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Temperatures in the Arctic are expected to increase dramatically over the next century,

and transform high latitude watersheds. However, little is known about how microbial

communities and their underlying metabolic processes will be affected by these

environmental changes in freshwater sedimentary systems. To address this knowledge

gap, we analyzed sediments from Lake Hazen, NU Canada. Here, we exploit the spatial

heterogeneity created by varying runoff regimes across the watershed of this uniquely

large high-latitude lake to test how a transition from low to high runoff, used as one

proxy for climate change, affects the community structure and functional potential of

dominant microbes. Based on metagenomic analyses of lake sediments along these

spatial gradients, we show that increasing runoff leads to a decrease in taxonomic

and functional diversity of sediment microbes. Our findings are likely to apply to other,

smaller, glacierized watersheds typical of polar or high latitude ecosystems; we can

predict that such changes will have far reaching consequences on these ecosystems

by affecting nutrient biogeochemical cycling, the direction and magnitude of which are

yet to be determined.

Keywords: high arctic, microbial ecology, metagenome assembled genomes (MAGs), high-throughput

sequencing, climate change

INTRODUCTION

Climate change is amplified1 in polar regions, where near-surface temperatures have increased
almost twice as fast as elsewhere on Earth over the last decade (Overpeck et al., 1997; Serreze
and Francis, 2006; Screen and Simmonds, 2010). Climate models predict that annual surface
temperatures will increase in the Arctic by as much as 8◦C by 2100 relative to the 1981–2010
average (Mingle, 2020). These changes are already having dramatic consequences on physical (Bliss
et al., 2014; O’Reilly et al., 2015; Laudon et al., 2017), biogeochemical (Frey and McClelland,
2009; Lehnherr et al., 2018), and ecological (Smol et al., 2005; Wrona et al., 2016) processes
across Arctic ecosystems. During the winter months (January–March) of 2016 and 2018 surface
temperature in the central Arctic were already 6◦C warmer (Mingle, 2020). While we are starting
to understand the effect of thawing permafrost on microbial communities and shallow aquatic
ecosystems (McCalley et al., 2014; Crevecoeur et al., 2015; Hultman et al., 2015; Mackelprang
et al., 2016), our knowledge of how microbial communities in large aquatic ecosystems at high
latitudes respond to environmental changes is comparatively lacking in part due to the large spatial
variability to be expected in such systems. Furthermore, lakes are broadly considered sentinels of
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climate change, as they integrate physical, chemical, and
biological changes happening through their watersheds
(Williamson et al., 2009); however, their microbial community
structure and function are relatively understudied, in particular
in the Arctic.

To date, much of the research performed on microbial
communities in Arctic lakes has been limited to studies that
were mostly based on partial 16S rRNA gene sequencing
(Stoeva et al., 2014; Mohit et al., 2017; Thaler et al., 2017;
Ruuskanen et al., 2018; Cavaco et al., 2019). While these
studies are useful to understand the structure of these microbial
communities, they provide limited functional insights and can
be biased as they often rely on sequence databases where
environmental microbes, specifically from the Arctic, may be
underrepresented (Ruuskanen et al., 2018, 2019). More critically,
being circumscribed both in space and in time, previous studies
only offer snapshots of microbial communities and hence, have
a limited power to predict how microbial communities might
respond to climate change.

To predict the effect of climate change onmicrobial functional
diversity in Arctic lake sediments, we focused on Lake Hazen,
the world’s largest High Arctic lake (82◦ N, 71◦W) by volume
which is estimated at 5.14 × 1010m3 (Köck et al., 2012). Lake
Hazen is ultra-oligotrophic, and its physical, chemical, and
biological limnology has been previously described in depth
in St.Pierre et al. (2019b). In this work, we exploited two
important properties of LakeHazen. First, its watershed is already
experiencing the effects of climate change, as increasing regional
temperatures are leading to more glacial melt, permafrost thaw,
and increased runoff from the watershed into the lake in warmer
years relative to cooler ones (Lehnherr et al., 2018). Second, its
tributaries are highly heterogeneous, fed by 11 glaciers ranging
from 6 to 1,041 km2 in surface area, and annual runoff volume
approximately scaling with their size (from <0.001 to 0.080 km3

in 2016; St.Pierre et al., 2019b). Glacial meltwaters feed the lake
from late June through to the end of August.

It is this spatial heterogeneity in runoff that we used
to evaluate the possible consequences of climate change on
microbial structure and functional diversity in High Arctic
sediment, acknowledging that the consequences of increasing
temperature are likely more plural and complex. Although
this approach simplifies the effects of climate change, glacial
runoff provides the main source of sediment and nutrients
to this extremely oligotrophic environment (Lehnherr et al.,
2018). Therefore, increasing temperature and subsequent runoff
are assumed to be the primary drivers of alterations to this
microbial ecosystem. To this effect, we sampled lake sediments
along two transects representing low (L transect: samples L1
[shallow] and L2 [deep]) and high (H: samples H1 [shallow] and
H2 [deep]) seasonal runoff volume, as well as at a single site
that received negligible runoff (C site; Figure 1A). In order to
assess the potential level of connectivity between lake sediments
and upstream soil (Crump et al., 2012; Comte et al., 2018;
Hermans et al., 2020), we also collected soil samples (S sites)
from three sites in the dried streambeds of the tributaries, on
the northern shore between the two transects to assess soil
influence on microbial communities present in the sediments.

We then leveraged untargeted metagenomics analyses to draw
an inventory of dominant microbes, assumed to be the most
critical to nutrient cycling and the most relevant to the dynamics
of microbial communities. These reconstructed Metagenome
Assembled Genomes (MAGs) (Bowers et al., 2017) allowed us
to assess the quantitative impact of a change of runoff regime,
from low to high, on both the structure of sediment microbial
communities and their functional potential. We show that an
increase in runoff volume and resultant sedimentation rates, as
predicted under climate change scenarios for the region, could
lead to a reduced diversity of the dominant microbial community
and of their functional potential.

RESULTS

Characterization of the Physical and
Geochemical Environments
We first characterized how geochemical properties of the
sediments varied along and between the two transects (soil
chemistry could not be obtained due to the limited number
of cores that could be collected and shipped back, and to in-
lab restrictions on chemical measurements) by re-analyzing data
from St.Pierre et al. (2019b). Sediment samples from these five
sites clustered into four distinct geochemical groups (Figure 1B)
that reflect spatial variability in glacial runoff, the primary
hydrological input to the lake. Indeed, PC1 explained 43% of
the total variance, and differentiated the L and high H runoff
transects, while PC2 (29.9%) separated each transect according
to their depth.

Along PC1, higher concentrations of ammonia (NH3) and
sulfate (SO2−

4−) in the porewaters, and a greater percentage
of calcium carbonate in the sediments, were present in the
H transect. However, higher concentrations of dioxygen (O2),
nitrates/nitrites (NO−

3 /NO
−

2 ), and greater redox potential were
present in the L transect and the control (C) sites. Along PC2,
sediment organic carbon (OC), and porewater pH and Cl−, were
more determinant when discriminating between the shallow (L1
and H1) and deep (L2 and H2) sites of both transects. Rather
than grouping spatially with the H transect, the C sites were most
chemically similar to L1 (Figure 1C, Supplementary Figure 1).
The shallow sites were not significantly different from each
other in pH measurements or OC concentrations, but were
both significantly different from the deeper sites suggesting
that although most chemical features were similar within each
transect, some features might still be influenced by their spatial
proximity to the shoreline or depth of the overlying water
column (Figure 1C).

Contrasting Low vs. High Runoff Transects
Revealed a Decrease in Biodiversity
With such a clear geochemical separation of the transects along
PC1 (43% of explained variance) and significant spatial contrasts
(Figure 1C), we had the right context to evaluate the influence of
runoff gradients on sediment microbial diversity. We assembled
a total of 300 (290 bacterial and 10 archaeal) MAGs that
were >50% complete and with <10% contamination (Minimum
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FIGURE 1 | Lake Hazen sampling design and chemical composition. (A) Location of Lake Hazen (red box). Inset map: soil (orange dots) and sediment (black dots)

sample sites are separated into hydrological regimes of high (purple), low (green), and negligible/control (blue) runoff. (B) Principal component analysis (PCA) showing

the differences in physical and chemical composition of the sediment sites. Vectors display pH, dissolved dioxygen (O2), redox potential, nitrates and nitrites

concentration (NO−

2 + NO−

3 ), water depth, percent organic carbon (OC), percent calcium carbonate (CaCO3), sulfate (SO2−
4 ) concentration (SO4), and ammonia

concentration (NH3). Individual points represent the mean values using 1 cm intervals measured in the top 5 cm. Partitioning around medoids was used to identify

clusters. (C) Distribution of chemical features for sediment sites. Branches and asterisks indicate significant differences between sites P < 0.025 (Dunn Test). If branch

tips form a dichotomy or trichotomy, the interactions within that group is not significant. Long dashes separate high runoff sites and dotted line separates low runoff

sites. There was insufficient data to include soil sites in (B,C).

information about a metagenome-assembled genome [MIMAG]
guidelines; Bowers et al., 2017, Supplementary Tables 1, 2). By
constructing phylogenetic trees for Bacteria and Archaea, we
noted that while most major phyla were represented in the
MAGs, no Firmicutes and only a small number of Archaea were
identified (Figure 2). In contrast, Gammaproteobacteria (n =

50), Actinobacteria (n = 31), Alphaprobacteria (n = 24),
Chloroflexoata (n = 30), Planctomycetota (n = 24), and
Acidobacteriota (n = 19) were the most commonly recovered
taxa across the entire watershed. Uncultured phyla comprised
∼11% of reconstructed MAGs, including representatives from
multiple taxa: Eisenbacteria (n = 12), Patescibacteria (n =

9), Omnitrophica (n = 5), KSB1 (n = 1), Armatimonadota
(n = 1), Lindowbacteria (n = 1), USBP1 (n = 1), UBP10
(n = 1), and Zixibacteria (n = 1). We note that missing sequence
data in the gene alignments had a minimal impact on the trees
(Supplementary Text, Supplementary Figures 2, 3).

However, these MAGs were not evenly distributed across
all sites (Figure 2, inset; Supplementary Figure 4). To quantify
this uneven distribution, we determined the site where each
genome was most abundant. Based solely on this information,
we performed an unsupervised clustering (t-SNE), and found

that the directions defined by sediment-laden water flowing
from the shallow to the deep site within each transect in
the projection space were almost orthogonal between transects
(see arrows in Figure 3, showing the relative positions of the
hyperplanes defined by water flow)—which suggests that, as in a
Principal Component Analysis, these directions are independent
(although a t-SNE cannot strictly speaking be interpreted in
this way), and hence that transitioning from the L to H
transect leads to a dramatic shift in microbial communities.
This shift can also be characterized from a diversity point of
view, where both PCoA (Supplementary Figure 5) and a DPCoA
(Supplementary Figure 6) results suggest differences between
the L and H transects—at least from a qualitative standpoint.

To quantify the direction and the significance of these
structural and diversity shifts, we focused on the phylum level
(to extract large-scale patterns), and calculated the relative
proportions of each of the reconstructed 300 MAGs at each
site, and tallied these numbers by phylum, over the 25 phyla
represented in our data. We did this along each transect—
essentially pooling sites H1/H2 together to represent the H
transect, and doing the same for sites L1/L2 (the L transect), while
keeping proportions for the S and C sites separate. Note that sites
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FIGURE 2 | Maximum likelihood phylogenetic trees of Lake Hazen genomes based on 120 concatenated bacteria and 122 concatenated archaea protein-coding

genes. Red Dots: Lake Hazen genomes. Asterisks (*) indicate phyla that contain Lake Hazen genomes. Bacteria tree is rooted with Patescibacteria and Archaea tree

is rooted with Euryarchaeota. See GitHub account for full taxonomy tree files and for original tree files (Supplemental Data File 2 and 3) including the GTDB (v86)

reference sequences (Parks et al., 2018). Inset shows MAG abundance across sites, in the 300 high quality genomes for each sample normalized to 100%.

S and C were included at this stage to gauge the potential level
of connectivity between lake sediments and both upstream and
downstream soils. Hierarchical clustering on this table of MAGs
proportions by phyla vs. sites showed a divergence from the L
to H transects [following the (((L,C),H),S) clustering pattern;
Figure 4A, inset—see also Supplementary Figures 7, 8], with
the C site (negligible runoff) grouping with the L sites, the S
sites (soils) with the H sites, and confirming the clear contrast
between the two transects in terms of taxa proportions (see
Figure 3). To test if these taxa proportions tended to increase or
decrease when transitioning from L to H along the (((L,C),H),S)
clustering pattern, we fitted linear models (ANOVA) regressing
the proportions of each of the 25 phyla against sites, ordered
as per their hierarchical clustering (L→C→H→S). Essentially,
we regressed a single data point for each of the four classes (L,
C, H, and S), so that P-values could not be obtained, but slope

could be estimated (Figure 4A). Strikingly, most of these slopes
were negative (22 out of 25; binomial test: P = 7.8 × 10−8;
see also Supplementary Figure 8A), demonstrating a significant
decrease in diversity at the phylum level as one goes from low to
high runoff regimes. Because the inclusion of the C and S sites
in these analyses could add noise when specifically testing for a
change in the proportion of phyla during a L to H transition,
we reran these analyses without the C and S sites. In spite of
some phyla changing slope sign, suggesting a certain instability
in our results due to small sample size, we found that most of
the estimated slopes were negative (19 out of 25; binomial test:
P = 0.0073; see also Supplementary Figure 8B), still providing
evidence of a significant decrease in diversity at the phylum level
as one goes from low to high runoff regimes.

An NMDS ordination allowed us to detect the geochemical
features associated with this shift in microbial communities

Frontiers in Microbiology | www.frontiersin.org 4 October 2020 | Volume 11 | Article 561194

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Colby et al. Climate Change Impacts Arctic Microbes

(Supplementary Figure 9). In the sediments, NH3

concentrations (P = 0.03), NO−

2 / NO−

3 concentrations
(P = 0.03), and redox potential (P = 0.03) were significant
in determining the distribution of MAGs (permutation test:
P < 0.05). We further observed that the sites with the greatest
diversity (L/C sites) were also those with the greatest redox
potential, and O2 and NO−

3 /NO
−

2 concentrations. Sites with

FIGURE 3 | t-SNE analysis of genome abundance for each sediment sample.

Each of the 300 shown genomes was assigned to the sample where it has the

greatest abundance. Shaded arrows display the approximate direction of

water flow, from upstream to downstream, for the high (green) and low (purple)

transects. Note that these arrows do not indicate any kind of convergence.

the lowest microbial diversity (H sites), contained greater NH3

and SO2−
4− concentrations, and lower redox potential relative

to the C and L sites. In addition to gradients shaped by the
interplay between microbial metabolism and local geochemical
constraints, the physical disturbances associated with high
sedimentation rates also likely contributed to the loss of
microbial diversity; however, we cannot quantify the relative
importance of each of these processes here.

Contrasting Low vs. High Runoff Transects
Also Revealed a Loss of Functional
Potential
To assess the functional implications of this decrease of
biodiversity, we assigned metabolic functions and pathways
to proteins in each MAG. We focused on genes and
pathways involved in key elements, targeting carbon, nitrogen,
and sulfur cycling (Supplementary Figures 10, 11). Only the
most abundant genomes per site were reported within each
phylum (Supplementary Figure 12), allowing us to compute the
proportions of functions and pathways in each of the 25 phyla
present in reconstructed MAGs across the hydrological regimes
(Supplementary Figures 13, 14). Their hierarchical clustering
(Supplementary Figure 13) led to a picture consistent with the
ones derived from both geochemical (Figure 1) and taxonomic
abundances (Figure 4A). Indeed, the two transects were again
clearly separated [clustering pattern (((L,C),S),H); Figure 4B,
inset], and fitting linear models regressing function/pathway
proportions against sites showed that, again, most of these slopes
were negative (binomial test: P = 0.0010). Forcing the same
site ordering as for the taxonomic abundances (L→C→H→S
as in Figure 4A, inset) led to similar results (binomial test: P =

7.8 × 10−5), demonstrating a significant decrease in metabolic
diversity when going from the L to the H transect.

FIGURE 4 | Transition from low to high runoff leads to a decrease in diversity. (A) Distribution of the slopes of taxonomic counts as a function of sites. (B) Distribution

of the slopes of pathway counts as a function of sites. In both cases, counts were aggregated by location types (L [Low], C [Control], S [Soil], and H [High] sites), and

linear models (ANOVA) were fitted to estimate the slope of each regression. Insets: heatmap representations of count tables (from white [low counts] to red [high]);

leftmost dendrograms (hierarchical clustering) show how the location types cluster, transitioning from L to H runoffs (vertical triangle pointing down). Note that these

dendrograms are “unrooted,” which means that in both panels, L and C one the one hand and H and S on the other hand cluster together. P-values: one-sided

binomial test for enrichment in negative slopes across the 25 phyla. See Supplementary Figure 7 for additional details.
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More specifically, we found that marker genes whose
product is implicated in carbon and sulfur metabolisms
significantly decreased when going from the L to H, while
nitrogen metabolism was unaffected (Supplementary Table 3,
see Supplementary Text for details). When considering the
individual functions present or absent across the transects,
we noted that most oxidative pathways (CO, methane,
formaldehyde, sulfide, sulfite) appeared less common in the
H transect (Supplementary Figure 10), corresponding to lower
oxygen concentrations and constraints on aerobic metabolism.
Furthermore, while most carbon fixation processes were shared
between the two transects, carbon oxidation and reduction
reactions regulated throughWood-Ljungdahl pathway were only
observed in the H transect, where sedimentary conditions were
anoxic throughout the first 5 cm (see Figure 4 in St.Pierre et al.,
2019b), consistent with a more reductive environment.

DISCUSSION

Even if Arctic microbial communities are changing rapidly
(Hultman et al., 2015), there is still a dearth of long-term
time series observations. As a first step toward addressing this
point, we used Lake Hazen’s spatial geochemical heterogeneity to
evaluate the structural and functional response of lake sediment
microbial communities to varying runoff, already shown to
increase in this warming High Arctic environment (Lehnherr
et al., 2018). Such an approach can reasonably be interpreted
from the lens of a space-for-time design, which assumes that
spatial and temporal variations are not only equivalent (Blois
et al., 2013; Lester et al., 2014), but also stationary (Damgaard,
2019). Whether this latter condition is met cannot be known,
but in the absence of any time-series documenting the effect of
climate change on lake sediment microbial communities in the
High Arctic, the space-for-time design becomes a convenience, if
not a necessity (Pickett, 1989).

Using metagenomics along two transects experiencing
heterogeneous runoff conditions, we presented evidence that
climate change, as it drives increasing runoff and sediment
loading to glacial lakes, will likely lead to a decrease in both
diversity and functional potential of the dominant microbial
communities residing in lake sediments. Note that we specifically
focused here on the dominant microbes, that is those for
which we could reconstruct the MAGs, in order to (i) have a
phylogenetic placement of the corresponding organisms based
on a large number of marker genes (Figure 2), rather than partial
16S rRNA gene sequences as usually done (Ruuskanen et al.,
2018), and (ii) be able to predict almost complete functional
pathways for each of these organisms to test the impact of a
change of runoff (Figure 4), rather than inferring function from
taxonomic affiliation (Ruuskanen et al., 2018). On the other
hand, by focusing on dominant microbes, we lose taxonomic
depth, and may miss key ecological and geochemical roles played
by the “rare biosphere” (Lynch and Neufeld, 2015), and its
associated shifts in the context of a warming climate.

Such a decrease in taxonomic and functional diversitymay not
be unique to LakeHazen, where rising temperatures have resulted

in increasing glacial melt and associated runoff. Although such
a pattern has not been observed in other regions of the globe
where runoff is predicted to decrease (Huss and Hock, 2018;
St.Pierre et al., 2019b), our finding are likely to apply to
other, smaller, glacierized watersheds typical of high latitudes
or altitudes. Indeed, at least in the Arctic, freshwater discharge
is broadly expected to increase with increasing temperatures
and precipitation loadings (Peterson et al., 2002; Rawlins et al.,
2010; Bring et al., 2016). It would thus be immensely valuable
to conduct similar studies, replicating where appropriate a
similar space-for-time design, at other lakes throughout the
world. Additional sampling efforts should carefully consider
the spatial heterogeneity of runoff regimes leading to divergent
sedimentation rates (Supplementary Table 3), limiting our
ability to make temporal predictions.

The hierarchical clustering showed that diversity at the
phylum level generally decreased from the L to the H sites
(Figure 4), and that the L and the C sites clustered together.
This finding is unsurprising, as the L and C sites are neither
distinct in terms chemical (Figure 1B) or taxonomic composition
(Supplementary Figures 5, 6). Yet as the C sites are characterized
by negligible runoff, this may suggest that either the L→C
connection is not solely due to runoff, or that receiving low runoff
temporarily increases taxonomic diversity. This observation that
environments of low or intermediate disturbances can lead
to maximum diversity is quite common and may provide a
possible explanation for the ecological similarity between these
two spatially separated sties (Gibbons et al., 2016).

Despite lacking geochemical measurements for the soil
samples, we found that the microbial communities in the
sediments at the high runoff sites clustered most frequently with
those in the soil sites (Figure 4—see hierarchical clustering to
the left of inset heatmaps), highlighting a potential connection
between terrestrial and aquatic sediment communities as a
function of the runoff volume, consistent with previous findings
(Ruiz-González et al., 2015; Comte et al., 2018). In the
High Arctic, glacial rivers travel across poorly consolidated
landscapes with little vegetation, thus facilitating the rapid
erosion and transport of materials, including soils. Glacial
rivers in the High Arctic are therefore extremely turbid and
discharge large loads of suspended materials and nutrients into
Lake Hazen (St.Pierre et al., 2019a,b). Because of the large
effect that these rivers have on the chemistry of downstream
aquatic ecosystems, we would expect increased runoff to the
aquatic ecosystems to alter microbial community structure
(Le et al., 2016). Some of these structural changes may then
alter the functional capacity to metabolize carbon, nitrogen,
sulfur compounds, and process toxins such as metals and
antibiotics (Supplementary Figure 10). A more experimentally-
driven approach, based for instance on in situ incubation and
geochemical tracers, would have been necessary to quantify such
an interplay between microbial metabolism and geochemical
features. Yet, as sediments and nutrients are mostly deposited
during the summer melt months, it can be expected that
lake sediments record microbe-driven seasonal changes in their
geochemistry. Indeed, high glacial runoff is known to bring
dense, oxygenated river waters with OC directly to the bottom
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of the lake (St.Pierre et al., 2019b), stimulating aerobic microbial
activity. As a result, the geochemistry recorded along the high
runoff transect may first reflect a period of greater microbial
metabolism, which may actually exceed those in temperate
systems (Probst et al., 2018), eventually followed by low oxygen,
low redox, and high NH3 conditions observed here (Figure 1)
as oxygen is depleted and anaerobic metabolisms allowed
to proceed.

At a larger temporal scale, a key question that arises from
these results is how changes in hydrological regimes will
alter the evolutionary dynamics of microbial communities in
lake sediments. Niche differentiation, where the coexistence of
ecological opportunities can facilitate species diversification, may
explain why sediments along the low runoff transect hosts a
more diverse microbial community than sediments along the
high runoff transect (Cordero and Polz, 2014). Presently, climate
change is predicted to increase runoff in this High Arctic
environment (Lehnherr et al., 2018), and we found evidence
suggesting that the increased runoff decreased diversity at the
phylum level (Figure 4). This can be expected to disrupt niche
differentiation, and hence to reduce the overall and long-term
metabolic capacity in lake sediments. It is currently hard to
predict the future microbial ecology of these systems. On the
one hand, climate change may diminish species diversification,
and lead to highly specialized microbial communities adapted
to a uniform ecological niche characterized by low oxygen, low
redox, and high NH3 concentrations. On the other hand, the
seasonal and rapid changes in redox conditions, predicted to
follow the strong but punctual input of oxygen and nutrients
during springtimemay allow for the development of a short-lived
community that eluded our sampling and analysis.

The rapid changes that affect Lake Hazen’s watershed in
response to climate warming were already known to directly alter
its hydrological regime. Here we further provide evidence that
a combination of increasing runoff and changing geochemical
conditions are associated with the reduced diversity and
metabolic potential of its dominant microbial communities.
While longitudinal studies are needed to confirm these patterns,
it is still unclear how such losses in biodiversity and metabolic
potential in Arctic ecosystems will impact key biogeochemical
cycles, potentially creating feedback loops of uncertain direction
and magnitude.

MATERIALS AND METHODS

Sample Collection and Processing
Sediment and soil cores were collected from Lake Hazen
(82◦N, 71◦W: Figure 1A), located within Quttinirpaaq National
Park, on northern Ellesmere Island, Nunavut. Sampling took
place between May 10 and June 10, 2017, when the lake was
still completely ice-covered and prior to the onset of glacial
melt within the watershed (Supplementary Table 4). Between
late June and the end of August, meltwaters flow from the
outlet glaciers along the northwestern shoreline through poorly
consolidated river valleys, depositing sediments at the bottom of
Lake Hazen. Sediment cores were sampled along two transects,
the H1/H2 and L1/L2 sites, representing areas of the lake

influenced by large (high runoff) and small (low runoff) rivers,
respectively (Supplementary Table 5, adapted from St.Pierre
et al., 2019b). The lake then drains via the Ruggles River
along its southeastern shoreline (C site). The surrounding
glacial rivers deliver different amounts of sediments, nutrients,
and organic carbon unevenly to the lake as a consequence
of heterogeneous sedimentation rates (Supplementary Table 6,
adapted from St.Pierre et al., 2019b). More specifically, the top
5 cm of sediments from the deeper low (L2) and high (H2) runoff
sites represented depositional periods of 30 years (1987–2017)
and 6 years (2011–2017), respectively.

Samples were collected along two transects and can be
separated into three hydrological regimes by seasonal runoff
volume: low (L transect), high (H transect), and negligible runoff
(C sites) summarized in Supplementary Table 5. Contamination
of samples was minimized by wearing non-powdered latex gloves
during sample handling and sterilizing all equipment with 10%
bleach and 90% ethanol before sample collection. Sediment cores
approximately 30 cm in length were collected with an UWITEC
(Mondsee, Austria) gravity corer from five locations: C (overlying
water depth: 50m) far from the direct influence of glacial inflows
serving as a control site; L1 (water depth: 50m) and L2 (water
depth: 251m), at variable distances from a small glacial inflow
(Blister Creek, <0.001 km3 in summer 2016); and, H1 (water
depth: 21m) and H2 (water depth: 253m), located adjacent to
several larger glacial inflows (i.e., the Abbé River, 0.015 km3

and Snow Goose, 0.006 km3 in 2016). Note that bathymetry
changes quickly on the northern side of Lake Hazen, making it
challenging to match the shallow sites (L1 and H1) when coring
through the ice-covered lake. The glacial inflow measurements
were included in a previous study (St.Pierre et al., 2019b), and
are summarized in Supplementary Table 5. The soil samples (S
sites) were collected from three sites in the dried streambeds of
the tributaries, on the northern shore between the two transects.
At each site, for both sediments and soil, five cores were sampled,
∼3m apart for the sediment cores, and approximately ∼1m
apart to account for site heterogeneity.

Microprofiling data were previously described (St.Pierre et al.,
2019b). Briefly, for sediment core, one of the five cores was
used for microprofiling of oxygen (O2), redox and pH, as well
as one core for porewater chemistry and loss on ignition (see
Ruuskanen et al., 2018, for details), and the remaining three
cores were combined, prior to their genomic analysis, here again
to account for site heterogeneity. For soil samples, three cores
per site were collected for DNA analysis, but no additional
cores were collected for chemical analyses. As we were mostly
interested in the community composition through space, we
combined the top 5 cm of sediment and 10 cm of soil for sample
extraction and subsequent sequencing (below 10 cm, the ground
was frozen and could not be penetrated safely by our corer).
Critically, surface vegetation was scrubbed off if present and
not included in the extraction vials. This was done to limit
any plant DNA being captured in the extraction process. Any
remaining length of cores that were used for DNA analysis were
discarded. These uppermost layers in the sediment correspond to
both the most recent sediment deposition dates and the region
of greatest microbial activity (Haglund et al., 2003). Based on
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previous findings (St.Pierre et al., 2019b), sediment below 10 cm
in depth can date back as early as 2009 in the high runoff sites,
or as late as 1900 in low runoff sites (Supplementary Table 6).
Although the age of the sediment at a given sample depth
can vary, we were most concerned with how the microbial
community in the most active depths responded to changing
environmental conditions as a result of increased runoff and
sediment delivery. The top of each core was sectioned and
placed into Whirlpack bags. These slices were homogenized
manually inside of the bags and stored in a −20◦C freezer until
shipment back to the University of Ottawa where they were
then stored at −80◦ C. Soil samples were transferred into falcon
tubes, homogenized, and stored as described above for the lake
sediment samples.

Samples were thawed overnight and 250–400mg (wet
weight; Supplementary Table 7) were then washed in a sterile
salt buffer (10mM EDTA, 50mM Tris-HCl, 50mM Na2
HPO4 7H2O at pH 8.0) to remove PCR inhibitors (Zhou
et al., 1996; Poulain et al., 2015). All sample handling
was conducted in a stainless-steel laminar flow hood
(HEPA 100) treated with UVC radiation and bleach before
use. DNA extractions were performed using the DNeasy
PowerSoil Kit (MO BIO Laboratories Inc, Carlsbad, CA,
USA), following the kit guidelines, except that the final
elution volume was 30µl instead of 100µl. DNA integrity
was validated with a NanoDrop Spectrometer and PCR
combined with electrophoresis of the Glutamine synthetase
gene (glnA) as this gene is ubiquitous across microbial
life (Supplementary Figure 15, Supplementary Table 8).
Adequate DNA concentrations for sequencing were reached by
combining triplicate extractions for a total volume of 45µl and
a concentration ≥ 50 ng/µl (Supplementary Table 7). Positive
and negative controls were used to verify the integrity of the
PCR amplification of glnA (see also Ruuskanen et al., 2020).
Two kit extraction blanks contained no trace of DNA and were
not sequenced.

Chemical Analyses
Redox potential, pH, and dissolved O2 concentration profiles
were measured at 100µm intervals on one of the cores within
an hour of collection, using 100 µm Unisense (Aarhus,
Denmark) glass microsensors connected to a Unisense
Field Multimeter (OX-100, pH-100 coupled to REF-RM,
RD-100 coupled to REF-RM). All sensors were calibrated
immediately before the profiles were measured using the
standard calibration procedures outlined in the individual
sensor manuals provided by the manufacturer. A 5mm
reference electrode (Ag-AgCl; Ref-RM) was coupled with
both the pH and redox potential sensors and kept in the
water overlying the core during profiling. All profiles were
begun at ∼1 cm above the sediment surface, which was
approximately uniform at all sites. At each step, the probes
equilibrated for 10 s before taking triplicate measurements,
which were averaged to produce the profiles. A single profile
was conducted on each core to measure the natural in situ
biogeochemical gradients present at each site. We note that
redox profiles should be interpreted as relative rather than

absolute differences (Boudreau and Jorgensen, 2001, p. 180–210).
Sediment porewater was extracted following centrifugation at
4,000 rpm. The supernatant was then filtered through 0.45µm
cellulose acetate filters into 15ml tubes, and were frozen
until analysis. Concentrations of nitrates and nitrites (NO−

2 +
NO−

3 ), and ammonia (NH3), chloride (Cl−) were measured
in the sediment porewater using a Lachat QuickChem 8500
FIA Ion Analyzer, while total dissolved phosphorus (TDP)
and SO2−

4− were measured in the sediment porewater using an
ion chromatograph at the Biogeochemical Analytical Service
Laboratory (Department of Biological Sciences, University of
Alberta). However, TDP was removed from data analysis because
insufficient porewater was collected to measure TDP at site
C. The centrifuged sediments were retained and percentage
per dry weight (% d.w.) of calcium carbonate (CaCO3)
and organic carbon (OC) were estimated through loss on
ignition (Heiri et al., 2001).

The chemical features of the top 5 cm of the sediment
cores were derived from measurements performed at
1 cm intervals throughout the cores, and were reported
in St.Pierre et al. (2019b) as part of a larger study on the
Lake Hazen watershed, which did not investigate microbial
communities in the lake. The geochemical properties of
each sediment site were summarized using a Principal
Component Analysis (PCA) that was scaled to unit variance
and projections were clustered using Partitioning Around
Medoids (Maechler et al., 2019). The appropriate number
of clusters was determined from silhouettes with the R
package hopach (van der Laan and Pollard, 2003). The
Dunn test R package (Dinno, 2017) was used to compare
samples, controlling for multiple comparisons with the
Benjamini-Hochberg adjustment.

Sequencing and Data Processing
Metagenomic libraries were prepared and sequenced by Genome
Quebec on an Illumina HiSeq 2500 platform (Illumina, San
Diego, CA, USA; Supplementary Figure 16) on a paired-end
125 bp configuration using Illumina TruSeq LT adapters (read
1: AGATCGGAAGAGCACACGTCTGAACTCCAGTCAC, and
read 2: AGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGT).
The DNA from the eight sites (five sediment and three soil)
was sequenced with two samples per HiSeq lane, generating a
minimum of 125 million reads per sample, which amounted
to over 150GB of sequencing data. Read count summaries
were tracked throughout each step of the pipeline for quality
control (Supplementary Figure 17). Low quality reads, adapters,
unpaired reads, and low quality bases at the ends of reads were
removed to generate quality controlled reads with Trimmomatic
(v0.36) (Bolger et al., 2014) using the following arguments:
phred33,ILLUMINACLIP:TruSeq3-PE-2.fa:3:26:1
0, LEADING:3 TRAILING:3, SLIDINGWINDOW:4:20,
MINLEN:36, CROP:120, HEADCROP:20, AVGQUAL:20.
Then, FASTQC (v0.11.8) (https://www.bioinformatics.
babraham.ac.uk/projects/fastqc/) was used to confirm that
the Illumina adapters were removed and that trimmed sequence
lengths were at least 90 bp in length with a Phred score of at
least 33.
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Reconstruction of Environmental Genomes
and Annotation
To reconstruct environmental genomes, metagenomic quality-
controlled reads from all samples were coassembled using
Megahit (Li et al., 2015) software with a k-mer size of 31
and meta-large setting (see Supplementary Table 1 for
additional summary statistics). EukRep (West et al., 2018)
was used to remove any eukaryotic DNA from the contigs
prior to the formation of an Anvio (v5) (Eren et al., 2015)
contig database. The contig database was generated by removing
contigs under 1000 bp, and gene prediction was performed in
the Anvio environment. Sequence coverage information was
determined for each assembled scaffold by mapping reads from
each sample to the assembled contig database using Bowtie2
(Langmead and Salzberg, 2012) with default settings. The
resulting SAM files were sorted and converted to BAM files
using samtools (v0.1.19) (Li et al., 2009). Each BAM file was
prepared for Anvio using the anvi-init-bam and contig
database generated using anvi-gen-contigs-database.
The contig database and BAMmapping files were further used as
input for anvi-profile, which generated individual sample
profiles for each contig over the minimum length of 2,500 bp.
These profiles were then combined using anvi-merge and
summary statistics for abundance and coverage were generated
with anvi-summarize. Automated binning was performed
using CONCOCT (Alneberg et al., 2014). Scaffolds were binned
on the basis of GC content and differential coverage abundance
patterns across all eight samples. Manual refinement was done
using Anvio’s refine option, where contigs were manually
removed from bins on the basis of GC content, differential
abundance in samples, and taxonomy of contigs assigned
by Kaiju (Menzel et al., 2016, Supplementary Table 2). Kaiju
was used to classify taxonomy of the assembled contigs with
anvi-import-taxonomy-for-genes and aided in the
manual refinement process. Open reading frames were predicted
with Prodigal (v2.6.3) (Hyatt et al., 2010). Anvio’s custom
Hidden Markov Models were run, along with NCBIs COG
(Tatusov et al., 2003) annotation to identify protein-coding genes.
PFAM (Finn et al., 2015), TIGRFAM (Haft et al., 2003), GO
terms (Ashburner et al., 2000), KEGG enzymes and pathways
(Kanehisa et al., 2015), and Metacyc pathways (Caspi et al.,
2007) were predicted with Interproscan (v5) (Jones et al., 2014).
These annotations were then combined with the Anvio database
with anvi-import-functions.

Genome completeness and contamination were
evaluated on the presence of a core set of genes using
CheckM (v1.0.5) lineage_wf (Supplementary Table 2,
Supplementary Figure 18; Parks et al., 2015). Only the
300 genomes that satisfied the quality control cutoffs of at
least 50% complete and with <10% contamination were
further analyzed—meeting the Minimum Information about
metagenome-assembled genome (MIMAG) of bacteria and
archaea for medium or high-quality genomes (Bowers et al.,
2017). All recovered genomes were used to calculate an average
amino acid identity across all genomes using compareM (v0.0.23,
function aai_wf; https://github.com/dparks1134/CompareM;

Parks et al., 2017). CheckMwas used again to identify contigs that
were not contained in any of the 300 high-quality genomes, that
is those whose size ranges from 1,000 to 2,500 bp. As an attempt
to “rescue” these unbinned contigs, an alternative binning
algorithm MaxBin (v2.0) (Wu et al., 2015) was employed. An
additional 481 genomes were recovered, but were not included in
further analysis as only 21 genomes were of average completion
>65% (Supplementary Data 1: github.com/colbyga/hazen_
metagenome_publication/blob/master/Supplemental_Data_1_
maxbin2_unbinned_contigs_summary.csv).

Phylogenetic Placement of the MAGs
Phylogenetic analyses were performed using two different sets of
marker genes from the Genome Taxonomy Database (GTDB):
one for bacteria (120 marker genes) and one for archaea (122
marker genes), as previously been used to assign taxonomy to
MAGs (Parks et al., 2018). The marker genes were extracted
from each genome by matching Pfam (v31) (Finn et al., 2015)
and TIGRFAM (v15.0) (Haft et al., 2003) annotations from
GTDB (v86) (Parks et al., 2018). Marker genes from each
of the 300 genomes were translated using the R package
seqinr (Charif and Lobry, 2007), selecting the genetic code that
returned no in-frame stop codon. As some genomes had multiple
copies of a marker gene, duplicated copies were filtered out
by keeping the most complete sequence. Marker genes that
were missing from some genomes were replaced by indel (gap)
characters, and their concatenated sequences were added those
from the reference GTDB sequences. MUSCLE (v3.8.31) (Edgar,
2004) was employed to construct the alignment in R (v 3.5.1)
(R Development Core Team, 2008). Archaeal sequences were
removed from the bacterial alignment on the basis of results
from CheckM (Parks et al., 2015) and independently verified
using a custom list of archaea specific marker genes. Alignments
were then refined using trimAI (Capella-Gutiérrez et al., 2009)
and the -gappyout parameter. FastTree2 (Price et al., 2010),
recompiled with double precision to resolve short branch
lengths, was used to infer maximum likelihood phylogenetic trees
from protein sequence alignments under the WAG +Ŵ model
(Whelan and Goldman, 2001; Aris-Brosou and Rodrigue, 2012,
2019). The archaeal tree was rooted with Euryarchaeota and the
bacterial tree was rooted with Patescibacteria using the R package
APE (Paradis et al., 2004). Trees were visualized and colored by
phylum with the R package ggtree (Yu et al., 2017).

Community Composition of the MAGs
To determine the relative abundance of each genome in the eight
samples, sample-specific genome abundances were normalized
by sequencing depth [(reads mapped to a genome)/(total
number of reads mapped)], making comparisons across samples
possible. Genome abundances were generated using the CheckM
profile function (Parks et al., 2015). To determine the average
abundance of major taxonomic groups across sites (determined
by the phylogenetic analysis described above), the abundances
for genomes from the same taxonomic group were summed
and visualized using the R package phyloseq (McMurdie and
Holmes, 2013). These same abundance values were the basis
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for a community composition analysis. The t-SNE plots were
constructed by assigning each genome to a site based on where
it was most abundant using the R package Rtsne (Krijthe et al.,
2018). All these analyses were made at the phylum level, unless
otherwise stated.

Metabolic Potential of the MAGs
To analyze functional marker genes in the metagenomes, we
used a custom database of reference proteins sequences (COG,
PFAM, TIGRFAM, KEGG) based on the marker genes used in
other studies (Anantharaman et al., 2016; Dombrowski et al.,
2018, Supplementary Data Files on GitHub). Pathways were
also predicted using MinPath (Ye and Doak, 2009) to map all
identified KEGG enzymes to the most parsimonious MetaCyc
pathways (Caspi et al., 2007). As these MAGs were incomplete,
some genes in pathways may be absent. MinPath presented only
parsimonious pathways represented by multiple genes. As most
genomes were present even at low abundances across all sites, a
cut-off value of ≤ 0.25 (on a − log10 scale) was set for a genome
to be included in the functional analyses at any site, so that only
the most abundant genomes for each site were considered. We
aggregatedmarker genes and pathways by function, summarizing
the results by phyla, except for Proteobacteria that were separated
by class. We further grouped all taxa together at each site to
test for significant differences in major nutrient cycling processes
(carbon, nitrogen, and sulfur) among sites using a hierarchical
clustering; significance was derived from the Approximately
Unbiased bootstrap (Suzuki and Shimodaira, 2006) and Fisher’s
exact test.
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