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Asymmetric cyanation of imines via
dipeptide-derived organophosphine dual-reagent
catalysis
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Over the past few decades, enantioselective phosphine organocatalysis has evolved rapidly

into a highly efficient catalytic strategy for a range of useful reactions. However, as restricted

by the traditional catalytic modes, some important reactions, such as asymmetric Strecker-

type reactions, have thus far been out of reach of this strategy. Reported herein is an

application of enantioselective phosphine organocatalysis for asymmetric Strecker-type

reactions, enabled by a dual-reagent catalyst system in which the key organophosphorus

zwitterion intermediate, generated in situ by mixing a chiral dipeptide-derived multifunctional

organophosphine with methyl acrylate, is used as a highly efficient chiral Lewis base catalyst.

The high efficiency of this catalytic system is demonstrated in the asymmetric cyanation of

isatin-derived ketimines and azomethine aldimines as well as in the kinetic resolution of

racemic 3-substituted azomethines. Mechanistic studies provide experimental evidence for

the intermediacy of the putative zwitterion and its role as a catalytically active Lewis base.
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E
nantioselective phosphine organocatalysis has advanced
rapidly over the past decades as a powerful tool for the
preparation of numerous structurally diverse compounds1,2.

A general catalytic mode for organophosphine catalysis involves
the nucleophilic addition of a chiral organophosphine to an
electrophilic reactant (usually an electron-deficient alkene) to
form a zwitterion intermediate, which subsequently reacts with an
appropriate partner to deliver the desired product and regenerate
the phosphine catalyst (Fig. 1a). This traditional catalytic route
nicely facilitates control of the stereoselectivity via the formation
of a covalent C–P bond between the organophosphine catalyst
and the electrophilic reactant. However, this catalytic mode
restricts the application scope of the enantioselective
organophosphine catalysis to only reactions with an activated
alkene/allene reactant, such as the (aza)-Morita-Baylis-Hillman
reactions3,4, Rauhut–Currier reactions5–8, Michael (or g) addition
reactions9–17 and related annulations18–33. Our research group
has been interested in the development and application of chiral
amino acid-derived polyfunctional organophosphine catalysis34.
More recently, we have developed an asymmetric dual-reagent
organophosphine catalytic system in which only a catalytic
amount of an activated alkene is required to react with a
multifunctional phosphine to produce the key zwitterion as an
in situ-generated chiral Brønsted base catalyst. This new catalytic

mode dispenses with the need for an activated alkene/allene
reactant and thus expands the reaction scope of enantioselective
organophosphine catalysis to other types of reactions, such as the
Mannich-type reactions (Fig. 1b)35.

In our continued efforts toward a broader application scope of
enantioselective organophosphine catalysis, we envisioned that
the key zwitterion intermediate in such a catalytic system might
also be a chiral Lewis base catalyst36,37. To test this hypothesis, we
tested the asymmetric Strecker-type reactions of the nucleophilic
additions of trimethylsilyl nucleophiles (Me3SiNu) to imines,
which could provide facile access to chiral non-natural amino
acids, as a touchstone. As the activation of Me3SiCN by a Lewis
base is primarily due to the affinity of silicon for the oxygen or
fluorine anion, we reasoned that the key zwitterion intermediate
in the dual-reagent catalytic system may also be a suitable Lewis
base catalyst for the desilylative cyanation reactions (Fig. 1c).
Although numerous successful asymmetric catalytic systems of
this important type of reaction have recently been developed
using various Lewis base catalysts38,39, such reactions have been
out of the reach of enantioselective organophosphine catalysis40.

Herein, we report a dual-reagent catalytic system consisting of
a chiral dipeptide-derived multifunctional organophosphine and
methyl acrylate, which serves as a highly efficient Lewis base
catalyst for the asymmetric cyanation of isatin-derived ketimines
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Figure 1 | Evolution of the organophosphine catalysis to expand the reaction scope. (a) From general activation mode to dual-reagent catalysis; (b) dual-

reagent catalyst as a Brønsted base; and (c) dual-reagent catalysis as a Lewis base in the cyanation of imines with Me3SiCN.
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and azomethine aldimines with Me3SiCN as the cyanate source.
The versatility of this class of chiral phosphine-based Lewis base
catalysts as high-performance catalysts for the asymmetric
Strecker-type reaction (at catalyst loadings as low as 0.1 mol%;
(ref. 41) is demonstrated.

Results
Control experiments with racemic catalysts. Oxindoles repre-
sent an important structural motif that exists in numerous bio-
logically active molecules and natural products. The asymmetric
cyanation of ketimines derived from isatins has been an impor-
tant route to synthetically useful 3-amino-3-cyanooxindoles42–44.
Initially, we tested the feasibility of the dual-reagent catalytic
system using simple achiral organophosphines in the model
reaction between ketimine 1a and Me3SiCN (Table 1). Various
combinations of an organophosphine and methyl acrylate were
screened. Notably, the use of a bifunctional organophosphine
bearing a thiourea moiety is critical because the reaction barely
proceeded when simple triphenylphosphine or methyl
diphenylphosphine was used alone or in the presence of methyl
acrylate (Table 1, entries 1–3). By contrast, the combination of a
bifunctional organophosphine catalyst B with methyl acrylate
demonstrated the highest catalytic efficiency to provide the
desired product in quantitative yield within an extremely short
time (o1 min; Table 1, entry 4). In the absence of either the

organophosphine or methyl acrylate, the reactions proceeded
much slower (B60% yield after 10 h, Table 1, entries 5–6),
whereas a combination of methyl diphenylphosphine, thiourea
and methyl acrylate improved the yield to 90% in 10 h (Table 1,
entry 7). These results suggest not only the importance of the
double H-bond donor in activating the electrophilic imine but
also the involvement of a catalytically more efficient species in
this combination (for more details, see Supplementary Fig. 1). We
also used several aldimines with different protecting groups; to
our delight, the reactions all afforded excellent yields (see
Supplementary Figs 2 and 3).

Condition screening. Encouraged by these results, we next tested
different combinations of the designed chiral multifunctional
organophosphine-thiourea catalysts with methyl acrylate in the
model reaction (Table 2). In general, the proposed dual-reagent
catalysis exhibited very high efficiency in all of the examined
reactions, providing excellent yields within 10 min at � 40 �C
even with a very low loading of catalyst (0.1 mol%), although the
reaction performed with the organophosphine derived from
(R)-1,10-Bi-2-naphthol [(R)-BINOL] (3i) was an exception. With
the bifunctional organophosphines derived from simple chiral
amino acids (3a–3h), structural modifications on either the chiral
skeleton or the H-bond donor moiety failed to provide
satisfactory levels of enantioselectivity. To our delight, when

Table 1 | Control experiments of the racemic cyanation of the ketoimine derived from isatin*.
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Entry Conditions Time Yield

1 PPh3
PPh3 + A

10 h No reaction

2 10 h trace

3 MePPh2 + A 10 h trace

4 A + B < 1 min 99%

5 B 10 h 58%

6 A + C 10 h 60%

7 A + C + MePPh2 10 h 90%

*Reactions were performed with 1a (0.12 mmol) and Me3SiCN (0.2 mmol) in the presence of a catalyst combination (10 mol% for each of the catalyst component if added) for the indicated time.
Reported are isolated yields of 2a.
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several dipeptide-based bifunctional organophosphines 3j–3l
were used, up to 97% ee was achieved with the catalyst 3j,
which was derived from L-phenylalanine and L-phenylglycine.
Other reaction parameters, such as the solvent (CHCl3, 90% ee at
� 40 �C; toluene, 84% ee at � 40 �C; CH3CN, 40% ee at � 40 �C)
and temperature (0 �C, 91% ee in CH2Cl2, � 20 �C, 94% ee in
CH2Cl2), were also investigated; however, no higher ee was
attained.

Cyanation of ketimines. With the optimized conditions in hand,
we next investigated the scope of the asymmetric dual-reagent
catalysis in the cyanation of ketimines (Table 3). In general, all
the reactions proceeded very smoothly within 1 h to afford the
products bearing a chiral tertiary amine in excellent yields
(97–99% yield) and enantioselectivities (90–98% ee), irrespective
of the electronic and steric nature of the substituents (R1) on the

benzene ring of the isatin skeleton. Different protecting groups
(R2) on the nitrogen atom of the isatin, including methyl, benzyl,
p-methoxybenzyl and p-nitrobenzyl groups, were all well
tolerated in the reactions. Notably, a gram-scale reaction of 1a
and Me3SiCN was also carried out to furnish 1.7 g of the desired
product 2a in 96% yield and 97% ee with an extended reaction
time. Notably, the efficiency of the dual-reagent catalytic system
demonstrated in this reaction, even with a catalyst loading of
0.1 mol%, was substantially greater than the efficiencies of
previously reported catalytic systems for this reaction45.

Cyanation of azomethine aldimines. To further test the potential
of the dual-reagent system as a chiral Lewis base catalyst in
the cyanation of imines, we subsequently applied it to the
asymmetric Strecker reaction between aldimines and Me3SiCN
(Supplementary Fig. 2); however, no satisfactory results were

Table 2 | Catalyst evaluation*.
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3a: R = Bn, 98% yield, 69% ee

3b: R = 2-(S)-SBu, 97% yield, 61% ee

3c: R = t-Bu, 99% yield, 62% ee

3g: 97% yield, 57% ee
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Me3SiCN (2.0 equiv), cat. (0.1 mol%)

CH2Cl2, –40 °C, methyl acrylate (0.1 mol%)

1a 2a

*The reactions were performed with 1a (0.12 mmol), TMSCN (0.2 mmol) in CH2Cl2 (1 ml) at �40 �C for 10 min. Yield of 2a was isolated yield. The ee was determined by chiral HPLC analysis.
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Table 4 | The scope of the asymmetric cyanation of azomethine imines*.
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N
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methyl acrylate, –30 °C, toluene 
4 5

N
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R

Entry R 5 Time (min) Yield (%) Ee (%)

5a
5b
5c
5d
5e
5f
5g
5h
5i
5j
5k
5l
5m
5n
5o

5
5

15
5
5
5
5
5
5

20
10
20
10
40
15

98
97
95
98
97
97
94
97
96
95
98
95
95
92
91

91
91
93
93
91
90
95
93
93
93
93
91
95
95
93

C6H5
2-FC6H4
2-MeOC6H4
2-BrC6H4
3-ClC6H4
3-BrC6H4
4-FC6H4
4-ClC6H4
4-BrC6H4
4-MeOC6H4
4-MeC6H4
3-CF3C6H4
1-naphthyl
2-furanyl
cyclohexyl

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

*The reactions were carried out with 4 (0.1 mmol), TMSCN (0.2 mmol) and methyl acrylate (1 mol%) in the presence of 3m (1 mol%) in toluene (1 ml) at � 30 �C. The absolute configurations of 5 were
determined by comparison of the optical rotation values with literature data. Isolated yields. ees were determined by chiral HPLC analysis.

Table 3 | The scope of the asymmetric cyanation of ketoimines*.
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*Unless otherwise noted, the reactions were carried out with 1 (0.1 mmol), TMSCN (0.2 mmol), methyl acrylate (0.1 mol%) in the presence of the catalyst 3j (0.1 mol%) in CH2Cl2 (1 ml) at �40 �C for
1 h. Yields of 2 were isolated yields. The ees were determined by chiral HPLC analysis. The absolute configurations of 2 were determined by comparison of the optical rotation values with literature data.
wReaction was run with 5 mmol of 1a and 10 mmol of Me3SiCN at �45 �C for 10 h.
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obtained. After some experimentation to optimize the reaction
conditions (see Supplementary Table 1), we identified the
combination of organophosphine 3m and methyl acrylate
(1 mol% for each) as the best catalyst for the reaction in toluene
at � 30 �C. A range of aldimines derived from aromatic
aldehydes, regardless of their electronic and steric nature, worked
very well in the reaction to furnish the corresponding products in
excellent yields and with high ee values (Table 4, entries 1–14).
Notably, the aldimine 4o derived from an aliphatic aldehyde was
also well tolerated in the reaction system, giving the product 5o in
91% yield and with 93% ee (Table 4, entry 15).

Kinetic resolution of aldimines. Encouraged by the impressively
high reactivity in the reaction with azomethine aldimines 4 and in

light of the broad application of the chiral products as useful
building blocks in organic synthesis46, we next tested the kinetic
resolution of a series of racemic azomethine aldimines 6 via
cyanation mediated by the previously discussed chiral
dual-reagent catalytic system (Table 5). Relevant studies
addressing the kinetic resolution of azomethine imines are rare,
but include Fu’s Cu-catalysed [3þ 2] cycloaddition47 and Chi’s
NHC-catalysed [3þ 4] cycloaddition to construct dinitrogen-
fused heterocyclic structures48 and Beauchemin’s Brønsted acid-
catalysed enantioselective reduction of azomethines49. Under
reaction conditions similar to those listed in Table 4, we resolved
various substituted azomethine imines in high yields with good
selectivity factors (11rSr65) and obtained the corresponding
products with moderate to good enantioselectivities.

Table 5 | The scope of the kinetic resolution of azomethine imines*.

N

N+
+

–
–

O

R1

R1

R2

+ TMSCN
N

N

O
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O
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48% yield, 80% ee
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s = 34

N
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42% yield, 80% ee

45% yield, 82% ee, >20:1 dr
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49% yield, 67% ee

48% yield, 71% ee, >20:1 dr

s = 11

MeO
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CN

49% yield, 78% ee

48% yield, 81% ee, >20:1 dr

s = 23
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47% yield, 82% ee

45% yield, 79% ee, >20:1 dr

s = 65
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Br Br
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*The reactions were carried out with (±)�6 (0.2 mmol) and TMSCN (0.12 mmol) in the presence of 3m (10 mol%) and methyl acrylate (10 mol%) in toluene (1 ml) at � 50 �C for 1 h. Yield of 6 and 7
were isolated yields. The ees were determined by HPLC analysis. The diastereoselective were determined by 1H NMR analysis. The absolute configuration of 6 were determined by comparison of the
optical rotation values with literature data and the absolute configuration of 7b was further confirmed by X-ray crystallographic analysis. S-factor¼K(fast)/K(slow)¼ ln[(1-conv) (1� ee6)]/
ln[(1� conv)(1þ ee6)].
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Mechanistic studies. To elucidate the mechanism of such a dual-
reagent catalytic system, we carried several control experiments
(Fig. 2) and 31P NMR spectroscopic analyses of the reaction
process (Fig. 3, 31P NMR and Supplementary Fig. 5). As antici-
pated, the asymmetric reaction hardly proceeded in the absence
of methyl acrylate, which supports our hypothesis that the in situ-
generated zwitterion is the catalytically active species in the

reaction. The enantioselectivities obtained with catalysts 3n and
3o with one of the chiral centres removed or reversed were very
poor, highlighting the importance of the matched chiral dipeptide
skeleton in the enantio-differentiation process. By contrast, the
high modularity of the dipeptide skeleton enabled great flexibility
in reactivity tuning and thus has great potential for application in
various other related asymmetric reactions (Fig. 2). The 31P NMR
spectroscopy studies on the reaction system provide further
support for the assumed key catalytically active species in the
reaction. The catalyst 3j alone showed a 31P resonance signal at
� 24.55 p.p.m.; the intensity of this signal decreased significantly
when 3j was mixed with methyl acrylate (1:1), and a new reso-
nance appeared at 26.43 p.p.m. This new resonance was assign-
able to a zwitterion intermediate, which was supported
experimentally by the detection of a single peak (m/z for
(MþH)þ ¼ 688.1; Supplementary Fig. 4) in the ESI-MS
spectrum and was also consistent with observations reported in
previous related studies10,35. Moreover, when Me3SiCN was
mixed with the above solution of 3j and methyl acrylate, another
new single resonance appeared at d¼ 30.61 p.p.m., suggesting
efficient activation of Me3SiCN by the zwitterion intermediate. In
sharp contrast, no appreciable change was observed when
Me3SiCN was mixed with the catalyst 3j alone (Fig. 3, 31P NMR).

Investigation of the reaction using in situ infrared spectroscopy
provided further information about the interaction between
TMSCN and the catalysts. The band at 2,194 cm� 1 in the spectra
in Fig. 3 was assigned to the stretching of the C�N bond of
TMSCN, and new band at 2,090 cm� 1 in Fig. 3 was observed
when TMSCN and ketimine 3j were added sequentially. The new
infrared band was much clearer in a 3D view, as shown in Fig. 3
(3D IR). The compound TMS–CN (2,194 cm� 1) has been
reported to exist in equilibrium with the isocyanide TMS–NC
(2,088 cm� 1) at room temperature50. We propose that the new
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band at 2,090 cm� 1 is attributable to the more active isocyanide
species that isomerized from the cyanide under the catalytic
conditions51. This may take place through the dimerization of the
activated TMSCN with the zwitterion, which is partially verified
by the positive nonlinear effect between ee2a and ee3j, suggesting
the reaction was promoted by aggregation of the catalyst (Fig. 4).
The asymmetric amplification in this reaction reflects molecular
interactions and complexity in reaction mechanisms. The
nonlinearities shown in Fig. 4 may in principle arise by auto
association around a matrix of the initial chiral species, through
the zwitterion or the dimeric complex of the zwitterion and
TMSCN which is an intermediate in the transformation of
TMSCN to TMSNC, as demonstrated in the in situ IR.
Considering the positive nonlinear effect in this reaction is not
so obvious and actually the effect is also influenced by other
factors such as the concentration, we cannot exclude the possible
alternative pathways contributing to the enantioselectivity52.

On the basis of the aforementioned experimental results and
mechanistic studies, we propose a plausible reaction pathway to
explain the stereochemical results of the reaction: The mixing of
organophosphine and methyl acrylate in situ generates the
zwitterion intermediate, which then behaves as a Lewis base to
promote the isomerization of Me3SiCN to the more reactive
Me3SiNC. This transformation might occur through the dimer-
ization of the activated Me3SiCN (ref. 51). The active aggregated
species then serves as the source of the anionic nucleophile to
attack the imine. The hydrogen-bonding interaction between the
double-amide N-H and ketoimine (or azomethine imines)
enhances the electrophilicity of the imine and drives the
nucleophile to approach from the Re face (Supplementary Fig. 6).

Discussion
In summary, we have developed a chiral dipeptide-derived
multifunctional organophosphine-based dual-reagent catalytic
system and have successfully applied it to the asymmetric
cyanation of ketimines derived from isatins. The key finding of
this work is that the zwitterion intermediate, which is generated
in situ by mixing a chiral multifunctional organophosphine with
methyl acrylate, could serve as an efficient Lewis base catalyst for
asymmetric synthesis. The excellent yields and enantioselectivities
(up to 99% yield, up to 99% ee), very low catalyst loading (as low
as 0.1 mol%), broad substrate scope, scalability and mild reaction
conditions are significant features of the reaction system.

Moreover, we also successfully applied this strategy to the
asymmetric cyanation of azomethine aldimines with excellent
yields and enantioselectivities as well as the kinetic resolution of
racemic 3-substituted azomethine imines under similar cyanation
conditions. Experimental evidence in support of the zwitterion as
the catalytically active species was also provided. We believe that
this mode of asymmetric induction could substantially enrich
enantioselective organophosphine catalysis chemistry and open
new avenues to the development of relevant Lewis base-catalysed
enantioselective organic processes.

Methods
General procedure for asymmetric cyanation of ketimines (GP1). To a vial
containing a solution of catalyst 3j (0.1 mol%) and methyl acrylate (0.1 mol%) in
CH2Cl2 (1 ml) was added TMSCN (0.2 mmol) at � 40 �C, followed by the addition
of the ketoimine (0.12 mmol). The resultant mixture was stirred at � 40 �C
until full conversion of the ketoimine was achieved (monitored by TLC). The
mixture was directly purified by column chromatography on silica gel to afford
product 2.

General procedure for asymmetric cyanation of azomethine imines (GP2). To
a vial containing a solution of catalyst 3m (1 mol%) and methyl acrylate (1 mol%)
in toluene (1 ml) was added TMSCN (0.2 mmol) at � 30 �C, followed by the
addition of the aldimine 4 (0.12 mmol). The resultant mixture was stirred at
� 30 �C until full conversion of the aldimine was achieved (monitored by TLC).
The mixture was then directly purified by column chromatography on silica gel to
afford product 5.

General procedure for asymmetric kinetic resolution (GP3). To a vial con-
taining a solution of catalyst 3m (10 mol%) and methyl acrylate (10 mol%) in
toluene (1 ml) was added TMSCN (0.12 mmol) at � 50 �C, and aldimine 6
(0.2 mmol) was subsequently added to the mixture. The mixture was stirred for 1 h
at � 50 �C and then purified directly by column chromatography on silica gel to
afford product 7 and recover the unconsumed aldimine 6.

Data availability. The authors declare that the data supporting of the findings of
this study are available within the article and Supplementary Information files. For
the experimental procedures and spectroscopic and physical data of compounds,
see Supplementary Methods. For NMR and HPLC analysis of the compounds in
this article, see Supplementary Figs 7–77. The CCDC 1407409 (7b) contains the
supplementary crystallographic data for this paper (Supplementary Table 2). These
data can be obtained free of charge from The Cambridge Crystallographic Data
Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
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