

Contents lists available at ScienceDirect

Data in Brief

journal homepage: www.elsevier.com/locate/dib

Data Article

Histomorphometric and biochemical data of rat kidney submitted to warm ischemia associated with resveratrol treatment

Gabriela F. Buys-Gonçalves^a, Francisco J.B. Sampaio^a, Marco A. Pereira-Sampaio^{a,b}, Maria Eduarda M. Silva^c, Diogo B. De Souza^{a,*}

^a Urogenital Research Unit, State University of Rio de Janeiro, Rio de Janeiro, Brazil

^b Department of Morphology, Fluminense Federal University, Niteroi, Brazil

^c Department of Veterinary Medicine, Educational Foundation Serra dos Órgãos, Teresópolis, Brazil

ARTICLE INFO

Article history: Received 29 February 2020 Revised 1 April 2020 Accepted 2 April 2020 Available online 15 April 2020

Keywords: Rat kidney Warm ischemia Resveratrol Histomorphometry

ABSTRACT

The data presented here come from the article "Histomorphometric evaluation of the rat kidney submitted to warm ischemia and the protective effect of resveratrol" [1]. Rats of Wistar lineage (n=39; 9 weeks of age) were obtained and apportioned into 4 groups at random. Both groups Sham (S) and Sham Resveratrol (SR) were submitted to open laparotomy and dissection of the left renal pedicle, the same as groups Ischemia (I) and Ischemia Resveratrol (IR), being the last two also submitted to 1 h left warm renal ischemia. SR and IR were treated with 30 mg/kg of resveratrol intraperitoneally 1 h before the surgical procedure, while S and I received saline injections. Rats were killed a month after surgery by anesthetic overdose. A blood sample was collected by cardiac puncture for determination of serum urea and creatinine serum by biochemical analysis at automated enzymatic method. Kidneys were weighted, Sherles method was used for measurement of their volume and then both were fixated in buffered formalin for 48 h. Cortex-non-cortex areas ratio (C-NC) was assessed by Cavalieri's method using a stereoscope. The product of multiplying the renal volume by the C-NC is the cortical volume (CV). Left kidneys

* Corresponding author.

E-mail address: diogobenchimol@gmail.com (D.B. De Souza).

https://doi.org/10.1016/j.dib.2020.105545

^{2352-3409/© 2020} Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

fragments were processed for histology resulting in slides that were stained with haematoxylin and eosin. For histomorphometric analyses, 25 random cortical fields were photographed at 200x magnification using a camera attached to a light microscope. The estimation of glomerular volumetric density (Vv [Glom]), indication of proportional volume occupied by glomeruli in the cortex, was performed by the pointcounting method. The point-sampled intercepts method was used to estimate the volume-weighted mean glomerular volume (VWGV). Total number of glomeruli per kidney (N [Glom]) estimation was achieved through the formula CVxVv [Glom]/VWGV. All the data were tabulated in spreadsheets. The quantitative results were compared by one-way ANOVA with Tukey's post-test using GraphPad Prism software. All results were considered significant when the value of p < 0.05. © 2020 Published by Elsevier Inc.

This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Specifications table

Subject	Surgery
Specific subject area	Renal cancer surgery. Partial nephrectomy. Renal warm ischemia.
Type of data	Table
	Figure
	Graph
How data were acquired	Biochemistry kits: urea (Urea UV, REF 104-4 / 50, Lote 7013, Labtest, Lagoa Santa, Brazil) and creatinine (Creatinina K, REF 96-300, Lote 7013, Labtest). Apparatus: semiautomatic biochemical analyser (Bioplus BIO-2000, Barueri, Brazil), precision scale (Marte AD2000, São Paulo, Brazil), Axiocam 506 color (Carl Zeiss Microscopy, LLC, Jena, Germany) attached to the Stereo Discovery.V8 stereoscope (Carl Zeiss) and light microscope (Olympus BX51, Tokyo, Japan) equipped with a digital camera (Olympus DP71, Tokyo, Japan). Softwares: Zaiss Axiocam for Windows, Olympus Cam for Windows, Microsoft Excel 2016, Image J for Windows and GraphPad Prism 8.3.1 for Windows.
Data format	Raw Analysed
Parameters for data collection	The Wistar rats used were all male, clinically healthy, with an average weight of 320 g and 9 weeks of age. They were kept in polypropylene boxes with a maximum number of 3 animals/box, in a vivarium environment with light/dark cycle and were offered water and commercial feed ad libitum. They were divided into four groups at random. The treatment of animals in the Untreated (S and I) and Treated (SR and IR) groups was conducted in a standardized manner, and the same can be said for surgical procedures, euthanasia, blood collection and analysis of urea and creatinine, dissection and kidney collection, weighing, volume measurement, cleavage, buffered formalin fixation, Cavalieri method slice analysis for the cortex-non-cortex areas ratio (C-NC), histological processing, histological slide making and stain, drying, random photomicrographs, glomerular volumetric density (Vv [Glom]) and volume-weighted mean glomerular volume (VWGV) analysis, data tabulation and statistical analysis, P-value was always considered significant when <0.05.
Description of data collection	During each animal's anesthetic plan, a cardiac puncture was performed to collect blood, which was subsequently centrifuged to obtain the serum and thus, the serum urea and creatinine dosage by a semiautomatic biochemical analyser. The abdominal cavity was then opened to access the kidneys, which were dissected, collected and weighed. The renal volume was measured by the Scherle's method, which is used to determine the volume of bodies with an

	irregular surface based on the Archimedes principle, that is, a body totally or partially immersed in a fluid undergoes a thrust that is equal to the weight of the volume of the fluid displaced by the body. To measure it, the weight (W) is recorded to be given by the displacement of an isotonic saline solution by the organ volume. As the density (σ) of the isotonic saline solution is 1.0048 and the volume (V) is obtained by the formula: $V = W/\sigma$, the volume value is like the weight ($V \approx W$). The kidneys were cleaved transversely in the hilar region and fixed in separate flasks containing 3.7% buffered formalin solution. Isotropic, uniform and random fragments of the kidneys were obtained using the vertical cleavage method. The latter were routinely processed for histology in a processor with dehydration by ethyl alcohol baths in increasing concentrations, followed by clarification in xylol and, finally, embedded and embedded in paraffin in the apparatus. After slicing 5 μ m thick slices through the microtomy and making slides. After drying, the slides were stained by the haematoxylin and eosin method for histopathological and stereological Vv[Glom] and VWGV. The proportional area of the cortex and non-cortex regions (medulla, capsule and adipose tissue of the renal sinus) was calculated using Cavalieri's method using the ImageJ software. The kidneys were sectioned into seven to eight transverse slices 2 mm thick and a transvesal surface of each slice was photographed in a camera attached to the stereomicroscope, along with a ruler millimeter for further calibration of ImageJ. The images were analysed under 15x magnification. First, the distance occupied by a specified number of pixels of the image in millimeters is calibrated using the ruler. After calibration, the total area of the slice and the area of the cortical region. Multiplying the value obtained by the volume obtained by the Scherle method, it was possible to calculate the area of the cortical region. Multiplying the value obtained by the volume
	classes. This grid is placed over the image at randomly selected angles, with the angle being recalculated, at random, for each image analysed (ranging from 5° to 90°, with 5° intervals). The number of glomeruli per cubic millimeter of renal cortex (N [Glom]) was calculated using the formula VCxVv [Glom]/VWGV
Data source location	Institution: State University of Rio de Janeiro City/Town/Region: Rio de Janeiro Country: Brazil
Data accessibility Related research article	With the article Buys-Gonçalves GF, Sampaio FJB, Silva MEM, Pereira-Sampaio MA, De Souza DB. Histomorphometric evaluation of the rat kidney submitted to warm ischemia and the protective effect of resveratrol. Am J Surg. 2020; doi:10.1016/j.amjsurg.2020.02. In press.

Value of the data

- These data bring positive parameters and evidence regarding the nephroprotective effect of resveratrol related to warm ischemia in Wistar rats, an experimental model widely used in preclinical trials
- Such data may be beneficial for researchers who wish to justify studies involving the protective effects of resveratrol against renal or oxidative ischemic damage more generally. Thus, urologists and nephrologists who wish to research and/or use this bioflavonoid as a complementary treatment for their patients who will undergo partial nephrectomy can also benefit
- Scholars with lines of research involving bioflavonoids, or specifically resveratrol, can use this data and methodology to carry out related research, since they can be used as a complement and reference

How was the biochemical data obtained?

Fig. 1. How was the biochemical data obtained?.

• The present data demonstrate that resveratrol protects the kidney against damage from warm ischemia in a quantitative, that is, absolute way. This is because the number of glomeruli per kidney is very close to the number of remaining nephrons

1. Data description

The present dataset describes the levels of serum biochemical markers, as well as morphometric and stereological analysis of rat kidneys submitted to 1-hour arteriovenous ischemia treated previously with resveratrol. Fig. 1 demonstrates the experimental and analytical steps that were conducted to obtain serum biochemical data for urea and creatinine. Fig. 2 demonstrates the experimental and analytical steps that were conducted to obtain the morphometric and stereological data, as well as their analysis. Fig. 3 describes the calculations to obtain specific data so that it was possible to calculate the N[Glom]. Fig. 4 scatter chart representing C-NC raw data from different groups' animals; transversal black midline represents group's mean. Fig. 5 grouped column chart representing left renal volume and cortical volume averages of experimental groups; means are shown above the graph's bars. Fig. 6 scatter chart representing Vv[Glom] raw data from different groups' animals; transversal black midline represents group's mean. Fig. 7 scatter chart representing N[Glom] raw data from different groups' animals; transversal black midline represents group's mean. Table 1 shows raw data of serum urea and creatinine of rats submitted to sham surgery or to left renal warm ischemia with or without resveratrol treatment. Table 2 contains raw data of animals' body weight, renal weight and volume of experimental groups. Table 3 includes raw data of kidney morphological data of rats submitted to sham surgery or to left renal warm ischemia with or without resveratrol treatment.

2. Experimental design, materials, and methods

All experiments were performed according to the national and international laws for scientific use of animals, and this project was formally approved by the local Ethics Committee for animal experimentation.

Male rats of Wistar lineage (n = 39; 9 weeks of age) were used, being allocated into 4 groups at random: Sham (S) – group submitted to open laparotomy and dissection of the renal pedicle; Sham Resveratrol (SR) – group previously treated with resveratrol and submitted to the same procedures of group Sham; Ischemia (I) - group submitted to 1-hour renal warm ischemia; Is-

How was the morphometric data obtained?

Fig. 2. How was the morphometric data obtained?.

Calculations used:

Cortical area = kidney total area - Non-cortical area

C-NC = cortical area / kidney total area

CV = kidney volume x C-NC

Total glomerular volume (mL) = $CV \times (Vv [Glom] / 100)$

Total glomerular volume ($m\mu^3$) = Total glomerular volume (mL) x 10¹¹

 $N[Glom] = Total glomerular volume (m\mu^3) / VWGV$

Fig. 3. Calculations Used.

Cortex-non-cortex areas ratio

Fig. 4. Cortex-non-cortex areas ration.

chemia Resveratrol (IR) - group previously treated with resveratrol and submitted to 1-hour renal warm ischemia. Groups SR and IR received 30 mg/kg of resveratrol (Resveratrol, Terraternal, Santa Clara, USA) intraperitoneally 1 h before surgery, while untreated groups (S and I) received saline injections.

The animals were anesthetized via intramuscular ketamine (Cetamin, Syntec, Santana de Parnaíba, Brazil, 100 mg/kg) and xylazine (Xilazin, Syntec, 20 mg/kg). Once the surgical field was aseptic, a ventral midline incision was used to expose the abdominal viscera, which were displaced to expose the retroperitoneal area and the left kidney. The left renal artery and vein were isolated by blunt dissection. In rats of groups I and IR the renal vessels were clamped for 1 h, while in groups S and SR the pedicle was only dissected, and no ischemia was induced. All animals remained under anesthesia for 1 h, when the abdominal viscera were replaced, and the surgical wound was covered with moistened gauze. At the end of this period, vascular clamps

Fig. 5. Average Left Renal Volume and Cortical Volume.

Glomerular Volumetric Density

Fig. 6. Glomerular Volumetric Density.

were removed, and left kidney reperfusion was observed in groups I and IR. For all groups abdominal cavity was closed routinely.

The animals were killed a month after surgery by anesthetic overdose (Isoflurane, BioChimico, Rio de Janeiro, Brazil). A blood sample was collected by cardiac puncture during rats' anesthetic

Fig. 7. Number of Glomeruli per Kidney.

Table 1

Raw data: serum urea and creatinine of rats submitted to sham surgery or to left renal warm ischemia with or without resveratrol treatment.

Sham group	Serum urea (mg/dL)	Serum creatinine (mg/dL)	Ischemia group	Serum urea (mg/dL)	Serum creatinine (mg/dL)
Animal S1	42	0.46	Animal I1	43	0.42
Animal S2	41	0.44	Animal I2	50	0.44
Animal S3	40	0.44	Animal I3	44	0.45
Animal S4	42	0.45	Animal I4	40	0.51
Animal S5	41	0.42	Animal I5	43	0.50
Animal S6	43	0.45	Animal I6	50	0.51
Animal S7	39	0.45	Animal I7	51	0.46
Animal S8	41	0.42	Animal I8	45	0.50
Animal S9	45	0.44	Animal I9	44	0.45
Animal S10	41	0.45	Animal I10	48	0.50
Sham	Serum urea	Serum creatinine	Ischemia	Serum urea	Serum creatinine
Resveratrol	(mg/dL)	(mg/dL)	Resveratrol	(mg/dL)	(mg/dL)
group			group		
Animal SR1	46	0.46	Animal IR1	49	0.46
Animal SR2	45	0.45	Animal IR2	42	0.53
Animal SR3	47	0.50	Animal IR3	43	0.49
Animal SR4	46	0.50	Animal IR4	43	0.51
Animal SR5	48	0.43	Animal IR5	45	0.43
Animal SR6	39	0.44	Animal IR6	42	0.50
Animal SR7	43	0.49	Animal IR7	44	0.49
Animal SR8	44	0.43	Animal IR8	42	0.44
Animal SR9	45	0.45	Animal IR9	40	0.39
			Animal IR10	43	0.40

Raw	data:	body	weight,	renal	weight	and	volume	of	experimental	group	s.

Table 2

Animals from	Body weight (g)	Left kidney weight	Left kidney	Right kidney	Right kidney
Sham group		(g)	volume (ml)	weight (g)	volume (ml)
Animal S1	298.0	0.93	0.91	1.08	1.04
Animal S2	301.0	1.05	1.01	1.11	1.08
Animal S3	278.5	1.00	0.98	1.09	1.05
Animal S4	291.5	1.01	1.00	1.01	0.99
Animal S5	368.5	1.11	1.07	1.13	1.10
Animal S6	299.0	0.90	0.88	0.95	0.93
Animal S7	329.5	1.04	1.00	0.97	0.93
Animal S8	357.5	1.20	1.17	1.13	1.11
Animal S9	369.0	1.17	1.19	1.28	1.29
Animal S10	346.5	1.41	1.37	1.32	1.31
Animals from	Body weight (g)	Left kidney weight	Left kidney	Right kidney	Right kidney
Ischemia group		(g)	volume (ml)	weight (g)	volume (ml)
Animal I1	300.0	1.05	1.01	1.01	1.00
Animal I2	361.0	1.37	1.34	1.24	1.22
Animal I3	295.0	0.85	0.90	0.95	0.94
Animal I4	362.5	1.55	1.31	1.36	1.37
Animal I5	339.0	1.32	1.25	1.36	1.32
Animal I6	292.0	1.00	1.05	0.94	0.96
Animal I7	295.0	118	120	0.99	102
Animal 18	342.0	1 37	131	129	129
Animal 19	328.0	135	126	103	131
Animal 110	356.0	124	118	140	138
Animals from	Body weight (g)	Left kidney weight	Left kidney	Right kidney	Right kidney
Sham	body weight (g)	(g)	volume (ml)	weight (g)	volume (ml)
Resveratrol		(8)	volume (m)	weight (g)	volume (m)
group					
Animal SR1	384 5	112	114	116	1 17
Animal SR1	376.0	1.12	1.14	1.10	1.17
Animal SR2	248.0	1.14	1.15	1.25	1.25
Animal SRJ	252.0	1.14	1.00	1.20	1.20
Animal SR4	262.0	1.12	1.05	1.11	1.03
Animal SRS	202.0	1.25	1.25	1.54	1.55
Animal SR0	298.0	1.03	1.04	1.12	1.11
AllIIIdi SK/	334.0	1.21	1.21	1.19	1.20
Animal SR8	348.5	1.50	1.50	1.37	1.37
Animal SK9	368.0	1.54	1.50	1.52	1.46
Animals from	Body weight (g)	Left kidney weight	Left kidney	Right kidney	Right kidney
Ischemia		(g)	volume (ml)	weight (g)	volume (ml)
Resveratrol					
group					
Animal IR1	276.5	0.89	0.99	0.80	0.81
Animal IR2	369.5	1.12	1.12	1.11	1.22
Animal IR3	337.0	1.19	1.31	1.10	1.10
Animal IR4	302.5	1.04	1.04	0.98	0.98
Animal IR5	278.0	0.92	0.93	0.75	0.74
Animal IR6	323.5	1.31	1.31	1.16	1.17
Animal IR7	350.5	1.15	1.15	1.34	1.39
Animal IR8	331.0	1.27	1.23	1.17	1.13
Animal IR9	324.5	1.25	1.20	1.25	1.23
Animal IR10	290.5	1.05	0.99	1.05	0.98

plan, so it was possible to determine urea and creatinine serum levels by biochemical analysis (automated enzymatic method).

Both kidneys were dissected, collected and weighed. The renal volume was measured by the Scherle's method [1,2]. Left kidneys fixed in 4% buffered formaldehyde. The cortex-non-cortex areas ratio (C–NC) was achieved by morphometrical analysis of 2 mm transversal slices of left kidneys and calculated by the Cavalieri method [3–5]. The cortical volume (CV) was calculated by multiplying the renal volume by the C–NC [5].

Table 3

Raw data: Kidney morphological data of rats submitted to sham surgery or to left renal warm ischemia with or without resveratrol treatment.

Sham group	C-NC Ratio	Cortical Volume (ml)	Vv[Glom] (%)	Total glomerular VWGV (μm³) volume (μm³)		N[Glom] (millions per kidney)
Animal S1 Animal S2 Animal S3 Animal S4 Animal S5 Animal S6 Animal S7 Animal S8 Animal S9 Animal S10	0.76912 0.71523 0.77467 0.78191 0.71621 0.76534 0.75988 0.74567 0.73288 0.71888	0.69990 0.72238 0.75918 0.78191 0.76635 0.67350 0.75988 0.87244 0.87213 0.98487	5.81428 6.09523 5.95238 5.72380 6.49947 7.71428 6.38095 4.98842 5.61904 5.14285	40,694,579,756 44,031,304,147 45,189,604,684 44,755,106,953 49,808,765,114 51,955,834,587 48,488,087,942 43,521,230,900 49,005,799,925 50,650,821,126	1,887,222.214 1,388,244.613 1,477,171.314 1,635,263.227 1,659,965.089 1,284,496.795 1,422,827.219 1,353,662.007 1,556,217.271 1,422,827.219	21,563.21574 31,717.25194 30,591.98636 27,368.74786 30,005.91124 40,448.39566 34,078.69016 32,150.73680 31,490.33291 35,598.71533
Ischemia group Animal 11 Animal 12 Animal 13 Animal 14 Animal 15 Animal 16 Animal 16 Animal 18 Animal 19 Animal 110	C-NC Ratio 0.69766 0.69092 0.71733 0.67768 0.65233 0.71521 0.70938 0.66900 0.647784 0.68102	Cortical Volume (ml) 0.70463 0.92583 0.64560 1.02330 0.81541 0.75097 0.85126 0.87639 0.81620 0.80361	Vv[Glom] (%) 4.56190 4.00000 3.90476 4.57142 3.71428 4.00000 3.80952 3.14285 4.66666	Total glomerular volume (μm ³) 32,144,958,118 37,033,390,707 25,824,003,346 39,957,625,409 37,276,064,573 27,893,249,915 34,050,483,234 33,386,406,368 25,652,268,840 37,502,018,120	VWGV (μm ³) 1,783,474.396 1,452,469,453 1,393,184.985 1,452,469,453 1,758,772.534 1,195,570.094 1,496,932.803 1,146,166,371 1,343,781.262 1,338,840.890 	N[Glom] (millions per kidney) 18,023.78447 25,496,84652 18,535.94722 27,510.13134 21,194.36359 23,330.50154 22,746,83484 29,128.76108 19,089.61641 28,010.81025
Sham Resveratrol	C-NC Ratio	Cortical volume (ml)	Vv[Glom] (%)	Total glomerular volume (μm³)	VWGV (µm³)	N[Glom] (millions per kidney)
Animal SR1 Animal SR2 Animal SR3 Animal SR3 Animal SR4 Animal SR6 Animal SR7 Animal SR8 Animal SR8	0.75965 0.73093 0.77838 0.75568 0.78412 0.79646 0.77845 0.78531 0.74494	0.86600 0.84057 0.84065 0.79346 0.98015 0.82832 0.94192 1.17796 1.11741	4.76190 4.00000 6.47619 4.95238 4.57142 7.33333 6.19047 5.61904 5.80952	41,238,541,789 33,622,988,729 54,442,400,557 39,295,526,978 44,806,879,708 60,743,904,701 58,309,860,659 66,190,601,680 64,916,243,536	1,778,534.024 1,739,011.045 1,363,542.751 1,526,575.037 1,862,520.352 1,832,878.119 1,561,157.643 1,585,859.504 1,566,098.015	23,186.81636 19,334.54582 39,927.16803 25,740.97311 24,057.12219 33,141.26787 37,350.39887 41,737.99854 41,450.94554
Ischemia Resveratrol	C-NC Ratio	Cortical volume (ml)	Vv[Glom] (%)	Total glomerular volume (μm³)	VWGV (µm ³)	N[Glom] (millions per kidney)
Animal IR1 Animal IR2 Animal IR2 Animal IR3 Animal IR4 Animal IR5 Animal IR6 Animal IR7 Animal IR8 Animal IR9 Animal IR10	0.75920 0.70738 0.68777 0.67783 0.70587 0.74879 0.74647 0.73676 0.69082 0.70410	0.75161 0.79227 0.90098 0.70494 0.65646 0.98092 0.85844 0.90621 0.82899 0.69705	6.95238 6.35238 6.20952 6.76190 6.09523 6.09523 5.52380 5.36666 4.76190 6.00000	52,255,110,644 50,328,361,859 55,947,121,293 47,667,778,483 40,013,300,793 59,789,779,915 47,418,856,577 48,633,737,173 39,475,823,498 41,823,540,000	1,674,786.206 1,343,781.262 1,501,873.175 1,324,019.773 1,704,428.439 1,640,203.600 1,422,827.219 1,274,616.050 1,773,593.651 2,045,314.127	31,201.06344 37,452.79330 37,251.56172 36,002.31617 23,476.08141 36,452.65742 33,327.20653 38,155.59765 22,257.53541 20,448.46777

Random samples from all 39 left kidneys were processed for paraffin embedding, sectioned at 5µm thickness, and resulting histological blades were stained with haematoxylin and eosin. From each kidney, 25 histological fields, obtained from five different sections of the renal cortex, were photographed with a camera in a light microscope to be examined. Glomerular volumetric density (Vv[*Glom*]), which indicates the proportional volume occupied by the glomeruli in the cortex, was estimated by the point-counting method [3–5]. The volume-weighted mean

glomerular volume (VWGV) was estimated by using the point-sampled intercepts method [3–5]. The estimation of the total number of glomeruli per kidney (N[Glom]) was achieved through the formula CVxVv[Glom]/VWGV [5].

Analyses were performed using GraphPad Prism 8.3.1 (GraphPad Software, San Diego, USA). The quantitative results were compared by one-way ANOVA with Tukey's post-test and all results were considered significant when the value of p < 0.05.

Declaration of Competing Interests

The authors declare that they have no known competing financial interests or personal relationships which have, or could be perceived to have, influenced the work reported in this article.

Acknowledgments

This study was supported by grants from the National Council for Scientific and Technological Development (CNPq), the Coordination for the Improvement of Post-Graduate Students (CAPES), and the Foundation for Research Support of Rio de Janeiro (FAPERJ), Brazil.

Supplementary materials

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.dib.2020.105545.

References

- G.F. Buys-Gonçalves, F.J.B. Sampaio, M.E.M. Silva, M.A. Pereira-Sampaio, D.B. De Souza, Histomorphometric evaluation of the rat kidney submitted to warm ischemia and the protective effect of resveratrol, Am. J. Surg. (2020) In press, doi:10.1016/j.amjsurg.2020.02.
- [2] W. Scherle, A simple method for volumetry of organs in quantitative stereology, Mikroskopie 26 (1970) 57-60.
- [3] H.J. Bagetti-Filho, F.J. Sampaio, R.G. Marques, M.A. Pereira-Sampaio, Different from renal artery only clamping, artery and vein clamping causes a significant reduction in number of rat glomeruli during warm ischemia, J. Endourol. 26 (2012) 1335–1339, doi:10.1089/end.2012.0166.
- [4] J.A. Damasceno-Ferreira, G.R. Bechara, W.S. Costa, M.A. Pereira-Sampaio, F.J.B. Sampaio, D.B. Souza, The relationship between renal warm ischemia time and glomerular loss, .Exp. Study Pig Model. Acta Cir. Bras. 32 (2017) 334–341, doi:10.1590/s0102-865020170050000002.
- [5] R.F. Assumção, M.A. Pereira-Sampaio, F.J.B. Sampaio, D.B de Souza, Does a ureteral obstruction affect the contralateral kidney morphology? A stereological analysis in a rodent model, Urol. Int. 100 (2018) 327–332, doi:10.1159/ 000486760.