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Abstract: 
We describe a promoter recognition method named PCA-HPR to locate eukaryotic promoter regions and predict transcription 
start sites (TSSs). We computed codon (3-mer) and pentamer (5-mer) frequencies and created codon and pentamer frequency 
feature matrices to extract informative and discriminative features for effective classification. Principal component analysis 
(PCA) is applied to the feature matrices and a subset of principal components (PCs) are selected for classification. Our system 
uses three neural network classifiers to distinguish promoters versus exons, promoters versus introns, and promoters versus 3' 
un-translated region (3'UTR). We compared PCA-HPR with three well-known existing promoter prediction systems such as 
DragonGSF, Eponine and FirstEF. Validation shows that PCA-HPR achieves the best performance with three test sets for all 
the four predictive systems. 
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Background: 
Eukaryotic promoter prediction plays a very important role 
in the study of gene regulation. Improvements are needed 
despite the availability of a number of promoter prediction 
algorithms. There is a need to increase true positive 
predictions and at the same time reduce false positive 
predictions. The most important issue is the selection of 
appropriate features for developing prediction systems. 
 
Available promoter prediction systems use two types of 
features for classification namely, context features like n-
mers, and signal features such as TATA-box, CCAAT-box, 
and CpG islands. Among the favorable promoter prediction 
programs, Eponine [1] builds a PWM to detect TATA-box 
and G+C enrichment regions as promoter-like regions; 
FirstEF [2] uses CpG-related and non-CpG related first 
exons as signal features; PromoterInspector [3] uses IUPAC 
words with wildcards as context features. Good experiment 
results are achieved by integrating these two types of 
features. DPF [4] applies a separate module on G+C rich 
and G+C poor regions, and selects 256 pentamers to 
generate a PWM for prediction. Furthermore, DragonGSF 
[5, 6] adds the CpG-island feature to DPF. 
 
However, the performance of existing methods is still not 
satisfactory. There is a common problem in these prediction 
systems and they select limited number of features for 
classification. So, they ignore information in abandoned 
features and the interaction of selected features. Feature 
vectors need to be rebuilt to include more information for 
classification to achieve better prediction results. 
 

Here, we describe a method named PCA-HPR to predict 
the location of the TSSs with best performance. Principle 
Component Analysis (PCA) is applied to the context 
feature selection from feature matrices. The level of 
information loss was controlled by choosing a certain 
number of principal components (PCs). PCA-HPR projects 
original features extracted from training sequences to a new 
feature space constructed by PCs instead of choosing 
specific pentamers, (e.g., CGGCG, GCGCG) which are 
used in PromoterExplorer [7]. Resulting feature vectors are 
then sent to artificial neural networks (ANNs) for training. 
The concept of CpG islands (genomic regions that contain 
a high frequency of CG di-nucleotides) is also used as an 
enhancing signal. The final prediction is performed by a 
data processing module which combines the output from 
three classifiers and a CpG island module. The positive 
predictive value (PPV) and sensitivity (SN) of the model 
are shown to be higher than existing methods. 
 
Methodology: 
The training set in this experiment is divided into several 
subsets of promoters, introns, exons and 3′UTR sequences. 
Promoter sequences are extracted from two public 
databases. One is the Eukaryotic Promoter Database (EPD), 
release 86 [8], which contains 1871 human promoter 
sequences. The other is the Database of Transcription Start 
Sites (DBTSS), version 5.2.0 [9], which includes 30,964 
human promoter sequences and 15,531 forward strand 
promoter sequences. We used forward strand promoter 
sequences are in our experiment. Human exon and intron 
sequences are extracted from the exon-intron database [10], 
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and the first exons are not included in the exon training set. 
Human 3’UTR sequences are from the UTR database [11]. 
 
We randomly selected 1000 promoter sequences from EPD, 
and 7000 promoter sequences from DBTSS to form the 
promoter training set. We then extracted 250bp upstream to 
50bp downstream relative to the TSS of promoter 
sequences. In the non-promoter dataset, we selected 
sequences longer than 1200bp (compared to sequence of 
length 1200bp in EPD). We arranged the selected 
sequences into 300bp each and choose 10,000 sequences 
each from Exon, Intron and UTR databases. 
 
CpG islands, which exist in 60% of mammalian promoters 
[12], are regarded as one of the most important signal 
features in promoter recognition. Methods such as 
CpGProD [13], DPF [4], DragonGSF [5, 6], FirstEF [2] 
and PromoterExplorer [7] embed this signal feature in their 
prediction system. In our method, two features are used to 
identify if a given sequence (>200bp) is CpG islands 
related: GC percentage (GCp) and Observed/expected CpG 
ratio (o/e). These are calculated with equations (1-5) (see 
supplementary material). If GCp > 0.5, and o/e > 0.6, then 
the sequence is considered CpG islands related, otherwise it 
is non-CpG islands related [14]. 

 
 A DNA sequence contains four types of nucleotides: 
adenine (abbreviated A), cytosine (C), guanine (G) and 
thymine (T). With different combinations, there are 43=64 
codons and 45=1024 pentamers in promoter and non-
promoter datasets. Pentamers are widely selected as context 
features in many promoter prediction models [4, 7], as they 
keep good balance between search efficiency and 
discriminability. In PCA-HPR, we also extract frequency 
matrices of pentamers. Additionally, we evaluate the 
contribution of pentamers and codons to the separation 
between the promoter and non-promoter sequences using 
the relevance function (6) (see supplementary material). 
Then the statistical relevance values of 64 codons and 1024 
pentamers are ranked, and the analysis result is shown in 
Figure 1. A larger relevance function value R represents a 
higher discriminative ability of the feature. Among the 100 
features with highest R value, we found 30% to 40% of 
them are codons. Since the total number of codons is much 
less than the total number of pentamers, we conclude that 
codons have a good discriminative ability. So using codons 
together with pentamers as context features will improve 
the classification performance. 

 

 
Figure 1: Codon/pentamer percentage in top 100 discriminative features. Statistics is based on three datasets: Promoter versus 
Exon, Promoter versus Intron, and Promoter versus 3'UTR. 
 
To construct codon and pentamer combined frequency 
matrices, we first count overlapping codon and pentamer 
frequencies of fixed length sequences in promoter and non-
promoter training sets. A 64×n matrix and a 1024×n matrix 
are built for each training set, where n represents the 
number of sequences of the training set. Next, we applied 
normalization and combined two matrices using Equations 
(7) to (9) for each dataset. Four resulting feature matrices 
are constructed from promoter, exon, intron and 3'UTR 
training datasets. Finally, three pairs of matrices: promoter 
versus exon, promoter versus intron and promoter versus 
3'UTR are built from the four feature matrices for further 
processing. 
 

Embedding all the codon and pentamer features in our 
system is not practical due to system efficiency. Moreover, 
redundant information provides noise and directly 
influences the prediction result of the system. In order to 
obtain more discriminative information in a relatively low-
dimensional feature space, PCA is used in the context 
feature selection. PCA is an efficient method of reducing 
dimension of a dataset while retaining useful information, 
which accounts for most information of the original dataset. 
We apply PCA to the three pairs of codon and pentamer 
combined matrices. The idea of PCA in our experiment is 
to diagonalize the covariance matrix of the feature matrix. 
The diagonal elements are the variance data type, and the 
off-diagonal elements are the covariance data type in the 
covariance matrix. Here, large values of variance elements 



Bioinformation by Biomedical Informatics Publishing Group                            open access 

www.bioinformation.net                                              Prediction Model 
___________________________________________________________________________ 

ISSN 0973-2063                                                                           
Bioinformation 2(9): 373-378 (2008) 

Bioinformation, an open access forum 
© 2008 Biomedical Informatics Publishing Group 

375

represent the signals that are of interest, and small ones 
represent noise. Large values of covariance elements 
correspond to high redundancy and small ones correspond 
to low redundancy. Therefore, the ideal solution is to find a 
matrix to diagonalize the covariance matrix by linear 
transformation, making the off-diagonal elements of the 
matrix zero. Through deduction (equations (10), (11) 
shown in supplementary material), we can see the matrix 
constructed with eigenvectors of the covariance matrix is 

the one that can diagonalize the covariance matrix. Larger 
eigen values of covariance matrix associate with higher 
levels of energy and the corresponding eigenvectors are the 
principal components (PCs) needed. The minimum number 
of vectors needed in our method is calculated according to 
Equation (12) (shown in supplementary material). Finally, 
the first six principal components are selected to form a 
new feature space in each of the three promoter and non-
promoter matrix pairs. 

 

 
Figure 2: Overall structure of our promoter recognition system. The 300bp sliding window moves 20bp at each step. Each 
sequence segment inside the sliding window is sent to the Feature Vector Creation Module and the CpG Islands Module. The 
Feature Vector Creation Model extracts codon and pentamer combined vector from the input sequence. The PCA module 
contains three spaces formed by PCs: the promoter-exon space, the promoter-intron space, and the promoter-3'UTR space. The 
vector generated by Feature Vector Creation Module is projected to the three spaces in the PCA model, and then sent to the 
three corresponding Classifiers. The three scores from the classifiers together with the score from CpG islands are processed in 
the Data Processing Model, and then the final prediction of TSSs is produced. 
 
Traditional feature selection methods, such as DPF and 
PromoterExplorer, employ a certain number of pentamers, 
which is far less than the size of the original feature set. 
Although these pentamers are selected as the most 
discriminative features according to probability or distance 
functions, there is still massive information missed with the 
abandoned features. However, PCs selected by PCA 
contain information of most features in the datasets. Thus, 
they can best describe the characteristics of each dataset 
and improve classification. The PCA-HPR system is 
constructed with several sub-modules. Figure 1 shows the 
overall structure of the promoter recognition system. In the 
system, the CpG module gives a score for each input 
sequence segment: “1” for a CpG-island-related segment, 
and “0” for a non-CpG-island-related segment. Three 
classifiers in the model are built with ANNs, and each 
classifier is trained by 8000 promoter sequences and 10000 
non-promoter sequences. The threshold of each classifier is 
set to 0.4, and if the outputs of two of the three classifiers 
are over the predefined threshold, the data processing 
module will sum the outputs of the three classifiers and the 
score from the CpG island module. If the sum is over 2.2, 
the data processing module will report the window as the 

potential promoter region. In the TSS prediction module, a 
promoter region is identified if the number of consecutive 
windows is more than 20, and the consecutive windows are 
defined here if the offset of two windows is less than 
300bp. The predicted TSS is the location that contains the 
maximum score. 
 
Discussion: 
Three test sets are formed to evaluate the performance of 
PCA-HPR. Test set 1 consists of four human genomic 
sequences from GenBank with a total length of 0.95Mb and 
14 known TSSs. The accession numbers of these sequences 
are L44140, D87675, AF017257 and AC002368. They are 
selected because most existing promoter prediction systems 
have tested them and the results are available for a fair 
comparison. Test set 2 uses the Chromosome 22 sequence 
and its annotation data [15]. The sequence has a total length 
of 34.75Mbp with 393 annotated TSSs. In test set 3, seven 
Homo sapiens chromosome 22 genomic sequences are 
extracted from GenBank with a total length of 11.56Mbp 
and 94 TSSs in the forward strands. The accession numbers 
of these sequences are NT_028395.3, NT_011519.19, 
NT_011521.4, NT_011523.11, NT_011525.7, 
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NT_019197.5 and NT_011526.6. These sequences have 
different annotations than the one in test set 2, so the results 
are credible. 
 
We selected three promoter systems, DragonGSF, Eponine 
and FirstEF to compare the performance on test set 1. A 
promoter region is counted as a true positive (TP) if TSS is 
located within the region, or if a region boundary is within 
200bp 5' of such a TSS. Otherwise the predicted region is 
counted as a false positive (FP). The test results of Eponine 
and FirstEF are cited from the reference paper [16]. On test 
set 2, we adopt the same evaluation method as DragonGSF 
[5]: when one or more predictions fall in the region of 
[−2000, +2000] relative to a TSS, a TP is counted. All 
predictions which fall on the annotated part of the gene in 
the region [+2001, EndofTheGene] are counted as FP. 
Other predictions are not considered in counting TP and FP. 
Experimental results of DragonGSF, FirstEF and Eponine 
are obtained from [5]. We adopt the sensitivity (SN) and the 
positive predictive value (PPV) to evaluate the performance 
of these systems. The results and comparisons based on test 
1 and test 2 are shown in Table 1 and Table 2 (tables in 
supplementary material). 
 
In test 1, with the same number of true positives in 
comparison with existing methods, our method produces 
the smallest number of false positives. In test 2, although 
FirstEF achieves a higher SN than PCA-HPR, the PPV is 
just half of PCA-HPR. DragonGSF keeps a good balance 
between SN and PPV, while PCA-HPR produces better 
results. On test set 3, we compare PCA-HPR with 
DragonGSF because DragonGSF is the only online system 
which can accept relatively longer sequences among 
systems compared in the analysis. In order to get fair 
results for these sequences which are longer than 
1,000,000bp (the limitation of a file in the DragonGSF web 
tool), we divided them into segments that are equal or less 
than 1,000,000bp each, before sending them to PCA-HPR 
and DragonGSF. Under the same evaluation criteria as the 
one in test set 2, PCA-HPR achieved a better result: the SN 
of PCA-HPR and DragonGSF are 53.2% and 46.8%, and 
PPV of the two systems are 72.4% and 63.8%, respectively. 
DragonGSF reports a good prediction performance on the 
whole human genome sequence, but it uses the 
TRANSFAC [17] database which includes binding site 
information only available for known promoters. Therefore, 
our system has the advantage in predicting unknown 
promoters. 
 
Conclusion: 
We have proposed a new system called PCA-HPR for 
promoter detection in DNA sequences. In this experiment, 
we focus on improving the feature selection process to 

achieve a better prediction performance. The majority of 
promoter prediction methods available now directly extract 
a limited number of context features from sequences. We 
use PCA to reduce the high dimensional feature matrices, 
and select PCs to form the new feature space. The promoter 
prediction method based on the rebuilding feature vectors is 
tested on three test datasets. The result of test sets 1 and 3 
show that PCA-HPR can reduce false positive rate leading 
to a high PPV. Predictions on the genome sequence of 
chromosome 22 made by PCA-HPR are competitive in 
terms of SN and PPV. The comparison results indicate that 
the PCA algorithm performs effectively on feature 
selection, which is one of the most important tasks in 
human promoter recognition. 
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Supplementary material 
Equations: 
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where m1 and m0 are the mean values of the occurrence number of the feature X in the promoter and non-promoter training 

sets. 1η
 and 0η

 are the percentage of promoters and non-promoters in which the feature X appears respectively. d1 and d0 
are the standard deviation of the feature X in promoter and non-promoter training sets. In our work, the feature X denotes a 
pentamer or a codon. 
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where a0(i1,j), a(i1,j) and b0(i2,j), b(i2,j) are codon and pentamer frequency matrix elements before and after normalization; 
amax and bmax are maximum values of codon matrix and pentamer matrix, respectively. After normalization, the two matrices 
are integrated into one 1088×n feature matrix c0, and c(i3,j) represents the element in it. 
 
(PCA in context feature selection) 
Let us refer to C as a 1088×m feature matrix, where m is the total number of promoter and non-promoter samples in each 
pair. P is an orthonormal matrix, where P-1=PT. 
Let Y=PC, so Y is the projection of C based on new space P. 
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where A≡CCT.  
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As A is symmetric, we can find matrix E and D so that A=EDET, where D is a diagonal matrix and E is a matrix of 
eigenvectors of A arranged as columns. Thus, we can select P where each row of P is an eigenvector of CCT. Now, we can 
rewrite CY in terms of P and D. 
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It is obvious that P is the matrix that can diagonalize CY. The eigenvalues of CY (diagonal values in D) are the variances of 
C, and the row vectors of P corresponding to the largest eigenvalues are the principal components of C. 
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where dj is the jth diagonal value of D, and tN represents the percentage of the original feature matrix which the selected PCs 
account for. We choose a cut-off value tM=0.7. N is the smallest integer, for which tN > tM. In this, we therefore select the 
first six principal components from P(p1,p2,p3,p4,p5,p6) as new feature vectors. 
 
Tables: 
System TP  FP  aSN  

bPPV  

DragonGSF 9 14 64.2 39.1 
FirstEF 9 12 64.2 42.9 
Eponine 9 16 64.2 36.0 
PCA-HPR 9 11 64.2 45.0 
Table 1: Performance comparison of four prediction systems for test set 1.aSensitivity (SN): SN=TP/ (TP+FN). FN=NTSS-
TP, bPositive Predictive Value: Sp=TP/(TP+FP). 
 
System TP  FP  (%)a

eS  
 

(%)b
pS  

 
DragonGSF 269 69 68.4 79.6 

FirstEF 331 501 84.2 39.8 
Eponine 199 79 50.6 71.6 
PCA-HPR 301 65 76.6 82.2 
Table 2: Performance comparison of four prediction systems for test set 2. 
 
 
 
 
 
 


