subjects should remember the names associated
with the faces better in the later retrieval blocks compared with
the first retrieval block since the same face-name pairs were
presented four times repeatedly. In-between an encoding and a
retrieval block, there was a Go/No-Go distraction block. During
a distraction block, there were ‘‘+’’ signs following with a red
circle or blue circle randomly. There were six ‘‘+’’ ‘‘circle’’ pairs
in one distraction block (three circles in red, and three circles in
blue). Subjects were asked to press a button as quickly as possible
when they saw a red circle, and withhold the button when a blue
circle appeared. Each face-name pair lasted for 3.5 s. Each block
lasted for 21 s. During a distraction block, each ‘‘+’’ sign lasted for
5 s, and each circle lasted for 1 s. Therefore, one task run lasted
for 6.2 min. The task not only allowed us to examine memory
encoding and memory retrieval, it also allowed us to assess target
executive function and inhibition. There were three task runs
in total with pictures in different facial expressions of positive,
neutral and negative.

MRI Data Processing
MRI Structural Data Preprocessing and Analysis
The brain parcellation and segmentation were conducted using
the standard recon-all script of Freesurfer package2 (Fischl, 2012)
with default settings for all procedures. Volumes of 97 subcortical

2https://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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regions and 68 cortical areas from Freesurfer recommended
template were included as region of interests. Out of these
ROIs, we focused on the ratio of hippocampus volume/temporal
horn volume, as a structural index related to memory for CR
calculation. The whole-brain gray matter (GM) volumes, total
intracranial volumes and white matter hyper-intensity (WMH)
volumes were also measured for CR calculation.

Task-Related fMRI Data Preprocessing and
Quantification of Compensatory Function
The fMRI data was preprocessed using CONN software 17.a
(Whitfield-Gabrieli and Nieto-Castanon, 2012) based on
SPM8 Toolbox3. The pre-processing steps included realignment,
slice-timing correction, registration of functional images
to structural images, normalization to standard space, and
smoothing with a Gaussian kernel of 8 mm FWHM. Then we
used GIFT toolbox4 to conduct independent component analysis
(ICA; Salimi-Khorshidi et al., 2014) on the pre-processed data.
fMRI BOLD signals across all three runs (75 fMRI scans in total)
were decomposed into 45 components based on the estimation
on data quality using MDL criteria (Li et al., 2007). Among
them, 15 components were identified as signals according to the
principles described in Salimi-Khorshidi et al. (2014).

Number of Activated Networks During the Memory
Task
In order to examine how many neural networks were activated
during performing the task, we examined the relationship
between time-courses of each component identified as signals
and a predicted hemodynamic response (with double-gamma
HRF) of our task design. The components that were significantly
correlated (p < 0.001) with the hemodynamic response of
the task design were identified and these components were
counted as the number of activated neural networks for each
subject. Given that the significant threshold (p < 0.001) was
arbitrarily selecting, we further examined how threshold used to
define active networks affect our results by repeated the analysis
procedures using a wide range of thresholds including p = 0.0001
(r = 0.2811), p = 0.0005 (r = 0.2520), p = 0.001 (r = 0.2383),
p = 0.005 (r = 0.2040) and p = 0.01 (r = 0.1875).

The probability of being activated for each component was
calculated using the ratio of occurrence of ‘‘activated networks’’
divided by 75 (the number of total scans). We defined the
top three commonly activated components as core networks
related to the memory task. Pearson’s correlation analyses were
conducted between the compensatory capacity (defined later in
results) to cognitive function, mood state and physical activity
level. The significant level for correlations to cognitive function
was set as p < 0.0125(0.05/4 cognitive domains) to correct for
multiple comparisons.

Cognitive Reserve Measurement
We measured CR according to Reed’s methods, whose details
are available in Reed et al. (2010). A latent variable model

3http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
4http://mialab.mrn.org/software/gift/

was created in Mplus application (Muthén and Muthén, 2007).
In brief, memory function was decomposed into components
corresponding to demographic (MemD), MRI variables (MemB)
and a residue (MemR). Memory function was the average of
RAVLT score (average of the first five trials), LMT, and BVRT.
Observed demographic variables included in the model were
years of education and indicators for gender. Observed MRI
variables included total GM volumes, hippocampal volumes
and total WMH volume. All MRI variables were standardized
before included into the model. Total GM volume was
regressed out with total intracranial volume. Similarly, the
hippocampus volume was adjusted for the adjacent temporal
horn volume. White matter hyperintensity was also modeled
through a latent variable, but was not adjusted by intracranial
volume.

Relationship Between Compensatory
Function With CR
To further explore the relationship between the number of
networks and CR, subjects were split into four subgroups based
on the median of correct rate of memory task performance
(median for accuracy = 0.31) and the number of activated
networks (median for number of networks = 7.4): (1) poor
performance, fewer networks; (2) poor performance, more
networks; (3) good performance, fewer networks; and (4) good
performance, more networks. We compared CR across groups
with the average as well as median/quarter value.

RESULTS

Cognitive and Behavioral Results
Table 1 shows the demographic profile, memory task
performance, mood state and results of neuropsychological
tests. As shown in the table, the averaged correction rate in
recognized face-name association was 33%. The low memory
accuracy was possible due to the distraction of the Go/No-
Go task between a memory encoding and a memory retrial
block. The results indicate that this task was quite difficult and
challenging for older adults.

Correlation Between the Numbers of
Activated Networks and Brain Volumes of
the Core Networks
Across all 15 components identified as signals, the most
commonly activated three networks were the visual network,
part of the attention network, and the left executive network,
with chances of being activated by 97.3%, 85.3% and 77.3% of
participants (Figure 2A). Specifically, the following areas were
identified in the three networks:

1. Visual network: bilateral visual cortex, bilateral fusiform
gyrus;

2. Attention network: bilateral precuneus, bilateral superior
parietal area, bilateral inferior parietal area and bilateral
rostral middle frontal area;
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TABLE 1 | The demographic profile of participants and cognitive function at
baseline (n = 26).

Group mean (STD)

Age (years) 73.23 (6.68)
Sex (M/F) 13/13
Dominant hand (R/L) 25/1
Education (years) 15.19 (2.73)
Mood state (n = 24)

PANAS—positive 31.42 (6.93)
PANAS—negative 15.42 (4.62)
PMOS—tension 3.96 (3.32)
PMOS—depression 2.71 (3.21)
PMOS—anger 3.17 (4.12)
PMOS—vigor 13.12 (4.52)
PMOS—fatigue 4.5 (3.65)
PMOS—confusion 4.59 (2.69)
PMOS—self-esteem 4.58 (2.69)
GDS 5.46 (5.47)

Cardiovascular function
6MWT (m) (n = 22) 405.04 (88.67)
IPAQ (MET-minutes/week) 4530.96 (2146.34)

Neuropsychological test
Memory function 7.97 (1.29)

LMT (t) 8.58 (1.90)
Benton Visual memory Test (t) 6.88 (1.51)
AVLT (t) 8.44 (1.58)

Working memory function 13.65 (2.53)
WAIS-III Digit Span (t) 13.65 (2.53)

Information speed (n = 23) 27.11 (6.11)
DSST (t) 14.78 (2.80)
Trails A Making Test (t) (n = 23) 39.17 (10.13)

Executive function 38.95 (10.74)
Trails B Making Test (t) (n = 23) 38.95 (10.74)

fMRI task performance
Accuracy rate in memory retrieval 0.33 (0.15)
Accuracy in Go/No Go task 0.83 (0.19)
Reaction time in Go stimuli (seconds) 0.60 (0.28)

6MWT, Six-min walking test; IPAQ, International Physical Activity Questionnaire:
scored by total energy requirements in metabolic equivalent (MET) to kilocalories
for a 60 kilogram person in rest. PANAS, Positive and Negative Affect Schedule;
PMOS, Profile of Mood States; GDS, Geriatric Depression Scale. LMT, Logical
memory subtest of the Wechsler Memory scale. AVLT, Recall from Rey Auditory
Verbal Learning Test; DSST, WAIS-III Digit-Symbol Substitution Modality Test.
Accuracy in Go/No Go task: (True Positive + True Negative)/Total items.

3. Left executive network: left insula, pars opercularis of inferior
frontal cortex, pars orbitalis of interior frontal cortex, caudal
middle frontal area, rostral middle frontal area, superior
frontal area, lateral orbital frontal area, superior temporal area
and inferior parietal area.

Volumes of the discrete brain structures covered by each
network were normalized by total intracranial volume, and then
summed up as the volume of each network. As we predicted,
the smaller volume of the three core networks, the more
additional networks were activated during performing the task
(r = −0.408, p = 0.035; Figure 2C). Separately, the number of
activated networks are correlated with the attention network
(Pearson r = −0.496; p = 0.010, Figure 2B), with the left
executive network (r = −0.291; p = 0.149), and with the visual
network (r = −0.171; p = 0.401). To avoid the influence of
the atrophy in core networks, in subsequent analyses, we used
the number of activated networks regressing out the volume of

the three core networks as a measure for neural compensatory
capacity.

In our face-name memory retrieval task, there were four
name options for each face. We infer that those subjects who
have a correct rate less than 25% might have completely failed
in remembering the items, and just pressed the buttons by
chance. Therefore, we excluded subjects whose correct rate
was lower than 25% (n = 16 subjects remained) to recheck
the results. As a result, the volume in the attention network
(r = −0.559, p = 0.025) was still significantly correlated with
the number of networks after excluding subjects with poor
performance.

Correlation Between Compensatory
Function to Cognition and Fitness
Residue left in the number of networks after regressing out of
volumes of the three core networks was used to quantify the
compensatory capacity. To verify the benefit of compensatory
network to cognition, and the influence of physical fitness,
Pearson correlations were applied between the compensatory
capacity to cognitive tests as well as to physical activity
measures.

No significant correlation was found between the
compensatory capacity and cognitive function across all subjects.
However, when only including those subjects who have accuracy
rate above chance (more than 25%) during the task (n = 16),
the compensatory capacity measured by proposed method was
marginally correlated to working memory function (r = 0.528,
p = 0.035; Figure 3A). Interestingly, the compensatory capacity
showed a significant correlation to 6MWT (n = 13, r = 0.66,
p = 0.015; Figure 3B). 6MWT was also correlated with working
memory function across subjects with behavior performance
above chance (n = 13, r = 0.68, p = 0.010) and across all subjects
(n = 22, r = 0.48, p = 0.021).

Role of Compensatory Capacity and CR in
Predicting Behavior Performance
First, there wasn’t a significant correlation between CR and
compensatory capacity. We hypothesize that the relationship
between CR and compensatory capacity differs depending on
task performance. Indeed, when subjects were grouped by task
performance and compensatory capacity, we found opposite
relationship trends between CR to compensatory ability among
good performance subjects vs. poor performance subjects. That
is, ‘‘good performance, fewer networks’’ group showed higher CR
than ‘‘good performance, more networks’’ group. While ‘‘poor
performance, fewer networks’’ group showed lower CR than
‘‘poor performance, more networks’’ group. CR across groups
with the average as well as median/quarter values is shown in
Figure 4.

Comparison of the Results Using Different
Task Thresholds
To examine how threshold of significance might impact our
results, we conducted the analyses following the same procedures
using a range of thresholds in defining task-related networks,
including p = 0.0001 (r = 0.2811), p = 0.0005 (r = 0.2520),
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FIGURE 2 | (A) The top three core networks derived from independent component analysis (ICA) that commonly activated in a majority of subjects. ICA maps were
converted to z statistic images, thresholded at z > 2.3; (B) number of activated networks showed negative correlation to gray matter (GM) volume in the attention
network (ATN); (C) number of activated networks showed negative correlation to GM volume in the total three core networks.

FIGURE 3 | (A) Compensatory capacity showed positive correlation to
working memory. (B) Compensatory capacity showed positive correlation to
6-min walking test (6MWT). Compensatory capacity was measured by
number of activated networks controlled for the GM volumes in core networks.

p = 0.001 (r = 0.2383), p = 0.005 (r = 0.2040) and p = 0.01
(r = 0.1875).We found that the numbers of task-related networks
survived at these thresholds were highly correlated to each other
with r values from 0.878 to 0.978.

Under each of the thresholds we tested, the three most
commonly activated networks remained the visual network,
attention network and left executive network. Probabilities of
being activated from all scans for the three core networks
are shown in Figure 5A. Both the attention network and
the visual network tended to be stable from a threshold at

FIGURE 4 | The box diagram of cognitive reserve (CR) in subgroups.
Subgroups were split by the median number of the memory performance
(recall accuracy) during the fMRI task, and the median number of the
compensatory capacity.

0.001. Figure 5B shows the relationship between the brain
volume of the core networks and the numbers of task-related
networks with different thresholds. We found that there was
a general compensatory mechanism for the atrophy of core
networks with thresholds stricter than p = 0.005. Since the
activated probability were not stable when the thresholds are
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FIGURE 5 | (A) The possibilities of being activated from all scans for the three
core networks under different thresholds (ATN, attention network; ECN, left
executive network; VIS, visual network); (B) correlations of the number of
activated networks with the GM volumes in ATN and with the GM volumes in
the total three core networks under different thresholds; (C) correlations of
compensatory capacity with working memory function and with 6MWT under
different thresholds (6MWT, 6-min walking test).

stricter than p = 0.001, we recommend the threshold at
p = 0.001.

We also tested the correlations between compensatory
capacity to working memory score and to 6MWT (Figure 5C)
under different thresholds. Results show that the significant
correlations of the compensatory function to working memory
and 6WMT maintained with p = 0.001 or lesser stringent
thresholds.

DISCUSSION

In the present study, using an ICA approach, we found
that among older cognitively intact adults performing a
cognitively challenging task, there was a significant increase in
the number of active neural networks when the task-related
core networks were smaller in volume. We proposed
the number of activated neural networks controlling for
the volume of the core networks as a measure of neural
compensatory capacity. Compensatory capacity was correlated
with working memory, as well as the physical activity level
measured by the 6-min walking test (6MWT). In addition,
the relationship between the compensatory capacity and
CR measured by CR was reversed between good and
poor task performance. These findings suggest that the
semi-quantitative measure of the compensatory capacity is
valuable in the evaluation of individual variances of cognitive
function.

Neural compensation refers to neural activation of
additional brain regions or networks (and thus cognitive
strategies) that typically are not activated. These additional
networks typically are not engaged in performing a task
until the task demands exceed the working capacity limit
of task-related core networks (Steffener and Stern, 2012)
or when the task-related neurons/networks were damaged.
This explains why there was a significant correlation between
lower volume of task-related core networks and greater
number of activated neural networks. Similar to what is
hypothesized by Chanraud and Sullivan (Chanraud et al.,
2013), one can only detect a drop in compensation ability
when the cognitive task is highly demanding. Therefore,

a key to be able to measuring the neural compensatory
capacity is to employ a highly cognitive demanding task.
In our study, the mean task accuracy rate was 0.33,
suggesting our memory task was very challenging to our
study sample.

Previously identified patterns of aging-related compensatory
activity were all based on comparisons between older and
younger adults. One well-known pattern involves additional
neural recruitment in bilateral prefrontal cortex in older
adults with high performance in tasks that typically only
activate one hemisphere in younger adults. This pattern
is known as Hemispheric Asymmetry Reduction in Older
Adults or HAROLD (Cabeza, 2002). In another pattern, the
age-related increased activation (over-recruitment) in a set
of regions including bilateral middle/superior frontal gyri,
anterior medial frontal gyrus, precuneus and left inferior
parietal lobe is coupled with age-related decreased activation
(under-recruitment) in occipital and fusiform cortex during
memory encoding process, which is known as Posterior-
Anterior Shift with Aging or (PASA; Davis et al., 2007;
Maillet and Rajah, 2014). Some studies have further revealed
associations between greater activity and better task performance
during fMRI scans (Dennis et al., 2007; Brassen et al.,
2009) as well as higher cognitive functions (for review see
Grady, 2008), which confirmed the beneficial effect of neural
compensatory activity. While these patterns are helpful in
understanding how neural recruitment are reorganized in
older adults when engaging a cognitive task, they cannot
be utilized to quantitatively assess compensatory ability.
Particularly in patients with mental disorders who have
deficits in some brain regions, such as in chronic alcoholism
(Pfefferbaum et al., 2001), alternative networks/information
processing strategy might be used, which explains why neural
compensation patterns measured by activity differences within
localized regions between age groups have raised controversies
across reports. Therefore, we not only need to measure
neural compensatory ability quantitatively, but also should
assess neural compensation in system-wise and should take
structural deficits into account. Our current study is the
first to measure neural compensation using a data-driven
method at the functional network level. This measure can
be used to evaluate neural compensatory capacity for each
individual subjects, which is useful for longitudinally tracking
dynamic changes of the capacity over time. The compensatory
capacity measured by our study method was correlated with
task-related core structural atrophy and cognitive performance.
In addition, it also showed interesting interactions with an
existing quantitative measure of CR, which validated themeasure
as a proxy of CR.

However, our semi-quantitative measure of compensatory
capacity has to be tied with task performance because poor
task performance is clearly a sign of neural compensation
failure. According to the Compensation-Related Utilization of
Neural Circuit Hypothesis (CRUNCHmodel; Reuter-Lorenz and
Cappell, 2008), older adults are likely to show over-activation
as task demands increase. As working load increases to an
extend that recruitment of neural resources have reached the
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limit of CR in some older adults, under-activation and poor
performance would occur (Cappell et al., 2010; Reuter-Lorenz
and Park, 2010). Therefore, dividing subjects based on good
and poor task performance in our study is in consistent
with the theory of Chanraud and Sullivan (2014) who have
defined brain functioning changes in two types: (1) changes
in brain function may be adaptive and enable successful
compensation (successful compensation); or (2) change in brain
function may be poorly preserved, resulting in unsuccessful
compensation (attempted compensation). CR results based on
four subgroups provided a good example of the CRUNCH
model. That is, although ‘‘poor performance—more network’’
group could recruit as many neural networks as good
performers, their task performance was still poor, indicating
that the compensation was attempted but may not enough
to support normal performance due to low CR. Conversely,
subjects with good performance-more networks may have
atrophy in some brain regions, yet their relatively higher
reserve enabled them to achieve successful compensation.
Whereas subjects without brain atrophy need less compensatory
effort, and therefore they had good performance and fewer
activated networks. Although small sample size in each
group limited our conclusions from our current study, we
believe the trends we found confirmed our theory on the
relationship between CR and neural compensation capacity
of brain aging. Of note, we used the median split to define
good-performance and poor-performance groups due to the
small sample size. Given that the median number would vary
greatly among different study samples, using median split to
define good and poor performance groups would reduce the
feasibility for study validation. Future studies in a large study
sample are needed to obtain population-based norm scores
so that to define good and poor performance groups more
accurately.

Another critical issue is the task used in evoking
compensatory activation. Depending on tasks, the core networks
would be different. Previous studies defined ‘‘primary networks’’
(or ‘‘core networks’’) based on activation patterns in the
younger group (Cabeza, 2002; Davis et al., 2007). Nyberg
et al. (2010) demonstrated limitations of this approach by
comparing 6-year longitudinal estimates to cross-sectional
estimates. The cross-sectional study observed age-related
frontal over-recruitment, whereas the longitudinal analysis
revealed frontal under-recruitment with advancing age.
Their finding indicated that results from cross-sectional
studies could be influenced/biased by the study samples.
To avoid sample bias, in our study, we distinguished core
networks from additional/compensatory networks based on
the frequency being activated by all study participants. In
addition, our task not only allowed us to examine memory
encoding and memory retrieval, it also allowed us to assess
working memory, target executive function, and inhibition.
It is quite reasonable that the visual network, attention
network and left executive network were found as ‘‘core’’
fundamental networks for all subjects to complete a visual
related task. We emphasize that beyond requiring a cognitively
challenging task for measuring neural compensatory capacity,

a task that covers all cognitive processing domains is also
vital to detect one’s neural compensatory capacity globally.
However, we do acknowledge that task designs in a specific
cognitive domain are also important if there is a need to
evaluate neural compensatory capacity in a specific cognitive
domain.

While we examined compensatory capacity using a
cognitively challenging task, it is also interesting for further
studies to examine the neural compensatory mechanism
during resting state. Frantzidis et al. (2014) have examined
compensatory connectivity in MCI patients in terms of small-
world network properties during resting state. It would also
be intriguing to examine the link between CR and neural
compensation in rest brains. As discussed above, small sample
size is the main limitation of the current study, in particular
when subgrouping the participants by task performance and
the number of networks. Future replications with different
task difficulty degrees in a large sample are very necessary to
validate our theory and findings. We do believe, however, that
this study provides an innovative method in understanding
neural compensation and reserve. Also, this study is one
of a few reports that explored the effect of physical fitness
on neural compensatory ability. Walking speed and falling
tendency have also been found associated with cognitive
function in older adults in the literature (Atkinson et al., 2007;
Herman et al., 2010). The relationship between the number
of activated networks and walking speed provided a new
mechanism for the link between physical fitness and cognitive
function.

In summary, applying cognitive challenging task, identifying
activated network by ICA, and combining the reserve
and compensatory ability together to predict behaviors,
are recommended in future studies. We believe deeper
understanding of neural compensation and reserve has great
potentials to prevent cognitive and brain degeneration in older
adults.
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