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Abstract

In this study, we performed genome-wide association analyses on SARS-CoV-2 genomes to identify genetic mutations associ-
ated with pre-symptomatic/asymptomatic COVID-19 cases. Various potential covariates and confounding factors of COVID-19 
severity, including patient age, gender and country, as well as virus phylogenetic relatedness were adjusted for. In total, 3021 
full-length genomes of SARS-CoV-2 generated from original clinical samples and whose patient status could be determined 
conclusively as either ‘pre-symptomatic/asymptomatic’ or ‘symptomatic’ were retrieved from the GISAID database. We found 
that the mutation 11 083G>T, located in the coding region of non-structural protein 6, is significantly associated with asympto-
matic COVID-19. Patient age is positively correlated with symptomatic infection, while gender is not significantly correlated with 
the development of the disease. We also found that the effects of the mutation, patient age and gender do not vary significantly 
among countries, although each country appears to have varying baseline chances of COVID-19 symptom development.

DATA SUMMARY
All sequence data used in this study were retrieved from the 
GISAID database. All supplementary information is available 
with the article as PDF files online. Supplementary material 
can be found in Figshare: https://​doi.​org/​10.​6084/​m9.​figshare.​
16528950.​v1 [1].

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), the causative agent of coronavirus disease 2019 
(COVID-19), was first reported in Wuhan, Hubei, China, 
in late December 2019 [2]. SARS-CoV-2 is a positive-sense 
ssRNA virus in the family Coronaviridae [3]. It is the seventh 
known coronavirus capable of infecting humans, after HCoV-
229E, HCoV-OC43, HCoV NL63, HKU1, MERS-CoV and 
the original SARS-CoV. The first four typically cause non-
lethal mild upper respiratory diseases, while the last two, 

as well as SARS-CoV-2, can cause severe lethal respiratory 
illnesses [4, 5].

The virus was found to spread around the globe, and as of now 
(October 2021) has infected more than 240 million people 
globally [6], which has overwhelmed hospitals in many coun-
tries. Although the case–fatality ratio of SARS-CoV-2 (~1.4–
2.29 % [6, 7]) is lower than those of SARS-CoV (11 %) [8, 9] 
and MERS-CoV (34–37 %) [10], due to the greater number of 
infected cases, the number of deaths caused by SARS-CoV-2 
is much greater than those caused by SARS-CoV and MERS-
CoV. To date, at least 4.9 million deaths have been reported to 
be associated with SARS-CoV-2 infection [6]. A systematic 
review [11] showed that the serial interval time of COVID-19 
(i.e. the time between illness onset in the primary case to 
the onset in the secondary case) is ~5.2 (mean range from 
23 studies: 4.2–7.5) days while the incubation period (i.e. the 
time from infection to the onset of illness) is ~6.5 (mean range 
from 14 studies: 4.8–9) days. This shorter serial interval time 
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suggests a substantial role of pre-symptomatic/asymptomatic 
transmission [11]. Mathematical model analyses suggested 
that more than half of all transmissions may be attributable 
to pre-symptomatic/asymptomatic transmission [12]. In 
order to effectively control the virus, it is thus important to 
understand the factors that underlie the disease severity and 
pathogenesis.

Several host factors correlated with COVID-19 severity have 
been identified, including patient age [13–15], patient gender 
[15–18], pre-existing medical conditions such as diabetes and 
chronic liver disease [15, 19], levels of CD4 + and CD8+ T cell 
counts, levels of IL-6 and IL-8 [20], and genotypes of human 
leucocyte antigen genes [21]. A number of viral genetic factors 
associated with the increase in COVID-19 severity have 
also been characterized. For example, nucleotide mutations 
14 408C>T (i.e. the mutation P323L in RNA-dependent RNA 
polymerase protein) and 23 403A>G (i.e. the mutation D614G 
in the virus spike protein), which tended to be found together, 
were reported to show significant positive correlations with 
death [21], and to be found more frequently in severe cases 
than mild cases [22]. The latter mutation was also reported to 
increase infectivity of the virus in multiple human cell types 
[23]. In addition, a study has shown that ORF3a mutations 
are associated with higher infection and mortality rates of 
SARS-CoV-2 [24]. However, viral mutations associated with 
pre-symptomatic/asymptomatic SARS-CoV-2 infection are 
still poorly characterized.

There are currently millions of SARS-CoV-2 genomes from 
around the world made publicly available on the database of 
the Global Initiative on Sharing All Influenza Data (GISAID) 
[25], and some of which have patient status made publicly 
available. While most of the sequences were from sympto-
matic cases, some were from asymptomatic cases, presenting 
us an opportunity to examine viral genetic factors that might 
be associated with the virus’s pathogenicity on a large scale.

METHODS
SARS-CoV-2 genome sequences with patient status
In total, 18 705 full-length/almost full-length genome 
sequences of SARS-CoV-2 (>29 000 nt) with patient status 
were downloaded from the GISAID database on 28 December 
2020 together with their metadata. A table of acknowledge-
ments can be found in Table S1 (available in the online version 
of this article), and the metadata can be found in Table S2. 
To allow for accurate determination of the genetic factors 
associated with COVID-19 pathogenicity, we only analysed 
sequences whose patient status could be unambiguously 
determined as either ‘pre-symptomatic/asymptomatic’ or 
‘symptomatic’. We categorized ‘Asymptomatic/Released’, 
‘Asymptomatic’, ‘Asymptomatic, identified as positive during 
preoperation investigation’, ‘No clinical signs’ and ‘No clinical 
signs without hospitalization’ as ‘pre-symptomatic/asymp-
tomatic’ (257 sequences). If the patient status was ‘Acute 
upper respiratory infection, unspecified’, ‘Death’, ‘Deceased’, 
‘Hospitalized (Critical)’, ‘Hospitalized/Deceased’, ‘Hospital-
ized, deceased’, ‘Hospitalized in ICU’, ‘Hospitalized (Intensive 

care unit)’, ‘Hospitalized (Mild)”, ‘Hospitalized (Moderate)’, 
‘Hospitalized, oxygenotherapy, diarrhoea’, ‘Hospitalized 
(Severe)’, ‘Hospsitalized, ICU, fully recovered’, ‘ICD-10 
Disease: J00-J06 Acute upper respiratory infections’, ‘ICD-10 
Disease: J06.9 Acute upper respiratory infection, unspeci-
fied’, ‘ICD-10 Disease: J18.1 Lobar pneumonia, unspecified 
organism’, ‘ICD-10 Disease: J18.9 Pneumonia, unspecified 
organism’, ‘ICU’, ‘ICU; Serious’, ‘Intensive Care Unit’, ‘Live, 
mild symptoms, at home’, ‘Mild’, ‘Mild, at home’, ‘Mild case’, 
‘Mild clinical signs without hospitalization’, ‘Mild clinical 
signs without hospitalization. Diarrhoea’, ‘Mild clinical signs 
without hospitalization. Distorted ability to smell’, ‘Mild 
clinical signs without hospitalization. Distorted ability to 
smell and taste’, ‘Mild clinical signs without hospitalization. 
Distorted ability to taste’, ‘Mild symptoms (fever, cardiovas-
cular disorders)’, ‘Mild symptoms inpatient for observation’, 
‘Moderate/Outpatient’, ‘Paucisymptomatic’, ‘Severe/ICU’, 
‘Severe’, ‘Symptomatic’ or ‘Symptoms indicative of upper 
respiratory infection’, we annotated them as ‘symptomatic’ 
(10 172 sequences). Sequences that were not generated from 
original clinical samples or human samples were excluded 
(three asymptomatic samples and 10 symptomatic samples), 
leaving 10 416 sequences in the whole dataset. Virus genomes 
associated with symptomatic Japanese cases were subsam-
pled to reduce the data redundancy (see main text). Fifteen 
sequences with unusually high sequence diversity were also 
removed. In total, our dataset comprised 3021 sequences, 

Impact Statement

Coronavirus disease 2019 (COVID-19) is a major public 
health concern, caused by a novel coronavirus called 
SARS-CoV-2. As of now, more than 240 million cases of 
COVID-19 with more than 4.9 million deaths have been 
reported worldwide, and the rapid surge in the number of 
COVID-19 patients has overwhelmed hospitals’ capacity 
around the world. It has been reported that up to 80 % 
of SARS-CoV-2 infection might be asymptomatic, and 
this probably plays an important part in the rapid global 
transmission of the virus. To effectively contain the 
disease, it is thus imperative to understand the disease 
progression and the factors that drive the process. 
Here, we performed genome-wide association analyses 
on all SARS-CoV-2 genomes in the GISAID database, 
and found that a mutation at genomic position 11 083, 
namely the 11083G>T mutation, located in the coding 
region of non-structural protein 6, is significantly associ-
ated with asymptomatic COVID-19, adjusted for various 
confounders and covariates, including virus phyloge-
netic relatedness, patient age, gender and country. Our 
results have implications for the development of better 
and more informative test kits, for example, allowing 
potentially symptomatic cases to be distinguished from 
asymptomatic ones, and this could lead to more effective 
disease management and control.
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252 of which were associated with pre-symptomatic/asymp-
tomatic infections, while 2769 sequences were associated 
with symptomatic cases. Taxonomic and geographical distri-
butions of the sequences can be found in Tables S3 and S4, 
respectively.

Phylogenetic reconstruction
A manually curated full-length multiple sequence alignment 
of the 3021 SARS-CoV-2 genomes was constructed. Potential 
recombination within the alignment was checked by using the 
Phi test implemented in SplitsTree4 [26], but no evidence was 
found (P=0.91). A maximum-likelihood phylogeny was esti-
mated by using IQ-TREE [27]. ModelFinder [28] determined 
the general time reversible model (GTR) with empirical base 
frequencies (+F) and the 5-discrete-rate-category FreeRate 
model (+R5) to be the best-fit nucleotide substitution model 
under the Bayesian information criterion, and was used for 
tree reconstruction. Bootstrap clade support was computed 
based on 1000 pseudoreplicate datasets with ultrafast boot-
strap approximation. The terminal branch leading to sample 
EPI_ISL_407976 was determined as a suitable root placement 
by comparing the estimated tree with the global audacity tree 
from the GISAID database. The maximum-likelihood tree in 
Newick format can be found in Data S1.

Genetic variation detection
Polymorphic sites with less than 50 % ambiguous bases and 
aggregated minor allele frequencies of more than 5 % of the 
collected sequences were identified. For initial screening of 
candidate sites, genetic variations present in the reference 
genome (RefSeq accession number: NC_045512.2) were 
considered ‘reference’ variations, or otherwise as ‘non-
reference’ variations, and for each position, a binary profile 
of genetic variations was constructed. We believed this was 
reasonable as all positions had only one major alternative 
variant, with the frequencies of the third most common 
allele being less than 1 % for all sites except one (Table 1). 
Uncertainty coefficients were computed for all pairs of posi-
tions using the UncertCoef function in R (Table S5). Pairs with 
scores of >0.90 (out of 1) were grouped together as sites with 
co-varying variants, and were analysed as strongly linked loci. 
Likewise, for each set of strongly linked loci, a sequence was 
considered to be a ‘reference’ variant if all of its genetic varia-
tions on the sites were those present in the reference genome, 
and otherwise as a ‘non-reference’ variant.

Phylogenetic-based approach to GWAS
TreeWAS [29] was used for initial screening of SARS-CoV-2 
genetic variations that might be associated with COVID-19 
pathogenicity, defined as two discrete traits: ‘symptomatic’ 
and ‘pre-symptomatic/asymptomatic’, conditioning on the 
estimated virus phylogeny. Three separate tests of association 
were performed: the ‘terminal’, ‘simultaneous’ and ‘subsequent’ 
tests. Analysis-wide and separate Bonferroni multiple-testing 
corrections were applied. Ancestral states of both genetic 
and phenotypic states were inferred by using the TreeWAS 
software package [29] under the maximum-parsimony 

framework. The analysis was applied to all of the 1000 trees 
in the bootstrap tree distribution obtained from the phylo-
genetic analysis described above to account for phylogenetic 
uncertainty. In each test, 1000 genetic loci were simulated to 
estimate the null distributions of association scores, fixing 
the tree topology and the distribution of phenotypic states 
but reassigning genetic substitutions to new branches. The 
direction of association was determined based on crude odds 
ratios, estimated using the ​oddsratio.​wald function, imple-
mented in the R software package epitools.

Examination of the undetermined/ambiguous base 
found at site 11083
Our initial screening suggested that genetic variations at 
site 11 083 are associated with COVID-19 pathogenicity, 
and examination revealed that 18 sequences had either an 
undetermined (N) or ambiguous (K) base at the position 
(see Results). To examine the nature of the genetic variations 
at this site, we were able to obtain raw sequencing data for 
14 of them, and mapped them against the reference genome 
(NC_045512.2) using bwa [30] and samtools [31]. Crude 
read mapping depths and base/indel calling statistics were 
computed by using Integrative Genomics Viewer [32] (Fig. S1).

Generalized linear mixed model fitting
To further test the association detected by the initial screening, 
we fitted various binomial generalized linear mixed models 
to the data. In addition to the patient status and virus genetic 
variations, this analysis also incorporated patient age, gender 
and sequence country of origin, as well as virus phylogenetic 
structure to the models. The virus phylogenetic structure 
was simply the variance/co-variance matrix of the estimated 
phylogeny (Fig. 1), standardized to have a determinant of 
1. The effects of the virus genetic mutation, patient age and 
gender were treated as fixed effects, while the effects of virus 
phylogenetic structure and patient country were treated as 
random effects. Four models were examined in total (see 
Table S6 for model specifications), and were fitted to the 
data by using the relmatGLmer function, implemented in 
the lme4qtl R package [33]. The anova function was used to 
perform the likelihood ratio test to identify the best-fit model. 
The estimated parameter values can be found in Table S7.

RESULTS
SARS-CoV-2 genome sequences with patient status
SARS-CoV-2 genomes with patient status data were retrieved 
from the GISAID database [25] on 28 December 2020. At 
the time of the study, 18 705 genome sequences were full-
length/almost full-length (>29 000 nt), and had patient 
status information (Table S1). The metadata of the sequences 
can be found in Table S2. Of the 18 705 sequences, 10 416 
sequences were generated from original clinical samples, 
and had patient statuses that could be determined as either 
‘pre-symptomatic/asymptomatic’ (254 sequences) or ‘sympto-
matic’ (10 162 sequences). See the Methods section for more 
details about patient grouping. Further inspection revealed 
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that the majority of the sequences associated with sympto-
matic infections were from Japan (8776/10 162=86.36 %), and 
they were highly redundant – according to the classification 
scheme described previously [34] and the GISAID haplo-
group assignment; 8136/10 162 (80.06 %) of all symptomatic 
sequences comprised just five distinct lineages sampled 
from Japan, namely B.1.1.284 haplogroup GR (N=4005, 
39.41%), B.1.1 haplogroup GR (N=2612, 25.70%), B.1.1.214 
haplogroup GR (N=1020, 10.04%), B.1.1.48 haplogroup GR 

(N=343, 3.38%) and A haplogroup S (N=150, 1.48%). We thus 
randomly subsampled the Japanese data so that there were at 
most 150 sequences from each of these lineages. Preliminary 
phylogenetic analysis showed that 15 sequences had unusu-
ally long terminal branches and had unusually high sequence 
diversities (>9×10−4 mutations per site) compared to the 
reference SARS-CoV-2 genome (RefSeq accession number: 
NC_045512.2), probably due to primer contamination. 
Thirteen were associated with symptomatic cases, while two 

Table 1. SARS-CoV-2 polymorphic sites under the study

Twenty-six polymorphic sites with <50 % ambiguous bases and aggregated minor allele frequencies of >5 % of the collected sequences were analysed 
in our analyses. Sites with co-occurring variants, i.e. those with pairwise uncertainty coefficients of  >0.90 (Table S5), were grouped together for 
analysis.

Nucleotide 
position*

Nucleotide grouping* Reference variant 
[frequency (%)]*

Alternative variant [frequency 
(%)]

Gene location Substitution type Amino acid change†

313 313 C(70.18) T(29.66), N(0.1), –(0.03), 
Y(0.03)

ORF1ab:NSP1 Synonymous L16

1059 1059 C(91.43) T(8.47), Y(0.07), N(0.03) ORF1ab:NSP2 Non-synonymous T85I

3037 3037 C(17.71) T(82.16), N(0.07), Y(0.07) ORF1ab:NSP3 Synonymous F106

11 083 11 083 G(92.62) T(6.79), N(0.56), K(0.03) ORF1ab:NSP6 Non-synonymous L37F

18 877 18 877 C(94.21) T(5.76), N(0.03) ORF1ab:NSP14 Synonymous L280

20 268 20 268 A(93.02) G(6.59), N(0.4) ORF1ab:NSP15 Synonymous L216

23 403 23 403 A(18.21) G(81.53), N(0.2), R(0.07) S Non-synonymous D614G

25 563 25 563 G(83.88) T(14.96), C(1.06), N(0.1) ORF3a Non-synonymous Q57H

26 730 26 730 G(94.64) A(5.1), T(0.13), C(0.07), 
N(0.07)

M Non-synonymous V70I, V70F, V70L

26 735 26 735 C(94.87) T(5.06), N(0.07) M Synonymous Y71

28 975 28 975 G(92.98) T(6.29), C(0.53), N(0.2) N Non-synonymous M234I

29 692 29 692 G(92.65) T(5.66), –(1.42), N(0.26) 3′UTR Non-coding –

241 241/14 408 C(16.95) T(82.75), G(0.13), A(0.07), 
Y(0.07), –(0.03)

5′UTR Non-coding –

14 408 C(17.28) T(82.36), Y(0.2), N(0.17) ORF1ab:RDRP Non-synonymous P323L

8782 8782/28 144 C(92.98) T(6.92), N(0.1) ORF1ab:NSP4 Synonymous S76

28 144 T(93.25) C(6.75) ORF8 Non-synonymous L84S

18 167 18167/21 518 C(94.14) T(5.79), A(0.07) ORF1ab:NSP14 Non-synonymous P43L, P43H

21 518 G(93.88) T(5.83), N(0.3) ORF1ab:NSP16 Non-synonymous R287I

28 881 28 881/28 882/28 883 G(49.75) A(49.85), N(0.3), R(0.1) N Non-synonymous R203K,
K204R

28 882 G(49.95) A(49.65), N(0.26), R(0.1), 
T(0.03)

28 883 G(50.05) C(49.59), N(0.26), S(0.1)

4346 4346/9286 
/10 376/14 708/28 725

T(94.24) C(5.76) ORF1ab:NSP3 Non-synonymous S543P

9286 C(94.11) T(5.79), N(0.1) ORF1ab:NSP4 Synonymous N244

10 376 C(93.88) T(6.06), N(0.07) ORF1ab:NSP5 Non-synonymous P108S

14 708 C(94.17) T(5.79), N(0.03) ORF1ab:RDRP Non-synonymous A423V

28 725 C(94.11) T(5.86), N(0.03) N Non-synonymous P151L

*With respect to the reference SARS-CoV-2 genome (RefSeq accession number: NC_045512.2).
†Reported for non-ambiguous base changes only.



5

Aiewsakun et al., Microbial Genomics 2021;7:000734

Fig. 1. SARS-CoV-2 phylogeny. The tree was estimated under the maximum-likelihood framework implemented in IQ-TREE2 [27] based 
on a manually curated alignment of 3021 full-length SARS-CoV-2 genomes. Potential recombination within the alignment was checked 
by using the Phi test implemented in SplitsTree4 [26], but no evidence was found (P=0.91). The best-fit nucleotide substitution model 
was determined to be GTR+F+R5 (the general time reversible model +empirical base frequencies+the 5-discrete-rate-category FreeRate 
model) by ModelFinder [28] under the Bayesian information criterion and was used for tree reconstruction. We compared our tree with 
the global tree obtained from GISAID, and determined the terminal branch leading to sample EPI_ISL_407976 as a suitable location for 
root placement. Bar, substitutions per site. The tree file in Newick format with bootstrap clade-support values, computed based on 1000 
bootstrap trees, can be found in Data S1. The three columns on the right indicate the United Nations (UN) geoscheme subregion, the 
GISAID haplogroup assignment and the patient status of the sequences, respectively (see keys). The World map below the tree shows 
the countries from which the sequences were sampled, colored according to the UN geoscheme subregions.
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were obtained from pre-symptomatic/asymptomatic cases, 
and they were removed from the dataset. In total, our curated 
dataset comprised 3021 sequences, 252 of which were associ-
ated with pre-symptomatic/asymptomatic infections while 
2769 sequences were associated with symptomatic infections.

The curated dataset covered a wide diversity of SARS-CoV-2, 
comprising 148 distinct viral lineages and eight GISAID 
haplogroups (Table S3) sampled from 36 countries/terri-
tories and 13 United Nations (UN) geoscheme subregions 
(Table S4). Fig. 1 shows a maximum-likelihood phylogeny 
estimated from the SARS-CoV-2 genomes collected. We 
found that sequences of different geographical origins often 
clustered together phylogenetically, indicating substantial 
cross-country and cross-continent transmissions. Viruses of 
the same GISAID haplogroups tended to form distinct and 
tight clusters of sequences in the tree, with the exception of 
haplogroup G. Haplogroup G was estimated to be a para-
phyletic group basal to haplogroups GR, GV and GH. This 
phylogenetic pattern is expected however, since the haplotype 
defining haplogroup G is parental/a subset of those defining 
haplogroups GR, GV and GH [35].

The distribution of SARS-CoV-2 genomes associated with pre-
symptomatic/asymptomatic and symptomatic infections were 
significantly different among lineages [χ2 test: χ2 score=1094.3, 
degrees of freedom (d.f.)=147, P<2.2×10−16) and GISAID haplo-
groups (χ2 test: χ2 score=499.22, d.f.=7, P<2.2×10−16) as well as 
among countries/territories (χ2 test: χ2 score=406.33, d.f.=35, 
P<2.2×10−16) and broader geographical regions (χ2 test: χ2 
score=230.17, d.f.=12, P<2.2×10−16). The majority of the genomes 
associated with pre-symptomatic/asymptomatic cases were from 
the Czech Republic (34/252=13.49 %), India (52/252=20.63 %), 
Italy (69/252=27.38 %), Japan (61/252=24.21 %) and Turkey 
(21/252=8.33 %), while genomes associated with symptomatic 
cases were from around the globe (Table S4).

Identification of polymorphic sites
Twenty-six polymorphic sites with less than 50 % ambiguous 
bases and aggregated minor allele frequencies of more than 
5 % of the collected sequences were considered in our analyses, 
corresponding to sites 241, 313, 1059, 3037, 4346, 8782, 9286, 
10 376, 11 083, 14 408, 14 708, 18 167, 18 877, 20 268, 21 518, 
23 403, 25 563, 26 730, 26 735, 28 144, 28 725, 28 881, 28 882, 
28 883, 28 975 and 29 692 in the reference SARS-CoV-2 genome 
(RefSeq accession number: NC_045512.2) (Table 1). Of these 26 
sites, two were in non-coding regions, seven harbored synony-
mous changes and the rest harbored non-synonymous changes 
(Table 1). Analyses have shown that synonymous changes in 
viruses might not be neutral [36, 37], and since there are many 
ways that a pathogen and its host could interact, including 
through protein–protein interactions, protein–nucleotide 
interactions or even nucleotide–nucleotide interactions, to be 
as inclusive and as hypothesis-free as possible, we included all 
of these sites in our analyses.

For each position, a binary profile of genetic variations (refer-
ence variation vs. non-reference variation) was constructed, 
and pairwise uncertainty coefficients (U) were computed 

(Table S5). We considered pairs with U>0.90 (out of 1) to be 
sites with co-occurring variations. Five sets of co-varying sites 
were detected under this criterion, namely (i) sites 241 and 
14 408, (ii) sites 8782 and 28 144, (iii) sites 18 167 and 21 518, 
(iv) sites 28881, 28 882 and 28 883, and (v) sites 4346, 9286, 
10376 14 708 and 28 725. Indeed, genetic variations of these five 
sets of sites were phylogenetically highly correlated, as could 
been seen pictorially in Fig. 2a, and they were thus analysed 
together in subsequent analyses as strongly linked sets of loci. 
Binary profiles of these linked loci were constructed in a similar 
manner (reference variant vs. non-reference variant). In total, 
17 sets of polymorphic sites were analysed.

Initial screening for candidate polymorphic sites 
with genetic variations associated with COVID-19 
pathogenicity
To identify genetic mutations associated with COVID-19 patho-
genicity, we first screened for potential candidates by using a 
phylogenetic-based approach implemented in TreeWAS [29], 
which was designed specifically to accommodate the great 
diversity of virus (and bacterial) genomes.

Three measurements of association between the observed 
patient status and virus genotype were computed: ‘terminal 
score’, ‘simultaneous score’ and ‘subsequent score’. The 
‘terminal score’ indicates the degree of sample-wide associa-
tion across the phylogeny’s leaves, the ‘simultaneous score’ 
is the number of times that the examined phenotype and 
genotype change in parallel together, and the ‘subsequent 
score’ measures the total tree length that the genotype and 
investigated phenotype are found to co-exist [29]. Ancestral 
states of both genetic and phenotypic data were inferred 
by using TreeWAS [29] under the maximum-parsimony 
principle. For each test, Bonferroni multiple-testing correc-
tion was applied (adjusted P value threshold=5 %/17 sets 
of polymorphic sites analysed=0.294 %). Three-test wide 
Bonferroni multiple-testing correction was also applied 
(adjusted P value threshold=5 %/17/3=0.098 %). To account 
for phylogenetic uncertainty, the analysis was applied to the 
entire distribution of the 1000 bootstrap trees.

Our results showed that site 11 083 had the highest association 
scores in all of the three tests (Fig. 2b). Conditioning on the 
maximum-likelihood tree (Fig. 2a), and under both analysis-
wide and separate Bonferroni multiple-testing corrections, 
the simultaneous test detected the genomic position 11 083 
as the only site with variations significantly associated with 
COVID-19 patient status, while terminal and subsequent tests 
did not detect any significant signals, although the scores for 
site 11 083 were very close to the thresholds. Analyses of boot-
strap trees showed that site 11 083 was detected as positive by 
the simultaneous test 37.6 and 58.5 % of the times under the 
analysis-wide and separate Bonferroni multiple-testing correc-
tion, respectively. These relatively low bootstrap positive rates 
indicated substantial phylogenetic uncertainty, which perhaps 
was not too surprising given that the sequences were sampled 
from the same pandemic and were quite similar. These rates, 
nonetheless, were still much greater than expected had the 
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Fig. 2. Screening for candidate sites with genetic variations associated with COVID-19 pathogenicity by using TreeWAS [29]. (a) 
Maximum-likelihood tree of SARS-CoV-2 (as shown in Fig. 1) is shown on the left. Bar, substitutions per site. The viruses’ patient status 
(pat. stat.) and mutational profiles of the 26 polymorphic sites investigated (Table 1) are shown on the right (see keys for details). Sites 
determined as strongly linked loci are indicated with black horizontal bars and numbers on the top. (b) Three separate tests of genotype–
phenotype association implemented in the software TreeWAS [29] were performed, namely ‘Terminal’ (left), ‘Simultaneous’ (middle) 
and ‘Subsequent’ tests (right) with Bonferroni multiple-testing correction (adjusted P value threshold=5 %/17 sets of polymorphic sites 
analysed=0.294 %). To account for phylogenetic uncertainty, the tests were applied to the entire distribution of the 1000 bootstrap trees 
to obtain the distributions of correlation scores and null scores (Cor. score null dist.). The horizontal red strips indicate the 95 % highest 
density intervals of the score cut-offs obtained from the 1000 bootstrap analyses. The horizontal red dotted lines indicate the score cut-
off obtained from the maximum-likelihood tree analysis. All tests revealed that site 11 083 had the highest scores (horizontal red solid 
lines). Simultaneous tests suggested that site 11 083 was the only site with genetic variations significantly associated with COVID-19 
patient status (marked with an asterisk, positive bootstrap testing rate=58.5 %), while the other two tests did not detect significant 
signals.
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scores been truly randomly sampled from the null distribution, 
in which there was no phylogenetic signal or genetic–phenotype 
association in the sequence data at all (0.098 and 0.294 % per 
site per test, respectively). Biologically, these results support 
that no single site with genetic variations could fully explain 
the distinctions between pre-symptomatic/asymptomatic and 
symptomatic SARS-CoV-2 infections, but mutations at site 
11 083 may cause changes in the disease symptoms through 
some complex complementary pathways involving many host 
and virus components.

Genetic variations at site 11083 and the direction of 
association
Two major nucleotide variations were observed at genomic 
position 11 083, namely thymine (T11 083, 205/3021=6.78 %) 
and guanine (G11 083, 2798/3021=92.62 %). The reference 
genome (RefSeq accession number: NC_045512.2), which is 
one of the earliest genomes from the COVID-19 outbreak in 
Wuhan, was identified as a G11 083 variant (Table 1). One 
of the closest relatives of SAR-CoV-2 currently known is 
the bat coronavirus RaTG13 (GenBank accession number: 

MN996532.2) [28], and it also has a G at the homologous 
position, suggesting that the G11 083 variant is the wild-type/
ancestral state while the T11 083 variant is a mutant variant. 
The rest (18 sequences, 18/3021=0.60 %) had undetermined 
nucleotides at this site (Table 2).

Across the 2769 sequences associated with symptomatic 
cases, 95.88 % (2655 sequences) were found to be the wild-
type G11 083 variants, while only 3.90 % (108 sequences) 
were found to be the mutant T11 083 variants. By contrast, 
of the 252 sequences associated with pre-symptomatic/
asymptomatic infections, only 56.75 %(143 sequences) were 
found to be the wild-type G11 083 variants, while 38.49 % 
(97 sequences) were the T11 083 mutant variants. Based on 
this dataset, the crude odds ratio for causing a symptomatic 
infection of the mutant T11 083 variant compared to the 
reference G11 083 variant was estimated to be 0.060 by the 
Wald method (95 % confidence interval=0.043–0.083; Fisher’s 
exact test P-value=2.11×10−58). The association was robust to 
the inclusion of the Japanese sequences excluded from the 
dataset due to data redundancy (crude odds ratio=0.037; 

Table 2. GISAID sequences with ambiguous bases at position 11 083

The sequence NC_045512.2 is included as the reference sequence of the original strain. Ambiguous bases are in bold type. The base at position 11 083 
is underlined.

Accession no. Country Lineage – GISAID haplogroup Patient status Sequence (11073–11093)

Reference sequence

NC_045512.2 China B – L Symptomatic TCTTTTTTTTGTATGAAAATG

GISAID sequences with an ambiguous base at position 11 083

EPI_ISL_454602 Croatia B.1.1 – GR Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_539777 Czech Republic B.1 – GH Pre-symptomatic/Asymptomatic TCTTTTTTTTKTATGAAAATG

EPI_ISL_626570 Czech Republic B.1 – GH Symptomatic TCTTTTTTTNNTATGAAAATG

EPI_ISL_626613 Czech Republic B.1.258 – G Symptomatic TCTTTTTTTNNTATGAAAATG

EPI_ISL_437454 India B.6 – O Symptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_479520 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_436137 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_436140 India B.1.80 – G Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_436141 India B.1.80 – G Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_436156 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_436157 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_486386 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTNNTATGAAAATG

EPI_ISL_486394 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_486403 India B.6 – O Pre-symptomatic/Asymptomatic TCTTTTTTTNNTATGAAAATG

EPI_ISL_486407 India B.1 – S Pre-symptomatic/Asymptomatic TCTTTTTTTTNTATGAAAATG

EPI_ISL_486384 India B.1 – O Symptomatic TCTNNNNNNNNNNNNNNNNNN

EPI_ISL_447776 Colombia B.1 – GH Symptomatic NNNNNNNNNNNNNNNNNNNNN

EPI_ISL_447801 Colombia B.1.5 – G Symptomatic NNNNNNNNNNNNNNNNNNNNN
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95 % confidence interval=0.028–0.050; Fisher’s exact test 
P-value=1.52×10−82). Altogether, these results suggested that 
the 11 083G>T mutation is significantly associated with pre-
symptomatic/asymptomatic infection.

Regarding the 18 sequences with undetermined or ambiguous 
bases at position 11 083 (Table 2), further inspection revealed 
that three of them had a very long stretch of ‘N’s spanning 
across the position, suggesting genuine sequencing failures. 
Fourteen sequences, however, either had only one or two N 
bases placed precisely at, or spanning across, site 11 083 amidst 
a long stretch of the T homopolymer, and one sequence had a 
K ambiguous base (either T or G) at the position. Among these 
15 sequences, we found that most of them were from pre-
symptomatic/asymptomatic cases (12/15=80 %), and remark-
ably, they appeared to have an even stronger association with 
pre-symptomatic/asymptomatic infections compared to the 
T11 083 variant (crude odds ratio=0.225; 95 % confidence 
interval=0.062–0.819; Fisher’s exact test P-value=0.016). In 
addition, most of these sequences belonged to lineage B.6 
(8/15=53.33 %), which is the lineage that has a very high ratio 
of T11 083 to G11 083 variants (47 : 3 sequences).

It is well known that a long homopolymer stretch is difficult to 
sequence, and is prone to indel sequencing errors [38, 39], in 
particular deletions [40]. Coupled with the fact that site 11 083 
is the only polymorphic site amidst the long homopolymer 
stretch, if such a deletion error were to occur in a T11 083 
variant, it would be natural that a sequence aligner would 
place the gaps spanning the position to maximize the align-
ment score. Some of these sequences might also be a result 
of mixed viral populations – indeed, one of these sequences 
was reported to have an ambiguous base K at site 11 083, indi-
cating that the original sample contained both the T11 083 
and G11 083 variants. Alternatively, some of them might 
genuinely be the G11 083 (or other) variant, but sequencing 
errors just happened to occur precisely at site 11 083, resulting 
in undetermined bases. Among these three scenarios, we 
believed that the last scenario was the most unlikely.

Of these 18 sequences, we were able to obtain raw sequence 
data for 14, and mapped them against the reference genome 
to examine the underlying nature of the genetic variations at 
this site (Fig. S1). We were able to confirm that, among the 
three sequences with the long stretches of Ns, one was indeed 
a result of complete sequencing failure, and for the rest, it was 
often the case that majority of the raw sequence data (>50 %) 
would support a deletion at the site. However, considering the 
remaining reads that resulted in base calling, all of them were 
either Ts or Ks, and none were Gs. Combining this informa-
tion, we therefore deemed reasonable to group the remaining 
15 sequences with other T11 083 variants for further analyses.

Generalized linear mixed model-based method
One of the limitations of TreeWAS [29] was that, while it 
directly uses a pathogen’s phylogenetic tree to compute 
genotype–phenotype association scores, it could not explic-
itly account for multiple host and virus covariates and 
confounding factors at the same time. Patient age, gender 

and country data were available from the GISAID database 
for some of the sampled sequences, allowing us to further 
test the association detected by TreeWAS [29], accounting 
for the effects of these factors. Indeed, various studies have 
suggested that age and gender may be correlated with the 
disease severity [13–18], and the incidence of COVID-19 
does vary from one country to another [6].

To examine if the association detected by TreeWAS [29] was 
robust to the inclusion of other covariates and confounding 
factors, we fitted four binomial generalized linear mixed 
models to the data (Table S6). In all of the four models, the 
effects of the mutation 11 083G>T, patient gender and age on 
disease outcome were treated as fixed effects, while the effects 
of country sampling and virus phylogenetic relatedness were 
considered random effects. In the most complex model, each 
individual virus and county was allowed to have varying base-
line chances of symptom development while accounting for 
virus phylogenetic structure, and the effects of the mutation 
11 083G>T, gender and age may also vary from country to 
country (Table S6; M1). In the second most complex model, 
each individual virus and country may still have varying 
baseline chances of symptom development adjusted for virus 
phylogenetic structure, but the effects of the mutation, gender, 
and age were ‘fixed’ (i.e. do not vary randomly) across countries 
(Table S6; M2). In the other two models, one excluded the effect 
of country sampling (Table S6; M3), and the other excluded the 
effect of individual virus and phylogenetic structure (Table S6; 
M4). Sequences with missing patient gender and/or age values 
were excluded from the model fittings, leaving 1546 sequences 
in the whole dataset. We also noted that sequence availability 
varied considerably among countries; most of the countries had 
fewer than ten sequences in each disease category (Table S4), 
and this might cause the model fittings and parameter estimates 
to be unreliable and have unnecessarily high uncertainty. We 
thus also performed the same analysis on a subsample dataset 
removing sequences from countries with fewer than ten 
samples in each disease category. Excluding those with missing 
patient gender and/or age values, the curated subsample dataset 
comprised 859 sequences from five countries, namely Czech 
Republic, India, Italy, Japan and Turkey.

Based on the analysis of the whole dataset, we found that 
M1 did not significantly better fit the data than M2 (Table 
S6; χ2 test: χ2 score=7.85, d.f.=9, P=0.55), supporting that 
the effects of the mutation 11 083G>T, patient gender and 
age on COVID-19 pathogenicity do not vary significantly 
among countries. However, M2 was found to fit the data 
significantly better than M3 (Table S6; χ2 test: χ2 score=72.84, 
d.f.=1, P<2.2×10−16), suggesting that populations of different 
counties may have varying baseline chances of developing 
COVID-19 symptoms. Similarly, M2 was found to better 
fit than M4 (Table S6; χ2 test: χ2 score=113.55, d.f.=1, 
P<2.2×10−16), suggesting that phylogenetic relatedness among 
viruses plays a significant role in COVID-19 pathogenicity 
(i.e. closely related viruses tend to cause the same kind of 
infection). Estimated parameter values of the best-fit model 
can be found in Table S7, and their corresponding adjusted 
odds ratios are given in Fig. 3.



10

Aiewsakun et al., Microbial Genomics 2021;7:000734

According to the best-fit model M2 (Fig. 3), we found that 
patient age is positively associated with symptomatic infec-
tion (adjusted odds ratio for increasing an age by 1 year=1.04; 
95 % confidence interval=1.02–1.05; P=7.3×10−7), but patient 
gender does not significantly correlate with the disease 
outcome (adjusted odds ratio for being female=0.99, 95 % 
confidence interval=0.58–1.69; P=0.98). The baseline odds 
for developing COVID-19 symptoms when getting infected 
was estimated to be (just) significantly different from 1 
(P=4.2×10−2), computed to be 135.56 with an extremely large 
uncertainty (95 % confidence interval=1.18–15 516.82), and 
the value was estimated to vary substantially among countries 
(variance=49.66) and also among viruses, although to a much 
lesser extent (variance=0.38). At face value, this estimate is 
consistent with the overall baseline chance of developing 
symptoms being greater than that of not developing symp-
toms. Nonetheless, it is noteworthy that there might be a 
tendency for this value to be overestimated, due to the fact 
that viruses associated with symptomatic infection may be 
more likely to be sequenced and submitted to the GISAID 
database than those causing asymptomatic infection given 
typical healthcare seeking behaviour, making the database 
systematically biased towards viruses causing symptoms. 
Thus, this value should be interpreted with care. Neverthe-
less, taking all of these factors into account, the 11 083G>T 
mutation was still found to be significantly associated with 
pre-symptomatic/asymptomatic infection (adjusted odds 
ratio=0.19, 95 % confidence interval=0.05–0.75; P=1.70×10−2).

Analysis of the subsample data yielded largely consistent 
results. M1 was not found to significantly better fit than 
M2 (Table S6; χ2 test: score=12.46, d.f.=9, P=0.19), but M2 
significantly better fitted the data than M3 (Table S6; χ2 test: 
score=15.49, d.f.=1, P=8.31×10−5) and M4 (Table S6; χ2 test: 
score=106.12, d.f.=1, P<2.2×10−16). According to the M2 
model (Table S7, and Fig.  3), again, we found that age is 
positively associated with symptomatic infection (adjusted 

odds ratio for increasing an age by 1 year=1.03; 95 % confi-
dence interval=1.02–1.05; P=9.8×10−7), while gender does 
not significantly correlate with the pathogenicity of the virus 
(adjusted odds ratio for being female=0.94, 95 % confidence 
interval=0.56–1.60; P=0.83). Unlike the results from the whole 
dataset analysis, the baseline odds was estimated to be insig-
nificantly different from 1 (odds ratio=1.23, 95 % confidence 
interval=0.10–15.06; P=0.87), but the analysis still suggested 
that the value does vary considerably among countries (vari-
ance=2.04) and among viruses (variance=0.32). The overall 
strength of the random country-specific effect was estimated 
to be less than that estimated based on the whole dataset (vari-
ance=49.66), probably due to fewer countries being included 
in this dataset. Nonetheless, again, a significant (negative) 
effect of the 11 083G>T mutation on SARS-CoV-2 patho-
genicity could still be detected (adjusted odds ratio=0.19, 95 % 
confidence interval=0.05–0.74; P=1.74×10−2).

DISCUSSION
An unprecedented number of SARS-CoV-2 genomes have 
been generated at a rapid rate and made publicly available 
in near real-time. Millions of sequences of SARS-CoV-2 
genomes have been made publicly available on the GISAID 
database [25], and some sequences have patient status avail-
able, as well as patient age, gender and country. This allowed 
us to investigate viral genetic factors that might be associated 
with SARS-CoV-2 pathogenicity.

In this study, we performed GWAS analyses on 3021 SARS-
CoV-2 genomes, and identified variations at genomic posi-
tion 11 083 to be associated with SARS-CoV-2 pathogenicity. 
Specifically, we found that the mutation 11 083G>T is asso-
ciated with pre-symptomatic/asymptomatic cases (Fig.  3, 
P=1.70–1.74×10−2), adjusted for various factors that might 
also be associated with disease severity, including patient age, 

Fig. 3. Adjusted odds ratios and 95 % confidence intervals of various potential risk factors for COVID-19 symptom development. The 
values were estimated based on the best-fit binomial generalized linear-mixed model M2, in which the effects of the mutation 11 083G>T, 
patient gender and age on the disease outcome were treated as fixed effects, and the effects of country sampling and virus phylogenetic 
relatedness were considered random effects. The model allowed each individual virus and country to have varying baseline chances 
of symptom development while adjusting for the virus phylogenetic structure. See model specification in Table S6 and estimated 
parameter values in Table S7.
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gender and country of origin, as well as virus phylogenetic 
relatedness and structure.

Our analysis detected a positive correlation between age and 
COVID-19 symptom development, consistent with results 
from previous studies [13–15]. A significant association 
between gender and pathogenicity could not be detected by 
our study. In contrast, several other studies have detected a 
gender effect on COVID-19 severity. For example, an analysis 
of a global survey of hospital records suggested that male 
patients have higher odds of requiring intensive treatment 
unit admission and death compared to females [18]. A similar 
trend was observed in the USA, adjusted for various potential 
covariates including age, race, ethnicity, marital status, insur-
ance type, median income, body mass index, smoking and 
other 17 comorbidities [17]. It has been suggested that this 
could be due to differences in social and cultural behaviours 
between men and women, and differences in the sex hormone 
influencing, for example, virus entry and priming, immune 
and inflammatory response, and coagulation and thrombosis 
diathesis (see [16] for review). The lack of signal in this study 
could be because we focused on virus pathogenicity, grouping 
death, severe and mild cases together as symptomatic. None-
theless, it is of note that there are also studies that did not 
find a significant association between gender and COVID-19 
severity. For example, Raimondi et al. found that gender did 
not play a significant role as an independent predictor of death 
in an Italian cohort after adjusting for various confounding 
factors such as age and severity of the disease at hospital 
presentation [41]. This suggested that such a trend may vary 
from country to country.

Paralleling this, we found that patient country is, indeed, a 
significant random effect, suggesting that the baseline chance 
of COVID-19 symptom development varies from country 
to country (although country-specific random effects of the 
virus mutation, patient age and gender are not significant). 
In part, this may be because different countries may differ 
in the way they recorded COVID-19 symptoms and/or how 
the disease surveillances or treatments were performed, 
resulting in different distributions of pre-symptomatic/
asymptomatic vs. symptomatic cases. This result is also 
consistent with different human populations having varying 
degrees of susceptibility to the virus infection. Several studies 
have revealed that background genetic makeup does, indeed, 
associate with susceptibility to SARS-CoV-2 infection and 
COVID-19 severity. For example, a study of two case-control 
cohorts of Italian and Spanish patients identified a 3p21.31 
gene cluster on chromosome 3 to be a genetic susceptibility 
locus in COVID-19 patients, and showed a higher risk in 
blood group A than in other blood groups, corresponding 
to the rs657152 variant at locus 9q34.2 on chromosome 9 
[42]. A separate analysis of a dataset from the COVID-19 
Host Genetics Initiative confirmed the former region to be 
significantly associated with COVID-19 severity, and deter-
mined that the risk variant was inherited from Neanderthals, 
carried by around 50 % of South Asians and around 16 % of 
Europeans [43]. There are several more host genetic factors 
that have been suggested as COVID-19 severity predictors, 

such as genetic variability in human leucocyte antigen genes 
[21], major histocompatibility complex class I genes [44] and 
TLR7 gene on chromosome X [45], for example. Different 
human populations have different genetic backgrounds, and 
this could potentially partly explain our finding.

A study identified the 11 083G>T mutation to be associated 
with asymptomatic cases by Fisher’s exact test (P=8.45×10−35) 
and examination of Pearson’s correlation coefficient (Pearson 
correlation=0.61, P=5.42×10−56) [46]; however, the analysis 
neither accounted for phylogenetic relatedness among viruses 
nor potential host factors that might also correlate with 
COVID-19 severity. In this study, we identified the genetic 
mutation 11 083G>T to be associated with pre-symptomatic/
asymptomatic cases by using a phylogenetic approach, and 
after correcting for patient gender, age, country of origin and 
virus phylogenetic relatedness, the association still remained 
significant, suggesting that this association is robust. An earlier 
study of SARS-CoV-2 from a Shanghai cohort identified the 
T11 083 variant to be more prevalent in pre-symptomatic/
asymptomatic cases (nine in 91 cases=9.89 %) compared to 
symptomatic cases (one in 21 cases=4.76 %), but the associa-
tion was not significant [20]. This could be due to their rela-
tively small data set (N=112), and different groupings of the 
disease outcome (mild symptomatic and pre-symptomatic/
asymptomatic cases vs. severe and critical cases), which could 
potentially mask the effect we observed. Epidemiological 
data examination showed that, indeed, countries with a high 
prevalence of the T11 083 variant tended to have lower rates 
of COVID-19 mortality than those that had low prevalence of 
the mutation [46], further supporting the association.

This mutation is located in the coding region of non-structural 
protein 6 (NSP6, nt 10973–11842), coded by ORF1ab (nt 
266–21 555). NSP6 is a multi-functional protein, and can 
be found in many coronaviruses. It has been demonstrated 
that, located to the endoplasmic reticulum, SARS-CoV 
NSP6 can form a protein complex with NSP3 and NSP4 to 
induce double-membrane vesicles, crucial for the formation 
of the virus replication/transcription complex [47]. Studies 
of an avian gamma-coronavirus, infectious bronchitis virus, 
showed that NSP6 can activate formation of autophagosomes 
[48], but ones with small and restricted sizes [49], which may 
interfere with the host’s ability to deliver viral components 
to lysosomes for degradation. A recent study [50] showed 
that SARS-CoV-2 NSP6 can bind TANK binding kinase 1, 
and suppress phosphorylation of IFN regulatory factor 3, 
which in turn antagonizes type I IFN production. The study 
also showed that the protein can suppress STAT1 and STAT2 
phosphorylation, inhibiting type I IFN signalling, which 
might mitigate the host immune response even further. In 
addition, the study found that SARS-CoV NSP6 could not 
inhibit type I IFN signalling, at least not as efficiently as that 
of SARS-CoV-2, potentially explaining the relatively more 
delayed disease onset and less systemic and severe clinical 
manifestations of COVID-19 compared to SARS.

The 11 083G>T mutation confers an amino acid change 
from leucine (L) to phenylalanine (F) at the 37th position 
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in the NSP6 protein (L37F). In silico 3D structure analyses 
suggested that the mutation may reduce the stability of the 
protein structure [46, 51], and at the same time may increase 
the rigidity of the protein, reducing interactions with the 
endoplasmic reticulum, and interfering with the protein func-
tions in turn [46]. As discussed above, the functions of NSP6 
are to antagonize host immune responses, interacting with 
many virus and host components. Nonetheless, the physical 
interactions between them are yet to be characterized, and it 
would be interesting to see if the mutation affects or alters the 
interactions or not. Our results warrant further experimental 
confirmations to validate the biological significance of this 
mutation and its consequences.

The mutation 11 083G>T has occurred independently many 
times over the course of this on-going pandemic. In fact, 
this genomic position has been quantified as having one of 
the highest rates of homoplasy [52]. Some previous studies 
suggested that this might suggest on-going adaptation/posi-
tive selection [51, 53]; however, concrete evidence supporting 
this notion is lacking [54]. In fact, according to examination 
of the sequences in the GISAID database, it was reported that 
the frequencies of the T11 083 variant relative to the wild-type 
G11 083 variant decreased globally, supporting that the muta-
tion may hinder the virus transmissibility [46]. However, an 
alternative possibility is that, as the numbers of COVID-19 
patients have surged very rapidly and overwhelmed public 
healthcare systems in many countries around the globe, 
limited central disease surveillance and medical resources 
may tend to be allocated to search for and treat patients with 
severe clinical manifestations of COVID-19. Asymptomatic 
cases (perhaps with the 11 083G>T mutation) may thus be 
overlooked and less likely to be tested, and in turn have fewer 
virus sequences deposited in public databases. Continual 
surveillance of COVID-19 should monitor this genomic 
region as it might affect the virus’s pathogenicity and control 
of COVID-19. These results have potential applications for 
the development of better, and more informative test kits, 
potentially allowing for asymptomatic cases to be distin-
guished from symptomatic ones.
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