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Abstract

Temperature regulation is an indispensable physiological activity critical for animal
survival. However, relatively little is known about the origin of thermoregulatory re-
gimes in a phylogenetic context, or the genetic mechanisms driving the evolution of
these regimes. Using bats as a study system, we examined the evolution of three
thermoregulatory regimes (hibernation, daily heterothermy, and homeothermy) in
relation to the evolution of leptin, a protein implicated in regulation of torpor bouts
in mammals, including bats. A threshold model was used to test for a correlation be-
tween lineages with positively selected lep, the gene encoding leptin, and the ther-
moregulatory regimes of those lineages. Although evidence for episodic positive
selection of lep was found, positive selection was not correlated with lineages of
heterothermic bats, a finding that contradicts results from previous studies. Evidence
from our ancestral state reconstructions suggests that the most recent common an-
cestor of bats used daily heterothermy and that the presence of hibernation is highly
unlikely at this node. Hibernation likely evolved independently at least four times in
bats—once in the common ancestor of Vespertilionidae and Molossidae, once in the
clade containing Rhinolophidae and Rhinopomatidae, and again independently in the
lineages leading to Taphozous melanopogon and Mystacina tuberculata. Our recon-
structions revealed that thermoregulatory regimes never transitioned directly from
hibernation to homeothermy, or the reverse, in the evolutionary history of bats. This,
in addition to recent evidence that heterothermy is best described along a contin-
uum, suggests that thermoregulatory regimes in mammals are best represented as an
ordered continuous trait (homeothermy < — daily torpor <~ — hibernation) rather
than as the three discrete regimes that evolve in an unordered fashion. These results
have important implications for methodological approaches in future physiological

and evolutionary research.
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1 | INTRODUCTION

In mammals, the evolution of endothermy—the use of metabolically
produced heat to maintain Ty (body temperature)—has enabled sur-
vival of many different taxa across a variety of ecological niches
and ecosystems (Fristoe et al., 2015; Hillenius & Ruben, 2004;
Scholander, Hock, Walters, & Johnson, 1950). Homeothermy is de-
fined by maintenance of a relatively constant T, over time (Ivanov,
2006), and endothermy and homeothermy are frequently linked
in mammals. Endothermic heterothermy, characterized by a com-
bination of metabolically produced heat and the use of torpor—a
physiological state characterized by the reduction in metabolism,
and subsequently T,, below basal levels—has enabled the survival
of mammalian taxa globally, especially in extremely cold climates,
highly variable climates, or regions with periodic constraints on food
and water availability (Geiser & Stawski, 2011; Geiser & Turbill, 2009;
Tattersall et al., 2012). The duration of discrete torpor bouts is often
used to define the two traditionally recognized forms of hetero-
thermy in mammals: hibernation and daily heterothermy, also known
as daily torpor (Geiser, 2004; Ruf & Geiser, 2015). Hibernators are
capable of multiday torpor bouts and drastic Tb reduction, while
daily heterotherms exclusively use shorter (<24 hr), shallower torpor
bouts (Geiser, 2004; Ruf & Geiser, 2015). However, this binary cate-
gorization of heterothermy has been debated, with some authors ar-
guing that hard boundaries between hibernation and daily torpor do
not exist (Boyles et al., 2013; Canale, Levesque, & Lovegrove, 2012;
Geiser & Ruf, 1995; Ruf & Geiser, 2015; van Breukelen & Martin,
2015). As new methods are developed, support for a continuum
of heterothermic abilities has been growing but a consensus has
not been reached (Boyles, Bennett, Mohammed, & Alagaili, 2017,
Levesque, Nowack, & Stawski, 2016).

Although the common ancestor of mammals was tradition-
ally presumed to be homeothermic (Crompton, Taylor, Jagger, & a,
1978), some recent authors have argued against this interpretation
on physiological and/or behavioral grounds (Grigg, Beard, & Augee,
2004; Lovegrove, 2012). Grigg et al (2004) suggested that endother-
mic heterothermy may be ancestral to homeothermy in mammals
because endothermic heterothermy would provide a reasonable in-
termediate along the transition from ectothermy to full endothermic
homeothermy, a shift that would have required a many-fold increase
in metabolism (Geiser & Stawski, 2011).

Transitions to new thermoregulatory regimes over evolutionary
time require physiological changes. Leptin, a hormone encoded by
the lep gene, influences thermoregulation and satiety by signaling to
the brain the degree of adiposity available for energy intake (Dodd
et al., 2014; Enriori, Sinnayah, & Simonds, 2011; Kaiyala, Ogimoto,
& Nelson, 2015; Zhang et al., 2011). Due to the role it plays in regu-
lating satiety and metabolic activity, leptin concentrations may also
be impacted by diet (Clarke & Connor, 2014; Harvey et al., 2000;
Weigle et al., 2005). Leptin function is correlated with post-hiberna-
tion weight gain in arctic ground squirrels (Boyer et al., 1997), pre-
hibernation weight gain in male woodchucks (Concannon, Levac, &
Rawson, 2001), and feeding activity of at least one homeothermic
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bat (Scotophilus heathii; Srivastava & Krishna, 2008). Exon 3 of lep
may be particularly important because it contains 29 amino acid
variants with functional significance (Yuan et al., 2011). Some hi-
bernating bats show structural alterations in exon 3 of lep that may
cause leptin to become more physiologically active (He et al., 2010).
Outside of the relationship leptin has with food intake and tempera-
ture regulation, leptin has a mechanistically independent function
in initiating torpor bouts in some species (Stehling, Doring, & Ertl,
1996; Swoap, 2008). As part of a complex matrix of gene-gene in-
teractions, sympathetic activation of white adipose tissue during
fasting triggers a dramatic decrease in circulating leptin which is
thought to initiate a torpor bout (Swoap, 2008). Entrance into tor-
por for Siberian hamsters is triggered by leptin (Freeman, Lewis,
& Kauffman, 2004), and regulation of Ty is impacted by leptin in
homeothermic rats (Stehling et al., 1996).

Bats (Chiroptera) represent a useful model for comparative eval-
uation of the evolutionary genomics of thermoregulatory regimes
because they are a large monophyletic group with nearly 1,400 ex-
tant species, and show considerable variation in thermoregulatory
regimes across the phylogeny including homeothermy, daily torpor,
and hibernation (Lyman, 1970; Simmons, 2005; Stawski, Willis, &
Geiser, 2014). Bats are also among the most diverse mammalian
clades with respect to diet, with various lineages specialized as in-
sectivores, carnivores, frugivores, nectarivores, omnivores, and
even sanguinivores (Fenton & Simmons., 2015; Hill & Smith., 1984).

Consistent with studies on other mammals, leptin in bats influ-
ences torpor abilities, feeding activity, and energy balance (Banerjee,
Udin, & Krishna, 2011; He et al., 2010; Kronfeld-Schor, Richardson,
& Silvia, 2000; Srivastava & Krishna, 2008; Yuan et al., 2011; Zhu et
al., 2014). Ancestral state reconstruction based on the evolution of
the lep gene (Yuan et al., 2011) and circumstantial evidence based on
the abundance of tropical and subtropical heterothermic bats (Cory
Toussaint, McKechnie, & Merwe, 2010; Geiser & Stawski, 2011; Liu
& Karasov, 2011; Stawski, Turbill, & Geiser, 2009; Turbill, Law, &
Geiser, 2003) have been used to suggest that the most recent com-
mon ancestor of bats was heterothermic. However, it is unclear if
this ancestor used hibernation or daily torpor.

To better understand the unique evolutionary history of thermo-
regulation, we examined the relationship between thermoregulatory
regime of extant taxa and selection on lep exon 3. Yuan et al. (2011)
found that leptin has undergone positive selection in heterothermic
bat lineages, and therefore associated it with the evolution of torpor.
However, by using a lep exon 3 gene tree instead of a species tree,
Yuan et al. (2011) effectively treated two nonindependent variables
(branch length and lep selection) as independent. Coalescence the-
ory suggests that the use of gene trees to calculate o, a measure
of positive selection, may bias results because gene trees do not
necessarily mirror species trees, and may have alternative branch-
ing patterns and lengths compared to the species tree (Diekmann &
Pereira-Leal, 2016). To reexamine the findings of Yuan et al. (2011),
we hypothesized that lep exon 3 has undergone episodic positive
selection in heterothermic lineages. Episodic positive selection is de-
fined as positive selection which occurs in a subset of lineages. We
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tested this hypothesis in the context of a species tree for relevant
bat taxa. We also reconstructed the ancestral thermoregulatory re-
gimes of bats with revised species-level data compared to previous
family-level analyses (Yuan et al., 2011). By evaluating the number of
transitions between regimes across the phylogeny through stochas-
tic character mapping, we also evaluated the validity of categorizing
thermoregulatory regimes as three discrete character states. Finally,
to address other known effects of leptin, we tested for correlation
between lineages with positively selected lep exon 3 and the diets

of those lineages.

2 | MATERIALS AND METHODS

2.1 | Taxon sampling

To test for positive selection of lep exon 3, 31 species of bats with
known thermoregulatory regimes were sampled for the lep exon 3
gene, including representatives from nine families (Table 1). Thirteen
of these species hibernate, five use daily torpor, and 13 are home-
othermic (Table 1). Lep exon 3 sequences for 27 of these species
were downloaded from GenBank, and the other four, Pteropus hy-
pomelanus, Nyctimene major, Macroglossus minimus, and Syconyteris
australis, were sequenced in the Sackler Institute for Comparative
Genomics. Lep exon 3 sequences for three outgroups were also in-
cluded, Homo sapiens (human), Capra hircus (goat), and Galeopterus
variegatus (Sunda colugo; Table 1). Species-specific data on ther-
moregulatory regimes and dietary preferences were taken from the
primary literature (Table 1, dietary preferences only listed for spe-
cies in this dataset). The resulting dataset included 34 taxa, which
we used for analyses of positive selection of lep exon 3 and models
evaluating the relationship between positive selection of lep exon 3
and thermoregulatory strategies or diet.

A larger dataset including 76 bat taxa and three outgroups was
used for the ancestral state reconstruction of thermoregulatory re-
gimes. Here, we were not limited by the requirement of having leptin
sequences, which allowed for greater coverage of the phylogeny.
Species were selected for the ancestral state reconstruction based
on availability of data describing their thermoregulatory regime and
presence in the published phylogeny that was used in the analyses
(i.e., Amador, Arévalo, & Almeida, 2016). Data on the thermoregu-
latory regime of each species were taken from the primary litera-
ture by searching databases (Google Scholar and Web of Science)
between the dates of September 2015 and August 2018, using key-

» ” ENG

words “bats,” “thermoregulation,” “thermoregulatory regimes,” “tem-

n o«

perature regulation,” “hibernation,” “torpor,” “daily torpor,” “daily

» o«

heterothermy,” “heterothermy,” “homeothermy,” “metabolism,” and
“Chiroptera.” These data are summarized in Table 1.

DNA was extracted and lep exon 3 was amplified and sequenced
for four bat species for the tests for positive selection—Pteronotus hy-
pomelanus, Nyctimene major, Macroglossus minimus, and Syconycteris
australis. All laboratory work was conducted in the Sackler Institute
for Comparative Genomics. DNA was extracted from either wing

punches or tissues of museum specimens (Table 1) using the Qiagen

DNeasy Blood and Tissue Extraction Kit. In order to amplify lep exon 3
in these species, a primer pair (FI—~AGAAGGGAGGGAGGACTCAAC,
R1-GCTTCAGCACCCAGGGCTG) was developed on the flank-
ing region of the consensus sequence from a multiple alignment
of published lep sequences from Rousettus leschenaultii, Pteronotus
giganteus, Eonycteris spelaea, Eidolon helvum, Dobsonia viridis, and
Cynopterus sphinx which was made by eye in Geneious (Kearse et
al., 2012).

The polymerase chain reaction (PCR) was carried out using il-
lustra™ puReTaq Ready-To-Go PCR Beads Kit. Amplification was
performed in a 25 ul reaction volume. This consisted of 20.7 ul nu-
clease-free water, 0.3 ul bovine serum albumin, 1 pul 10x solution of
forward primer, 1 pl 10x solution of reverse primer, 2 ul template,
and one bead containing recombinant puReTag DNA polymerase.
PCR conditions were as follows: an initial denaturation phase at 95°C
for 5 min, 25 cycles with a denaturation phase at 95°C for 30 s, an
annealing phase at 57°C for 30 s, and an extension phase at 72°C for
45 s. The wells were then stored in a refrigerator at 4°C. PCR prod-
ucts were purified with AgenCourt AMPure XP. PCR products were
sequenced using Sanger sequencing (Smith & Hood, 1987) following
protocol from the BigDye® Terminator v3.1 Cycle Sequencing Kit.

Sequences were assembled and edited within Geneious (Kearse
et al., 2012). Ends of forward and reverse sequences were trimmed
with an error set to 0.01. Trimmed regions were ignored and forward
and reverse sequences were assembled using de novo assembly, as
outlined by the Geneious manual (Biomatters, 2017). The forward
and reverse sequences of lep for Nyctimene major did not assemble
through de novo assembly. Therefore, these were mapped to the
reference sequence from which the primers were built. Reads were
then manually edited to maximize the coverage and identity be-
tween the forward and reverse sequences. Lep exon 3 was trimmed
to the open reading frame (ORF), and stop codons were removed
from the tail. ORFs from all species in the dataset were then aligned
by eye in Geneious (Kearse et al., 2012).

2.2 | Branch-sites under positive selection

To identify lineages that have experienced episodic positive se-
lection of lep exon 3, we ran a mixed-effects model of evolution
(MEME) to detect a subset of branch-sites under episodic positive
selection (Murrell et al., 2012). MEME uses a fixed-effect model to
explain the distribution and variation of o across sites, and a ran-
dom-effects model to explain variation in the distribution of w across
branches (Kosakovsky Pond et al., 2011; Murrell et al., 2012; Nielsen
& Yang, 1998). MEME was used here because other tests, which usu-
ally average w over branches and sites, often miss positive selection
when it occurs in a subset of branch-sites (Yang & Nielsen, 2002).
When evaluating if a branch-site is under positive selection, MEME
considers the specific model of molecular evolution, which here was
the TRN93 model (Tamura & Nei, 1993), differences in codon fre-
quencies, and .

The test for branch-sites under episodic positive selection,
MEME, was performed within the DataMonkey web server (Delport,
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FIGURE 1 BUSTED hypotheses tests for positive selection of lep exon 3 across bats with different thermoregulatory regimes

(black = daily torpor; pink = hibernation; green = homeothermy). Topology of tree generated from Amador et al. (2016). Bolded lineages
represent the lineages tested for positive selection (foreground branches). Gray lineages represent the background. (a) Foreground branches
correspond with those found to have evidence of positive selection by Yuan et al. (2011). (b) Foreground branches represent lineages

detected by MEME to have evidence of positive selection

Poon, Frost, & Kosakovsky Pond, 2010) using the aligned lep exon 3
sequences, the automatic substitution model selection tool, and a
user-specified tree from Amador et al. (2016). This 807 taxa phylog-
eny was calibrated using 44 key fossils, inferred using nine nuclear
and mitochondrial genes, and shows support for the majority of cur-
rently recognized bat clades (Amador et al., 2016). The Amador et
al. (2016) tree was chosen for this study because it represents the
most genus- and species-level diversity, 90% and 64%, respectively,
compared to other phylogenies (Amador et al., 2016). The tree was
pruned using the ape package in R (Paradis, Claude, & Strimmer,
2004) to only include the 31 bats and three outgroup taxa in our
dataset. The model of molecular evolution that best fit these data
was determined to be the TRN93 model (Tamura & Nei, 1993) using
the automatic function available in DataMonkey (Delport et al.,
2010).

The significance threshold was set to 0.1 and a log-ratio test
(LRT) was performed, comparing the alternative model to the null

model. The alternative model allows for positive selection in a subset

of branch-sites, while the null model does not allow for positive se-
lection in a subset of branch-sites. For each branch, an empirical
Bayes factor (EBF) for having @ > 1 was calculated with an associ-
ated posterior probability.

Mixed-effects model of evolution only detects branch-sites
under episodic positive selection, not lineages with gene-wide posi-
tive selection. Therefore, to confirm that lep exon 3 is indeed under
positive selection in the branches detected by MEME, we tested for
gene-wide episodic positive selection using BUSTED, a branch-site
unrestricted statistical test for episodic positive selection (Murrell et
al., 2015). BUSTED uses a LRT to detect evidence of episodic pos-
itive selection, when the rate of non-synonymous to synonymous
substitutions at branch-sites is transiently greater in the foreground
branches compared to background (Murrell et al., 2015). Foreground
branches are the lineages hypothesized to be under positive selec-
tion, and the background branches are all other branches in the phy-
logeny. This model assumes that the gene evolves under the general

time reversal model (Tavaré, 1986).
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FIGURE 2 Ancestral state reconstruction under the Mkn model. Topology of tree generated from Amador et al. (2016). Pie charts
represent the marginal likelihoods of each thermoregulatory regime at a given node
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We also used BUSTED to test for episodic positive selection by
binning branch-sites into three w categories representative of ei-
ther purifying, neutral, or positive selection. Purifying selection is
defined by having a w < 1, indicating that there is strong selection
to maintain the sequence over evolutionary time. Neutral selec-
tion is defined by having a w approximately equal to 1, indicat-
ing that there is neither strong selection for the maintenance of
a sequence over time nor selection for changes to that sequence.
In the unconstrained model, both foreground and background
branches can evolve under positive selection. In the null mod-
els, neither foreground nor background branches are allowed to
evolve through positive selection. This analysis required, as input,
the same alignment of lep exon 3 sequences used in the MEME
analysis, and the pruned, user-specified phylogeny from Amador
et al. (2016).

TABLE 2 Branch-Sites with evidence

L Lo B h
of positive selection in lep exon 3 ranc

Node 3
Node 8
Node 10

Node 13
Node 26

Node 57
Eidolon helvum

Hipposideros armiger

Homo sapiens
Myotis lucifugus

Pteronotus parnellii

Rhinolophus
ferrumequinum

Rhinopoma
microphyllum

Syconycteris australis

Taphozous
melanopogon
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Two analyses to test for gene-wide positive selection were per-
formed. In the first analysis, we tested for selection along branches
where evidence for positive selection was previously detected
(Figure 1a; Yuan et al., 2011). In the second analysis, we selected
foreground branches based on lineages with evidence for positive
selection from the MEME results (Figure 1b). Here, branches were
considered foreground if they met the following criteria based on
the MEME output: A branch had at least one codon site with an
EBF > 3 for having @ > 1, and a posterior probability >0.25 for hav-
ing w > 1. These criteria conform with the guidelines for interpret-
ing EBF values from Kass and Raftery (1995). In addition to the LRT
calculation, Akaike information criteria (AIC) scores were calculated.
AIC statistically quantifies the quality of each model by consider-
ing the optimum log likelihood (l) and the number of parameters (p)

(AIC = -2l + 2p), enabling model comparison.

TR Sites EBF Posterior probability
-2 75 210.2 1
-2 7 15.3 0.56
-2 5 >1,000 1
6 >1,000 1
7 11.8 0.5
75 15 0.86
108 46.2 0.39
-2 75 209 1
-2 78 319.6 0.99
86 421 1
—2 86 436.3 1
Homeothermic 86 >1,000 1
Hibernation 7 23.8 0.67
75 48.4 0.95
78 3.6 0.61
108 529.1 0.88
Homeothermic 91 >1,000 1
Hibernation >1,000 1
Homeothermic 4 >1,000 1
56 >1,000 1
86 23.2 1
Hibernation 7 17.3 0.59
78 3.6 0.61
108 206.5 0.74
Hibernation 4 >1,000 1
7 36.2 0.75
78 234 0.99
Daily Torpor 86 >1,000 1
Hibernation 6 >1,000 1
75 >1,000 1

Note. EBF: empirical Bayes factor for having w > 1; Posterior: posterior probability; TR: thermoregu-

latory regime.
2Not Applicable.
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2.3 | Correlation between positive selection and
phenotypic traits

To determine whether evolution of lep exon 3 is correlated with
evolution of thermoregulatory regimes, we ran a threshold model
(Felsenstein, 2012). Here, a discrete trait is presumed to change
state when an underlying variable, the liability, crosses a certain
threshold (Felsenstein, 2005, 2012 ). This liability is assumed to have
a multivariate normal distribution and to evolve under Brownian
motion (Felsenstein, 2005, 2012 ). Contrasting the commonly used
continuous-time Markov (Mkn) model of discrete character evolu-
tion (Lewis, 2001; Pagel, 1994), character states under the threshold
model are inherently ordered and the evolution of discrete character
states is not memoryless (Felsenstein, 2005, 2012 ); the character
state at one node is influenced by the character state at previous
nodes. We categorized thermoregulatory regimes into three states:
hibernation, daily torpor, and homeothermy. The presence (1) or ab-
sence (0) of positive selection in lep exon 3 served as the liability.
Species were considered to have undergone positive selection if lep
exon 3 was determined to be under positive selection per the re-
sults from MEME and BUSTED. Only data for the terminal branches
were considered, as character states at internal nodes are necessar-
ily unknown.

Parameters for the model were estimated with a Bayesian
Markov chain Monte Carlo (MCMC) approach using the threshBayes
function in R, with default priors and liabilities (Revell, 2012). We
ran the chain for 3 million generations, thinned to 1,000 samples
per chain, to account for autocorrelation, and discarded the first
500,000 as burn-in. To quantify the relationship between lep evolu-
tion and TR, a correlation coefficient was calculated between the lia-
bility and the thermoregulatory regime. Finally, the highest posterior
densities (HPDs) were estimated from the correlation coefficients
to determine whether the correlation between traits statistically
differed from O, indicating a statistically significant relationship be-

tween the two variables. To test the alternative hypothesis that lep

TABLE 3 Lep exon 3 codons with evidence of positive selection
in bats

Codon a Unconstrained g+ @ p-Value
4 0 7.21 ) 0.03
5 2.04 48.00 23.53 0.04
6 0 5.64 ) 0.03
7 0.56 43.45 77.59 0.05
56 0 207.15 ) 0.01
75 0 5.50 L 0.02
78 0 5.84 ) 0.07
86 0 1.37 L) 0.08
91 0.66 11.68 17.70 0.06
108 0 38.31 ) <0.001

Note. a: maximum likelihood estimation (MLE) of synonymous rate; p+:
unconstrained MLE of non-synonymous rate.

exon 3 evolution is correlated with diet, we used the same meth-
ods as above but used diet as the discrete trait evolving under the
liability.

2.4 | Ancestral state
reconstruction of thermoregulatory regimes

To model the ancestral thermoregulatory regimes of bats, we
first used the Mkn model of discrete character evolution (Lewis,
2001; Pagel, 1994) with the states hibernation, daily torpor, and
homeothermy. It was important to test which transition rate ma-
trix best described the data. Transition matrices describe the rate
of transitioning from state i to state j. Here, we tested the data to
fit one of three transition matrices: (a) equal transitions between
all states (equal rates), (b) different transition rates between, but
not among, pairs of states (symmetric), and (c) different transition
rates between and among pairs of states (all rates different). We
also tested each transition matrix under different transformations
to determine whether transition rates varied overtime. We ran
these tests for 100 iterations within the fitDiscrete function in
the geiger package in R (Harmon, Weir, & Brock, 2008). The model
with the lowest weighted AIC score was subsequently chosen
to run the ancestral state reconstruction. The symmetric model
under a kappa transformation had the best fit to these data. This
suggests that, given our data, transition rates vary over time de-
pending on the number of speciation events between two species
and that the transition rate between one pair of character states
is identical in the forward and reverse but pairs of states can have
different transition rates. No transformations were indicated by
the data, indicating that the transition rate does not vary over
time.

Given these parameters, we ran an ancestral state reconstruc-
tion using the Ace function from the ape package in R (Figure 2) with
maximum likelihood estimation to obtain probabilities of states at
interior nodes (Paradis et al., 2004). Stochastic character mapping
(Bollback, 2006; Huelsenbeck, Nielsen, & Bollback, 2003) was
also used to estimate states at interior nodes and to determine
how well the chosen parameters matched the real data. Stochastic
character maps were built using the make.simmap function in the
phytools package in R (Revell, 2012). Fifty thousand simulations
were run using the parameters described previously. A Q-Q plot
was generated to compare the Mkn model to the stochastic char-
acter map to evaluate the goodness of fit. The stochastic character
map was then used to quantify the number of transitions between

states across simulations.

3 | RESULTS

3.1 | Data collection

We obtained new lep sequences for four bats, Pteropus hypome-
lanus (484 bp), Nyctimene major (487 bp), Macroglossus minimus
(788 bp), and Syconyteris australis (489 bp). These were aligned to
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FIGURE 3 Ancestral state reconstruction from stochastic character mapping. Topology of tree generated from Amador et al. (2016). Pie
charts represent the posterior probability of each thermoregulatory regime at a given node
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the other sequences in the dataset. Once aligned, sequences were
trimmed to the coding region of lep exon 3 at 357 bp across 34

taxa.

3.2 | Measuring positive selection

From the MEME results, evidence for positive selection was de-
tected in 15 branches (Table 2) over a total of 10 codons (Table 3).
When these lineages were selected as the foreground branches in
the BUSTED analyses, evidence for episodic positive selection was
detected (p = 0.009; Figure 1b). Positive selection was not detected
when the foreground branches were selected according to those
previously found by Yuan et al. (2011) to be under positive selection
(p =0.220).

3.3 | Correlation between positive selection and
phenotypic traits

No relationship was found between thermoregulatory regimes and
lineages with positive selection of lep exon 3 (95% HPD = -0.271
to 0.600), or between positively selected lineages and diet (95%
HPD = -0.222 to 0.692).

3.4 | Ancestral state reconstruction

The scaledlikelihoods from the Mkn model (Supporting Information
Table S1) and the posterior probabilities from stochastic charac-
ter mapping were highly correlated (p =0.985, p =2.2 x 107%;
Figures 2 and 3). The state of the most recent common ancestor
of bats could not be fully resolved in either model (Daily Torpor,
logL = 0.660, posterior = 0.714; Hibernation, logL = 0.005, pos-
terior = 0.154; Homeothermy, logL = 0.289 posterior = 0.131). In
the Mkn model (Figure 2), the transition rate between daily tor-
por and hibernation was similar to that between daily torpor and
homeothermy (MLE =0.054 +0.012 and MLE =0.052 + 0.014,
respectively), while no transitions were found between hiberna-
tion and homeothermy. Across the 50,000 stochastic simulations,
an average of 33 state changes occurred per tree (summarized in
Figure 3). Over each tree, an average of eight transitions occurred
from daily torpor to hibernation, and 10 transitions occurred from
hibernation to daily torpor. An average of eight transitions oc-
curred from daily torpor to homeothermy, and seven transitions
from homeothermy to daily torpor. Transitions between hiberna-
tion and homeothermy, in either direction, never occurred across
all simulations. Across all regimes and simulations, the mean pro-
portion of time spent in each state was 0.308, 0.436, and 0.256
for daily torpor, hibernation, and homeothermy, respectively.
Here, time was measured by the proportion of branch lengths for
which lineages are predicted to use a specific regime in the phy-
logeny averaged over all simulations.

Based on the ancestral state reconstruction, hibernation appears
to have evolved four times in bats. Vespertilionidae and Molossidae
both have taxa that use hibernation. Their most recent common

ancestor may have used hibernation (logL = 0.533). The MRCA of
Vespertilionids likely hibernated (logL = 0.850), and multiple internal
nodes in Molossidae suggest a heterothermic ancestor. Our results
suggest that hibernation evolved at least once in this group. Our data
suggest that hibernation evolved independently at least three other
times, in the species Taphozous melanopogon (Family Emballonuridae)
and Mystacina tuberculata (Family Mystacinidae), and again in the
clade comprised of Rhinopomatidae and Rhinolophidae. However,
the node(s) at which hibernation arose in these groups remains

ambiguous.

4 | DISCUSSION

We found that the common ancestor of bats most likely used daily
heterothermy and is very unlikely to have used hibernation. We
also found that leptin evolution is not associated with the evolu-
tion of thermoregulatory regimes in bats. Twente and Twente (1964)
hypothesized that the most recent common ancestor of bats was
homeothermic and that heterothermy evolved secondarily as an
adaptation to survive cold climates (Bieber & Ruf, 2009; Geiser &
Turbill, 2009; Kortner & Geiser, 2000). However, daily heterothermy
remains adaptive even at warmer temperatures because it increases
energy savings and long-term survival (Geiser & Stawski, 2011;
Stawski & Geiser, 2012). Flexible use of torpor may have enhanced
the ability of some bats to survive in warm and/or tropical climates,
such as the environments likely encountered throughout the Eocene
when bats likely originated (Amador et al., 2016; Czenze & Dunbar,
2017; Czenze, Brigham, Hickey, & Parsons, 2017b; Meredith et al.,
2011; O'Leary et al., 2013; Simmons, 2005; Simmons & Geisler,
1998; Simmons, Seymour, Habersetzer, & Gunnell, 2008; Teeling,
2005).

Supporting our results, recent work estimating the ancestral ther-
moregulatory regimes of bats (Yuan et al., 2011) and evidence for the
commonality of heterothermy in bats (Geiser & Stawski, 2011) sug-
gests that heterothermy was the ancestral state for Chiroptera and
that homeothermy was secondarily derived (Geiser & Stawski, 2011;
Yuan et al., 2011). This scenario mirrors the hypothesis that the com-
mon ancestor of all mammals was heterothermic (Grigg et al., 2004;
Lovegrove, 2012). However, until now, the question of which het-
erothermic regime was used by the ancestor of bats—hibernation or
daily heterothermy—was unresolved. Here, we show evidence that
the ancestor of bats was likely a daily heterotherm.

Consistent with the lack of evolutionary advantages that a hi-
bernator would be expected to accrue during the early Eocene, a
relatively warm time period characterized by widespread tropical
and subtropical conditions, our results suggest that the common an-
cestor of bats did not hibernate (Humphries, Thomas, & Speakman,
2002). Although our results suggested a marginal likelihood that the
ancestor of bats was a homeotherm, this seems unlikely based on
previous studies (e.g., Geiser & Stawski, 2011; Yuan et al., 2011).
Taken together with the high likelihood of daily heterothermy at
this node, we argue that the most recent common ancestor of bats
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was a daily heterotherm. Our reconstruction therefore also indi-
cates several reversals back to daily heterothermy. Pteronotus davyi,
Nyctimene major, Macroglossus minimus, and Syconyteris australis all
represent reversals back to daily heterothermy after their lineages
evolved homeothermy. However, due to inconsistent methods for
measuring T, and the setting of arbitrary thresholds to determine a
torpid state (Levesque et al., 2016), some of the bats categorized as
homeothermic in our study may in fact be heterothermic. This may
alter the interpretation of reversals back to heterothermy. Increased
data collection following consistent operationalized definitions
of torpor should be performed for more species and recollected
for species currently identified as homeothermic. Our suspicion is
that many bats thought to be endothermic are actually facultative
homeotherms under some conditions (e.g., see Czenze & Dunbar,
2017). Future work should also focus on other species across the
mammal phylogeny in order to reconstruct the ancestral states at
deeper nodes.

Our analyses suggest that hibernation evolved approximately
four times in Chiroptera—at the base of Vespertilionidae and
Molossidae, in the species Taphozous melanopogon and Mystacina
tuberculata from the families Emballonuridae and Mystacinidae,
and in the clade comprised of Rhinolophidae and Rhinopomatidae.
Our analyses also suggest that the MRCA of Rhinolophidae used
hibernation; however, it is unclear if this is derived or ancestral.
Conservatively, we suggest that hibernation arose at least once in
this group. Similarly, we suggest that hibernation arose at least once
in the clade comprised of Vespertilionids and Molossids. We found
no evidence for reversals in the hibernation phenotype—no lineages
that lost and subsequently regained the ability to hibernate.

Significant evidence for positive selection of lep was detected
in some lineages of Chiroptera, but this had no correlation with

the thermoregulatory regimes of those lineages (Figure 1b).

FIGURE 4 Pteronotus parnellii photograph taken by Brock and
Sherri Fenton in a cave in the western end of Cuba
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Compared to results from Yuan et al. (2011), our dataset in-
cluded 11 additional bat taxa, and the thermoregulatory regimes
of Carollia brevicauda and Pteronotus parnellii (Figure 4) were re-
classified to be consistent with the literature (Avila-Flores &
Medellin, 2004; Bonaccorso, Arends, & Genoud, 1992). Leptin
evolution is impacted by pleiotropic effects on other physiological
and developmental processes beyond thermoregulation. Leptin
can effect thyroid function (Ghamari-Langroudi et al., 2010) and
bone development (Crespi & Denver, 2016), induction of mitosis
(Gat-Yablonski & Phillip, 2008), and immune and stress responses
(Ahima & Osei, 2004; Procaccini, Lourenco, Matarese, & La, 2009).
The potential for positive selection of leptin for alternative traits
(Carey, Andrews, & Martin, 2003; Jastroch et al., 2016; Yang et
al., 2008) makes it difficult to find correlations between positive
selection of lep and a singular function. Therefore, in retrospect
it is perhaps not surprising that we found no evidence for a tight
correlation between leptin and chiropteran thermoregulatory re-
gimes, and also found no correlation between leptin selection and
diet despite the known influence of high-fat diets on leptin func-
tioning (Frederich et al., 1995; Koch et al., 2014).

Complex genomic mechanisms and associated physiological
alterations to organ systems and physiological functions across
species with different thermoregulatory regimes suggest that the
evolution of thermoregulatory regimes may intrinsically have no
correlation with positive selection of a single gene (Andrews, 2004,
Grabek et al., 2011; Hindle, Grabek, & Epperson, 2014; Morin &
Storey, 2009; Villanueva-Canas, Faherty, Yoder, & Alba, 2014). A
non-synonymous substitution at codon site 91 in exon 3, found here
to be under positive selection, was previously inferred to cause a
functional difference in hibernating bats compared to homeother-
mic bats (He et al., 2010). However, we found that this substitution
in the sequence of the hibernating bat is shared with Homo sapiens,
a homeothermic species. Therefore, a direct relationship to ther-
moregulatory regime and sequence variation cannot be made for
this site. Recent evidence suggests that thermoregulatory regimes
are mostly influenced by the regulation of gene expression, rather
than the sequence specificity of protein-coding genes (Geiser &
Stawski, 2011; Grabek, Martin, & Hindle, 2015; Morin & Storey,
2009; Schwartz, Hampton, & Andrews, 2013; Yan, Barnes, Kohl, &
Marr, 2008).

In our ancestral state reconstruction, zero direct transitions oc-
curred between hibernation and homeothermy. In this model, we as-
sumed a priori that character states are not ordered. Therefore, the
lack of transitions between hibernation and homeothermy is not an
artifact of the model. This suggests that thermoregulatory regimes
may be better represented as an ordered trait (with daily torpor as
a necessary intermediate between homeothermy and hibernation)
rather than as an unordered trait. Recent evidence suggests that
heterothermy exists along a continuum (Boyles et al., 2013; Dunbar
& Brigham, 2010; Lovegrove, 2012; Wilz & Heldmaier, 2000). If true,
this suggests that there is an inherent order to the evolution of ther-
moregulatory regimes, which our results indicate. Our results sug-

gest that future research on mammalian thermoregulation should
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treat thermoregulatory regimes as an ordered and possibly contin-
uous trait.

The genomics underlying thermoregulation in mammals re-
mains largely unclear. Future research should aim to sequence
whole genomes of mammals that vary in thermoregulatory regime.
Comparing these data in a phylogenetic framework would enable a
more complete understanding of the genomic components involved
in the evolution of thermoregulatory regimes. Our results revealed
that leptin does not appear to be directly involved in the evolution of
thermoregulatory regimes but many candidate genes including LEPR
(Rezai-Zadeh et al., 2014), MEF2 (Tessier & Storey, 2010), and G0OS2
(Jessen et al., 2016) have yet to be examined in a similar framework.
Such studies will reveal the importance these candidate genes have

in the evolution of thermoregulation across diverse taxa.
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