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ABSTRACT
Marine sediments harbor an outstanding level of microbial diversity supporting diverse
metabolic activities. Sediments in the Gulf of Mexico (GoM) are subjected to anthropic
stressors including oil pollution with potential effects on microbial community struc-
ture and function that impact biogeochemical cycling. We used metagenomic analyses
to provide significant insight into the potential metabolic capacity of the microbial
community in Southern GoM deep sediments. We identified genes for hydrocarbon,
nitrogen and sulfur metabolism mostly affiliated with Alpha and Betaproteobacteria,
Acidobacteria, Chloroflexi and Firmicutes, in relation to the use of alternative carbon
and energy sources to thrive under limiting growth conditions, andmetabolic strategies
to cope with environmental stressors. In addition, results show amino acidsmetabolism
could be associated with sulfur metabolism carried out by Acidobacteria, Chloroflexi
and Firmicutes, and may play a crucial role as a central carbon source to favor bacterial
growth. We identified the tricarboxylic acid cycle (TCA) and aspartate, glutamate,
glyoxylate and leucine degradation pathways, as part of the core carbon metabolism
across samples. Further, microbial communities from the continental slope and abyssal
plain show differential metabolic capacities to cope with environmental stressors such
as oxidative stress and carbon limiting growth conditions, respectively. This research
combined taxonomic and functional information of the microbial community from
Southern GoM sediments to provide fundamental knowledge that links the prokaryotic
structure to its potential function and which can be used as a baseline for future studies
to model microbial community responses to environmental perturbations, as well as
to develop more accurate mitigation and conservation strategies.
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INTRODUCTION
Biogeochemical processes in marine sediments can be related to the degradation of organic
matter via multiple metabolic reactions involving a myriad of organisms, oxidants and
intermediate compounds that result in most of the carbon eventually respired as needed
for mass-balance closure (Arndt et al., 2013; Middelburg, 2018). Organic matter in the
ocean is generally a mixture of different compounds including carbohydrates, amino acids,
lipids, and a large portion of uncharacterized chemically complex compounds resistant to
biological degradation (Burdige, 2007; Hedges & Oades, 1997; Schnitzer, 1999). Overall, the
downward flux of organic matter and its delivery to the seafloor depends on sedimentation
rates of sinking particles that mostly vary as a function of primary production in the ocean
surface, and of the proximity to continental sources (Arndt et al., 2013; Middelburg, 2018;
Orsi, 2018). Oxic deep-sea seafloor sediments underlie waters with low rates of organic
matter sedimentation that tend to be far from the continental slope (between 4,000 and
6,000mdepth) andwhere primary productivity is limited by nutrient availability i.e., abyssal
plains (D’Hondt et al., 2015; Kallmeyer et al., 2012). In the abyssal plains, although oxygen
penetrates very deeply, microbial communities are under extreme energy limitation due
to the low amount of organic matter and electron donors from the overlying oligotrophic
waters (reviewed in Orsi, 2018). Nonetheless, organic matter degradation processes result
from the combined metabolic effort of billions of individual microorganisms. This results
in microbial communities with unique metabolic strategies to cope for the limiting growth
conditions, with a myriad of metabolic pathways to meet their growth requirements, and
that are continuously involved in synergetic or competitive interactions that determine
the outcome of their activities (Arndt et al., 2013; Middelburg, 2018). Thus, understanding
microbial communities’ gene potential in these environments could be used to understand
their metabolic capabilities and predict their response to environmental perturbations.

The Gulf of Mexico (GoM) is one of the most economically and ecologically productive
and important bodies of water in the world (Fautin et al., 2010; Tunnell Jr, 2009; Yoskowitz
et al., 2013). Historically, the GoM has been subjected to different environmental
perturbations and chronic stressors, i.e., urban and agricultural runoffs, commerce and
transportation activities, and oil and gas industry activities (reviewed in Peterson et al., 2011;
Ward & Tunnell, 2017), that have resulted in the continuous release of contaminants to the
ecosystem.Awide range of contaminants have been found in theGoMsediments potentially
altering the sensitive microbial communities’ metabolism (Urakawa et al., 2012; Yergeau
et al., 2010; Yergeau et al., 2012) and, therefore, the biogeochemical processes related to
organic matter degradation and its consequential carbon export. As the oil and gas industry
in the GoM continues to expand in the search for new oil reserves in deep-marine waters,
baseline environmental studies, including microbial community taxonomic and metabolic
diversity, are of great interest for designing contingency plans and proposing mitigation
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strategies associated with oil-related environmental impacts i.e., oil spills. For instance,
after the Deepwater Horizon oil spill in 2010, most of the research efforts have focused
on identifying impacts on microbial communities in the water column and sediments
in the Northern region of the GoM (Bacosa et al., 2018; Bik et al., 2012; Godoy-Lozano et
al., 2018; Kimes et al., 2013; Mason et al., 2014; Yergeau et al., 2015). To expand on this
research, the oceanographic campaigns XIXIMI (traditional Nahuatl for ‘‘spill’’) emerged
as a Mexican initiative to characterize the oceanographic, hydrographic, biogeochemical
and ecological baseline conditions throughout the entire Southern deep region of the GoM,
in the deep-water region (those with depths >1,000 m) of Mexico’s Exclusive Economic
Zone, to promptly detect any impacts in the water column and sediment ecosystems if an
oil spill occurs over large spatial–temporal scales.

The geochemical characteristics for the GoM region have been reported (reviewed
in Herguera García, Díaz Asencio & Cepeda Morales, 2021); however, it was through the
XIXIMI campaigns that biogeochemical information of the Southern region started
being generated. Surveys derived from the XIXIMI campaigns have characterized the
geochemistry and microbiology of the deep-sea sediments of the Southern GoM. To date,
microbiology surveys in Southern GoM have described the taxonomy of prokaryotic
and eukaryotic communities (Godoy-Lozano et al., 2018; Vargas-Gastélum et al., 2019),
setting the basis of the microbiota fingerprint in this region. Currently, research efforts
are focused on generating environmental metagenomic information that enables a better
understanding of the functional composition and potential of microbial communities in
the Southern GoM deep-sea sediments (Raggi et al., 2020; Rodríguez-Salazar et al., 2021).
Particularly, GoM deep-sea sediments have been reported to show exceptionally low
average organic carbon values (<1%) compared to other deep slope and abyssal regions
of the global ocean (Herguera García, Díaz Asencio & Cepeda Morales, 2021). Thus, the
variety of metabolic strategies carried out by the microbial community in the sediments
to cope with limiting growth conditions and its potential for hydrocarbon metabolism
remains to be understood at these GoM regions. Generating fundamental knowledge
on microbial communities is crucial to model or predict ecosystem response to possible
environmental perturbations, particularly due to oil and gas industries’ expansion in
this region. This research focuses on describing the microbial community’s potential for
carbon transformation derived from metagenomic data generated from five sediment
cores collected during the XIXIMI-03 campaign. Taxonomic and functional data was
used to evaluate the prokaryotic community’s metabolic carbon core in the continental
slope and abyssal plain in Southern GoM deep-sea sediments in a comprehensive manner,
providing information on the most representative genes and metabolic pathways observed
throughout the prokaryotic community, including those related with central metabolic
pathways, and amino acids, hydrocarbons, nitrogen and sulfur metabolisms in hand with
the taxonomic fingerprint of these processes.
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MATERIALS & METHODS
Sample collection and geochemical analyses
Deep-sea sediment samples were collected during the XIXIMI-03 oceanographic campaign
between February 9th and April 10th of 2013, on board the R/V Justo Sierra. Samples were
collected using a multicorer at five different sampling stations: E2, E7, E44, E46 and E47,
distributed along the Southern region of the GoM, and located on the continental slope and
abyssal plain, with depths ranging from 1,739 to 3,741 m (Fig. S1). The sediment cores were
subsampled for metagenomic analyses using a 1 mL-needleless sterilized syringe allowing
to take the top first five cm of each core, and then transferred into 1.5 mL Eppendorf tubes
containing sucrose buffer 25% wt/vol for sample preservation (Mitchell & Takacs-Vesbach,
2008). The tubes containing the sediments were stored at −20 ◦C until further processing.

For geochemical analyses, a different core liner from the multicorer was used. Cores
were sliced at 1 cm intervals for the topmost 6 cm and then at two cm slices for the rest
of the core, which were stored at −20 ◦C until processing. In the laboratory, samples
were weighed while wet, freeze-dried and weighed again to calculate water content and
porosity. For the carbonate content analysis dry samples were homogenized in an opal
mortar, and a 15 mg aliquot of sediment was used to measure carbonate content by
coulometry (UIC Coulometer CM5041) and calibrated with a pure carbonate reference
and a laboratory reference CH94-94K. Content of carbonate is reported as a percentage
with a precision of 0.1% (Abella-Gutiérrez & Herguera, 2016; Díaz-Asencio, Bartrina &
Herguera, 2019). Terrigenous content (mostly silt and clay) was calculated assuming a
constant concentration of 2% biogenic opal and a maximum content of organic carbon of
1% (Díaz-Asencio, Bartrina & Herguera, 2019).

DNA extraction and sequencing
Sediments from the first five cm were used for DNA extraction and sequencing. Prior
to DNA extraction, samples were centrifuged at 10,000× g for 1 min to precipitate the
sample and discard the sucrose buffer. Genomic DNA was extracted from 0.25 gr of
sediment using the PowerSoil DNA Isolation Kit (Mo Bio Laboratories Inc.) according
to the manufacturer’s protocol. DNA was quantified via a NanoDrop lite (Thermo Fisher
Scientific) spectrometer. Metagenome libraries were generated using the Nextera XT DNA
Library Preparation Kit and sequencing was performed with the MiSeq Reagent Kit v3
(150-cycle) in an Illumina MiSeq platform.

Bioinformatic and statistical analyses
Metagenomes were analyzed using the MetaGenome Rapid Annotation using Subsystems
Technology (MG-RAST) on-line server (Keegan, Glass & Meyer, 2016), and are available
in EMBL-EBI with the project ID PRJEB47540 and under the MG-RAST project ID
mgp13888. In MG-RAST each unassembled metagenome was processed for quality control
(QC) including sequences quality filtering (5 ambiguous base pairs maximum), length
filtering (sequences with ± 2 standard deviations from the mean length were removed),
and dereplication (removing of sequencing artifacts) (Kimes et al., 2013). Functional
annotation was performed with a BLAT algorithm (Kent, 2002) search (maximum e-value
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of 0.001) using the non-redundant protein database M5NR (Wilke et al., 2012) and RefSeq
(O’Leary et al., 2016). To further relate the functional and taxonomic composition with
the metabolisms’ classification, a functional annotation table matching RefSeq taxonomic
and functional assignments with SEED Subsystems classification for each sequence in
metagenomes was constructed using the dplyr (Wickham et al., 2018) and tidyr (Wickham
et al., 2019) packages in the R software (R Core Team, 2013). Gene data in the functional
annotation table was normalized by the total number of reads in each sample and used in
downstream analyses. Taxonomic and functional data visualization was conducted using
the ggplot2 package (Wickham, 2009).

In order to infer the potential metabolic pathways carried out by the microbial
community in sediments, we constructed environmental Pathway/Genome Databases
(ePGDBs) using the MetaPathways ‘‘ePGDB’’ module, that uses the PathoLogic algorithm
(Karp et al., 2010; Karp, Paley & Romero, 2002) to map functional annotations onto
the MetaCyc (Caspi et al., 2016; Karp et al., 2000) collection of reactions and pathways.
PathoLogic predicts metabolic pathways based on defined biochemical rules including
pathway completion, diagnostic/key enzymes, biosynthesis and degradation constraints
which results in ePGDB construction (Konwar et al., 2013). Environmental PGDBs were
exported as .txt tables for further analysis. Hierarchical clustering analysis (HCA) was
conducted on ePGDBs to identify community metabolic compositional profiles using the
pvclust package in the R software (R Core Team, 2013; Suzuki, Terada & Shimodaira, 2015)
with Manhattan Distance measure and statistical significance to the resulting clusters as
bootstrap score distributions (1,000 iterations). In addition, we conducted a correlation
analysis of environmental variableswithmetagenomic data clusters using the envfit function
in the vegan package in the R software. Further, we identified the distinctive metabolic
pathways in each of the metagenomes and those that were shared among all and were
considered to constitute the core metabolism of the sediment’s microbial community.
Metabolic pathways visualization was conducted using the ggplot2 package (Wickham,
2009) and the VennDiagram package (Chen & Boutros, 2011) in the R software (R Core
Team, 2013).

RESULTS
Geochemical properties of Southern GoM deep-sea sediments
The geochemical composition of the sediments from the five sampling stations (E2, E7,
E44, E46 and E47) was determined by the organic carbon, carbonate and terrigenous
content (Table SI). Organic carbon content showed values ranging between 0.61–0.97%,
with the highest value (0.97%) at E47 located at the continental slope of Yucatán, and
lowest value (0.61%) at E44 located closer to the abyssal plain. Carbonate content showed
values ranging between 21.9 and 38.03%, the highest value was observed for E47 (38.03%)
and the lowest was observed for E2 (21.9%), located closer to the continental slope of
Tamaulipas. Terrigenous content showed values ranging from 58.9–75.25%, the highest
value observed at E2 and the lowest value was observed at E47.
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Microbial community taxonomic and functional composition in GoM
deep sediments
To identify prokaryotic community gene composition, we analyzed genomic information
comprised of 6,506,601 quality-filtered reads (Table SII) from five metagenomes
corresponding to samples collected at stations E2, E7, E44, E46 and E47, during the
XIXIMI-03 campaign.

To identify the deep-sea sediments microbial community core among samples, the
contigLCA taxonomic affiliation of genes, based on the M5NR database was used. The
prokaryotic community core was constituted by taxa showing a relative abundance
higher than 1% such as Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi,
Firmicutes, Nitrospirae, Planctomycetes, Proteobacteria, and Verrucomicrobia within
the bacterial domain, and Thaumarchaeota within the archaeal domain (Fig. 1A).
The Proteobacteria phylum was mostly constituted by Alphaproteobacteria affiliated
with Caulobacterales, Rhodospirillales, Rhizobiales, Rickettsiales, Rhodobacterales and
Sphingomonadales; Betaproteobacteria affiliated with Burkholderiales, Methylophilales,
Neisseriales and Nitrosomonadales; Deltaproteobacteria affiliated with Desulfovibrionales
and Desulfuromonadales; Epsilonproteobacteria affiliated with Campylobacterales;
Gammaproteobacteria affiliated with Alteromonadales, Legionellales, Methylococcales,
Oceanospirillales, Pseudomonadales, Pasteurellales, Thiotrichales, Vibrionales, and
Xanthomonadales (Fig. S2). In comparison, the rare biosphere core was constituted by
taxa showing a relative abundance lower than 1% including Chlorobi, Chrysiogenetes, De-
ferribacteres, Deinococcus-Thermus, Elusimicrobia, Fibrobacteres, Gemmatimonadetes,
Lentisphaerae, Spirochaetes, Synergistetes and Thermotogae belonging to the bacterial
domain, and Crenarchaeota, Euryarchaeota, Korarchaeota and Nanoarchaeota to the
archaeal domain (Fig. 1B).

To identify the deep-sea sediments prokaryotic community functional core using the
SEED Subsystems classification (level 1) of genes across samples. We identified a total
of 2,261 different functional genes (corresponding to 621,536 reads distributed among
samples) within the SEED classes of metabolism, including Amino acids, Aromatics,
Carbohydrates, Cell Wall and Capsule, Cofactors and Vitamins, DNA Metabolism,
Fatty Acids, Lipids, and Isoprenoids, Nitrogen, Nucleosides and Nucleotides, Membrane
Transport, Protein, Phages and Plasmids, RNA Metabolism, Respiration, Stress, Sulfur
and Virulence (Fig. S3). Further, we identified the community’s functional core by
cross comparing the gene content among metagenomes based on the RefSeq and SEED
Subsystems annotations. Functional core was constituted by 1,352 genes (338,499 reads)
(Fig. 2; Table SIII) representing 59% of the total genes identified mostly affiliated with
Proteobacteria (44%) and Thaumarchaeota (10%). Unique genes were also found for each
metagenome (Table SIV), representing between 4.6 and 5.8% of the total genes identified.
These genes were distributed among the Amino acids, Aromatics, Carbohydrates, Nitrogen,
Protein, Respiration, Stress and Sulfur SEED classes of metabolism (Fig. 2B) and showed
differences in their abundance (expressed as % of the total number of genes in a sample)
across samples. For instance, genes related to the Respiration class showed the highest
abundance (13.5%) at E2, while genes related to the Amino acids and Sulfur classes were
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Figure 1 Taxonomic composition of the Southern GoM sediments. Bar plots depict the relative abun-
dance (%) of identified microbial groups based on contig-LCA annotations of metagenomes (E2, E7, E44,
E46 and E47) in MG-RAST. (A) Abundant (>1% relative abundance) microbial groups and (B) Rare
(<1% relative abundance) microbial groups. Bar plot are divided and colored based on taxonomic affilia-
tion as indicated in color key.

Full-size DOI: 10.7717/peerj.12474/fig-1

more abundant (23.7% and 8.1%, respectively) at E7. In comparison, those genes related to
the Carbohydrates class showed the highest abundance (42.8%) at E44, the genes related to
the Aromatics and Nitrogen classes were more abundant (11.3% and 3.9%, respectively) at
E46, and the genes related to the Protein and Stress classes showed their highest abundance
(13.7% and 9.7%, respectively) at E47. Approximately 5.5%of genes across samples resulted
unclassified (Fig. 2B).

The taxonomic affiliation of unique genes was distributed among different taxa
including, Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Euryarchaeota,
Firmicutes, Nitrospirae, Planctomycetes, Proteobacteria, Verrucomicrobia within the
bacterial domain, and Thaumarchaeota within the archaeal domain. The abundance of
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Full-size DOI: 10.7717/peerj.12474/fig-2

genes affiliated to certain taxa showed differences depending on the sample (Fig. 2C).
For instance, Acidobacteria and Actinobacteria genes showed their highest abundance
(7.9% and 13.5%, respectively) at E7 while Bacteroidetes and Verrucomicrobia genes were
more abundant genes (12.1% and 3.4%, respectively) at E46, Chloroflexi genes showed
their highest abundance (8.8%) E2 and Firmicutes genes (23. 1%) at E47. In comparison,
Nitrospirae and Planctomycetes genes were only observed at E46 (abundance values of 1.7%
and 0.5%, respectively). Proteobacteria genes were broadly distributed among samples and
accounted for up to 54.9% of the total number of unique genes at E46. And genes with no
taxonomic affiliation (Fig. 2C) represented a total of 1.1%.

In addition, differences in the distribution of essential genes for hydrocarbon, sulfur
and nitrogen metabolisms were identified. Among these, genes associated to methane
oxidation to methanol (methane monooxygenase (mmo) and methanol dehydrogenase
(mdh)), toluene oxidation (toluene monooxygenase (tmo)), and naphthalene degradation
(naphthalene dioxygenase (ndo)); nitrite and nitrate reduction (assimilatory nitrate
reductase large subunit (nas), copper-containing nitrite reductase (nirK ), periplasmic
ferredoxin nitrate reductase (napBFGH ) and nitrate reductase cytochrome c550-type
subunit (nar); sulfite reduction and oxidation (sulfite oxidase (sdh), sulfite reductase (sir),
sulfite reductase [NADPH] hemoprotein Beta-component (sirHP), and sulfite reduction-
complex(drsABKOPM )), sulfur oxidation (sulfur oxidation protein (soxABCDY )), as
well as the sulfate adenylyltransferase (sat ), the alkane sulfonate (ssu) and the sulfonate
monooxygenase (msuD) were observed (Fig. 3). These genes were affiliated with diverse
microbial groups including, Actinobacteria, Acidobacteria, Bacteroidetes, Chloroflexi,
Firmicutes, Nitrospirae, Planctomycetes, Proteobacteria and Verrucomicrobia within the
bacterial domain, and Thaumarchaeota and Euryarchaeota within the archaeal domain
(Fig. 3).
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ABCDY). Bars are colored base on the taxonomic affiliation of genes according to key.

Full-size DOI: 10.7717/peerj.12474/fig-3
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Some genes peaked in abundance at specific locations and showed specific taxonomic
affiliations. Namely, genes related to sulfite dehydrogenase cytochrome subunit, sulfite
reductase [NADPH] hemoprotein beta-component and sulfonate monooxygenase
affiliated with Bacteroidetes, Firmicutes and Actinobacteria, respectively, were more
abundant at E2. In addition, assimilatory nitrate reductase genes and alkanesulfonate
monooxygenase genes affiliated with Plantomycetes and Actinobacteria, respectively, were
more abundant at E7 while methanol dehydrogenase genes affiliated with Acidobacteria
were more abundant at E44. In comparison, genes related to toluene monooxygenase,
copper-containing nitrite reductase, perisplamic ferredoxin nitrate reductase and
respiratory nitrate reductase, sulfate adenyltransferase, sulfite oxidase and reductase
affiliated with Actinobacteria, Bateroidetes, Planctomycetes and Verrucomicrobia, as
well as Euryarchaeota and Thaumarchaeota were more abundant at E46 (Fig. 3).
Moreover, some genes were exclusively affiliated to proteobacterial classes, including
periplasmic ferredoxin nitrate reductase affiliated with the Rhodobacterales, Vibrionales
and Campylobacterales within the Alpha, Gamma and Epsilon proteobacteria; methanol
dehydrogenase affiliated with Burkholderiales, Methylophilales and Methylococcales
within the Beta and Gammaproteobacterial; methane monooxygenase genes were
affiliated with the Rhizobiales, Rhodobacterales and Rhodospirillales within the
Alphaproteobacteria; naphthalene dioxygenase genes affiliated with the Rhizobiales within
the Alphaproteobacteria; nitrate reductase cytochrome c550-type subunit affiliated with
Rhizobiales, Alteromonadales, Pseudomonadales and Vibrionales within the Alpha and
Gammaproteobacterial; sulfite reductase Alpha and Beta subunit, sulfite reduction complex
subunits and sulfur oxidation protein subunits affiliated with Rhizobiales, Rhodospirillales,
Magnetococcales, Hydrogenophilales, Rhodocyclales, Chromatiales, Oceanospirillales,
Thiotrichales, Rhodobacterales, Burkholderiales, Cellvibrionales and Pseudomonadales
within the Alpha, Beta and Gammaproteobacteria (Fig. 3; Table SV).

Microbial community functional patterns
In order to gain insight into the microbial community metabolic potential, predictions
of metabolic pathways were performed using the pathway tools prediction algorithm
in MetaPathways. A total of 655 metabolic pathways were predicted across samples
showing differences on the number of reactions covered within pathways among samples
(Table SVI). Further, the microbial community metabolic core was identified with a total
of 204 metabolic pathways (31% of the predicted pathways) (Fig. 4A), of which 45%
were fully covered (100% reactions coverage), and 23% showed more than 60% reaction
coverage (Table SVI). Among the core metabolic pathways, we identified pathways related
to amino acids (biosynthesis and degradation), respiration, protein, and nitrogen and
sulfur metabolisms including the glycerol-3-phosphate to cytochrome bo oxidase electron
transfer, glycerol-3-phosphate to fumarate electron transfer, NADH to cytochrome bd
oxidase electron transfer I, NADH to cytochrome bo oxidase electron transfer I, succinate
to cytochrome bd oxidase electron transfer, succinate to cytochrome bo oxidase electron
transfer and aerobic respiration I (cytochrome c). The TCA cycle and the 2-oxoglutarate
decarboxylation to succinyl-CoA, and pentose phosphate pathway (partial and oxidative
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branch) were observed, as well as the pyruvate decarboxylation to acetyl CoA I, ethanol
degradation IV, formaldehyde oxidation II, and urea cycle and sulfite oxidation III pathways
(Table SVI).

Core metabolic pathways were mostly distributed among all the identified taxa.
However, certain pathways related to nitrogen, protein and sulfur seemed to be taxa
specific, including microbial groups that were considered not abundant based on gene
content alone, such as: Aquificae, Armatimonadetes, Caldithrix, Candidate divisions,
Chlorobi, Deinococcus-Thermus, Elusimicrobia, Gemmatimonadetes, Spirochaetes,
Synergistetes and Tenericutes, and Crenarchaeota (Fig. 4B). For example, metabolic
pathways related to Nitrogen metabolism were mostly attributed to Acidobacteria,
Actinobacteria, Armatimonadetes, Bacteroidetes,Deltaproteobacteria,Gemmatimonadetes
and Thaumarchaeota; metabolic pathways related with protein metabolism were mostly
attributed to Alphaproteobacteria, Bacteroidetes, Candidate divisions, Firmicutes,
Deltaproteobacteria and Thaumarchaeota; metabolic pathways related with sulfur
metabolism were mostly attributed to Alphaproteobacteria, Actinobacteria and Candidate
divisions (Fig. 4B).

In addition, to identify potentialmetabolic patterns driven by the geochemical conditions
from the different locations sampled, a hierarchical clustering analysis (HCA) was
conducted using the whole set of predicted pathways. Hierarchical clustering analysis
indicated that the microbial community’s metabolic composition could be grouped
in two major clusters (AU > 60, 1,000 iterations) associated with two GoM regions:
the continental slope (cluster I: E2 and E46) and the abyssal plain (cluster II: E7, E44
and E47) (Fig. 5A). The continental slope (cluster I) was significantly correlated with
terrigenous content (R2

= 0.9368, p< 0.1), the abyssal plain (cluster II) was significantly
correlated with carbonate content (R2

= 0.9359, p< 0.1), while organic carbon content
was not significantly correlated with any cluster (R2

= 0.1782) (Fig. 5A). Thus, distinctive
metabolic pathways within samples in clusters were identified. For instance, samples
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from the continental slope (cluster I) were characterized by the presence of metabolic
pathways such as malate/L-aspartate shuttle pathway, L-lysine biosynthesis I, formaldehyde
oxidation IV (thiol-independent), L-malate degradation II, glycolysis I (from glucose 6-
phosphate), Entner-Doudoroff pathway III (semi-phosphorylative), L-lysine degradation
VIII, mannitol degradation I, and assimilatory sulfate reduction III. In comparison,
samples from the abyssal plain (cluster II) were characterized for metabolic pathways such
as methanol oxidation to formaldehyde II, nitrite oxidation, dissimilatory sulfate reduction
II, glycolysis III, hydrogen oxidation II (aerobic, NAD), ammonia assimilation cycle II,
methylamine degradation I, nitrate reduction IV (dissimilatory), formate oxidation to CO2,
formate to nitrite electron transfer, manganese oxidation I, acetate and ATP formation
from acetyl-CoA I, NAD salvage pathway III (to nicotinamide riboside) (Table SVII).
Regarding the taxonomic distribution of these distinctive pathways, the continental slope
(cluster I) showed pathways belonged to Actinobacteria, Candidate divisions, Deinococcus-
Thermus, and Thaumarchaeota and Euryarchaeota , while the abyssal plain (cluster II)
pathways belonged to the Acidobacteria, Firmicutes, Gemmatimonadetes, Nitrospira,
Planctomycetes, Proteobacteria and Verrucomicrobia (Fig. 5B) (Table SVI).

DISCUSSION
This study explores metagenomic taxonomic and functional information that encompass
the microbial community potential metabolism in the Southern GoM deep-sea sediments,
and their likely ecological role. Our observations suggest that the prokaryotic community
is constituted by a taxonomic and functional core, and that specific types of metabolisms
could potentially be carried out at different locations depending on their geochemical
characteristics. Our results are one of the first to provide an insight into potential
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metabolisms associated with specific taxa within the prokaryotic community from the
Southern GoM deep-sea sediments. This represents fundamental knowledge crucial to
developing future surveys based on testing and quantifying changes in nutrient cycling as a
response to community’s exposure to pollutants associated with a developing oil industry
in this region, and a better understanding of the ecological roles of this community.

Values for carbonates, terrigenous and organic carbon observed were consistent with
the geochemical history of sediments reported for the Southern GoM region (Herzka et
al., 2014). Díaz-Asencio, Bartrina & Herguera (2019) highlighted the importance of the
terrigenous input to this basin, as it is one of the main controls of the burial rates with
important implications on the organic matter composition and distribution in the deep-sea
sediments of the Southern GoM (Díaz-Asencio, Bartrina & Herguera, 2019). In addition,
for the Southern GoM, isotopic surveys have reported deep-sea sediments enriched in 13C
content (Herzka et al., 2014); suggesting high terrigenous inputs from continental sources
and a main refractory composition for the organic carbon.

Organic matter abundance and content are important variables shaping prokaryotic
communities’ composition in marine sediments (Bienhold, Boetius & Ramette, 2012;
Bienhold et al., 2016; D’Hondt et al., 2009; Jacob et al., 2013; Kallmeyer et al., 2012).
Nonetheless the taxonomic core reported in this study is comparable to the prokaryotic
groups commonly identified in deep-sea sediments using 16S rRNA gene analyses (Biddle et
al., 2006; Bowman & McCuaig, 2003; Carr et al., 2015; Godoy-Lozano et al., 2018; Goffredi
et al., 2008; Kimes et al., 2013; Kubo et al., 2012; Orcutt et al., 2011; Parkes et al., 2014;
Polymenakou et al., 2005; Polymenakou et al., 2009; Teske, 2006) which are considered
major players in nutrient cycling in marine environments (Wasmund, Muzmann & Loy,
2017), however, these taxa have also been observed in organic-poor sediments (Inagaki et
al., 2003; Inagaki et al., 2006; Kormas et al., 2003; Newberry et al., 2004; Walsh et al., 2016;
Webster et al., 2006). Moreover, rare (<1% relative abundance) members that may play
a role in the Nitrogen, Protein and Sulfur cycling in this region were identified by gene
affiliation observations. Rare taxa affiliated to some of the groups identified in this study
i.e., Chlorobi, Deinococcus-Thermus, Elusimicrobia, Gemmatimonadetes, Lentisphaerae,
Spirochaetes and Tenericutes, have also been identified in low abundance in sediments
from different aquatic environments, particularly associated with the oxic-anoxic transition
in the environment (Chiellini et al., 2013; Liu et al., 2015; Martino et al., 2019; Oni et al.,
2015; Rissanen et al., 2019).

To study the influence of the microbial community from the Southern GoM on possible
hydrocarbon degradation processes, genes related to hydrocarbon metabolism were
identified. Previous studies in marine sediments from the southwestern GoM have inferred
potential hydrocarbon metabolism based on the presence of hydrocarbon degrading
bacteria, mainly affiliated with genera within the Gammaproteobacteria, with well known
hydrocarbon-degrading capabilities (reviewed in Rodriguez-Salazar, 2020). Hydrocarbon
metabolism genes were almost exclusively found in the Alpha and Betaproteobacteria,
only the toluene monooxygenase was also affiliated with Actinobacteria. Genes coding
for the methane monooxygenase were affiliated with Rhizobiales, Rhodobacterales
and Rhodospirillales within the Alphaproteobacteria. Our observations suggest the
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methanotrophic community in Southern GoM sediments, far located from oil rigs,
is mostly constituted by Type II methanotrophs. Similarly, metagenomic analyses
conducted following the Deepwater Horizon oil spill in the Northern GoM showed
Type II methanotrophs contributed to the highest percentage (37%) of Proteobacterial
genes in the sediment sample furthest located from oil rigs (∼127 Km distance) (Kimes
et al., 2013). In contrast, surveys addressing hydrocarbon degradation in the Northern
GoM near oil rigs (∼17 Km distance) showed the methanotrophic community was mostly
constituted by Type I methanotrophs affiliated with the Gammaproteobacteria (Bacosa
et al., 2018; Yergeau et al., 2015). Observations suggest methanotrophic diversity in the
GoM may vary as a function of methane availability in relation to proximity to oil rigs.
In addition, naphthalene dioxygenase and toluene monooxygenase were affiliated with
Rhizobiales within the Alphaproteobacteria, and Burkholderiales and Rhodocyclales within
the Betaproteobacteria. These orders have been previously identified as hydrocarbon and
aromatic compound degraders under culture conditions (Chakraborty et al., 2005; Espinoza
Tofalos et al., 2018; Martínez-Lavanchy et al., 2015; Nakatsu et al., 2006). In addition,
Actinobacterial toluene monooxygenase was also identified supporting their potential
ability to metabolize both n-alkanes and aromatic compounds, as previously reported for
different actinomycete strains isolated from a wide range of sources including sediments
(Chen et al., 2017; Gao et al., 2015).

Regarding nitrogen and sulfur metabolism, genes previously observed in Southwestern
GoM sediments were identified (Raggi et al., 2020), including the nitrate and nitrite
reductases and sulfite reductases (Fig. 3), suggesting that the microbial community in these
deep-sea sediments can adapt to low oxygen conditions. Additionally, these nitrogen and
sulfur genes could also be used to support alternativemetabolic pathways i.e., hydrocarbons
and amino acids degradation. Interestingly, nitrate and nitrite reductase genes were found
affiliated with the methane, naphthalene and toluene degraders identified in this study. For
instance, nitrate and nitrite reductase genes were affiliated with Bradyrhizobium sp., within
the Rhizobiales, and with Cupriavidus metallidurans and Dechloromonas aromatica within
the Burkholderiales and Rhodocyclales. These observations suggest that the hydrocarbon
metabolism in the microbial community from Southern GoM sediments may be coupled
with nitrate and nitrite reduction as a potential alternative mechanism to cope with limiting
O2 conditions. Namely, the use of nitrogen species to drive aerobic methane oxidation has
been reported for methanotrophic communities under bioreactor, microcosm and culture
conditions (Cuba et al., 2011; Hernandez et al., 2015; Kits, Klotz & Stein, 2015). Similarly,
studies have demonstrated C. metallidurans and D. aromatica are capable of oxidizing
toluene under nitrate reducing culture conditions (Chakraborty et al., 2005; Espinoza
Tofalos et al., 2018).

Functional blueprints showed similarities among metagenomes, and these constituted
a core set of metabolic pathways, which at the broadest level of gene taxonomic and
functional classification were comparable to previous metagenomic observations in the
Northern GoM (Kimes et al., 2013). Amino acids pathways constituted up to 20% of the
core metabolism among metagenomes, and 20% of amino acids ORFs within pathways
were affiliatedwith Sulfur reducing bacteria belonging to the Acidobacteria, Chloroflexi and
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Firmicutes. Further studies should be directed towards the alanine, aspartate and glutamate
degradation pathways identified in this study, as they are likely to have an effect on carbon
assimilation pathways, thus, amino acids may play an important role as intermediates in
carbon and nitrogen cycling in these marine sediments. Some studies have characterized
the role of dissolved free amino acids i.e., alanine and glutamic acid in biogeochemical
processes such as sulfate reduction and ammonium production by sulfate reducing
bacteria in marine sediments (Burdige, 1991; Dilling & Cypionka, 2006; Jacobson, Mackin
& Caponet, 1987). Culture experiments have shown sulfate reducing bacteria are capable
of aerobic respiration, although not coupled with growth resulting in ATP formation
(Dilling & Cypionka, 2006). In addition, results from incubation experiments amended
with amino acids showed sulfate reducing bacteria can either completely oxidize them to
CO2, or partially oxidize them to organic acids such as acetate, propionate or pyruvate
(Burdige, 1991; Jacobson, Mackin & Caponet, 1987). In addition, we observed genes related
to both amino acids and sulfur reducing pathways were affiliated with Acidobacteria,
Chloroflexi and Firmicutes. For instance, recent surveys have shown Acidobacteria have
the potential for sulfate reduction in terrestrial and aquatic ecosystems, including marine
sediments (Flieder et al., 2020; Hausmann et al., 2018). Similarly, previous studies support
that Chloroflexi has the metabolic capacity for amino acid catabolism and hydrocarbon
degradation (Hug et al., 2013). Comparably, Firmicutes abundance has shown an increase
in enrichment cultures amended with amino acids, suggesting Firmicutes has the potential
for being considered amino acid utilizing bacteria (Yu et al., 2020).

Regarding central carbon assimilation pathways, we observed the TCA pathway was
one of the core metabolic pathways and was highly represented across samples (80%
coverage). This suggests that the TCA pathway is a preferential route for heterotrophic
microorganisms to synthesize ATP and carry out a wider metabolic network contributing
to other aspects of metabolism, where the reducing power generated by the TCA cycle
could be utilized to regenerate NAD+ and maintain redox balance (Glöckner et al., 2003;
Jenkins & Nunn, 1987; Wang et al., 2020). In addition, the aspartate, glutamate, glyoxylate
and leucine degradation pathways were also part of the metabolic core across samples
(>60% coverage). Results from culture-based experiments have shown these pathways
could be connected to the TCA cycle as substrates to facilitate microbial growth under
carbon limiting conditions such as those observed in the GoM sediments (Halsey et al.,
2017; Varahan et al., 2020b; Varahan et al., 2020a; Zúñiga Ripa et al., 2014).

Moreover, statistical analyses allow us to determine region-specific clusters that may
reflect differential microbial community functional patterns. In order to gain insight into
potential functional patterns, clusters’ distinctive metabolic pathways were highlighted as
studies have demonstrated how changes in environmental factors influence the phylogenetic
diversity and functional traits of the microbial communities, and consequently ecosystem
function (Baltar et al., 2016; Lucas, Wichels & Gerdts, 2016; Thompson et al., 2017; Tinta
et al., 2015; Zhang, Zheng & Jiao, 2016). The Southern GoM continental slope (cluster
I) is considered to be impacted by high anthropogenic pressures, specially from the oil
industry and river run off, and typically display sediment contamination by polycyclic
aromatic hydrocarbons and heavy metals, which in turn can result in oxidative stress with
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cascade effects on the marine ecosystem (Dell’Anno et al., 2021). The Entner- Doudoroff
(ED) pathway was observed as one of the potential routes in the cycling of mono- and
polysaccharides at the continental slope (cluster I) deep-sediments. Tracer studies have
shown that the ED pathway has a preferential use in different classes of marine bacteria
due to the enhanced supply of NADPH obtained and might confer other advantages
for cellular metabolism i.e., protection against oxidative stress (Klingner et al., 2015).
Furthermore, results from recent studies suggest the ED pathway may be related to
denitrification processes (Chen et al., 2020) and to novel types of sulfur metabolism (Felux
et al., 2015). In addition, in the continental slope samples the assimilatory sulfate reduction
pathway was also observed. This pathway is known to be coupled with the biosynthesis
of sulfur-containing amino acids L-cysteine (Cys) and L-methionine (Met). Interestingly,
both, L-Cys and L-Met biosynthesis were core metabolic pathways seen with at least 60%
coverage in the continental slope region. The distinct redox properties of sulfur species,
including Cys andMet, ensure that they play vital roles within a cell, including antioxidation
and maintenance of the redox state (Tang, 2020). Therefore, the prokaryotic community
of the SW GoM may carry out defensive metabolic strategies for coping with the oxidative
stress occurring in the continental slope, likely due to the exposure to pollution from
continental sources.

In comparison, the abyssal plain (cluster II) was characterized by metabolic pathways
related to C1 metabolism, and nitrogen and sulfur cycling, suggesting the communities’
capacity for using one-carbon compounds derived from hydrocarbon sources may be
a trait for growing within an otherwise carbon impoverished environment. Regarding
pathwayswithinC1metabolism, themethanol oxidation to formaldehyde andmethylamine
degradation were identified. Recent observations of tracer experiments in the GoMoffshore
waters have shown methanol and methylamine were predominantly used as an energy
source under oligotrophic conditions, in which the methylamine was suggested to be used
as an alternative nitrogen source (Zhuang et al., 2018). Furthermore, contrasting evidence
of nitrite oxidation and dissimilatory nitrate reduction was observed in the abyssal plain
region, and supported by higher abundances of dissimilatory nitrate reductase genes
compared to assimilatory nitrate reductase and copper-containing nitrite reductase (2-fold
in total number of gene sequences. Although canonically, the nature of dissimilatory nitrate
reduction dictates this is a process of energy conservation in the (near) absence of oxygen,
studies have shown O2 and ammonium concentrations in sediments have an effect on
the denitrification pathway carried out by the microbial community (Bonin & Raymond,
1990). For instance, results from bioreactors studies using marine sediments showed
denitrification rates decreased steeply when O2 concentration in the pore water increased,
along with an increase in ammonium possibly due to the dissimilatory nitrate reduction
pathway (Bonin & Raymond, 1990). Oxygen content measurements in the Southern GoM
showed oxic conditions prevailed in sediments, thus likely supporting a dissimilatory
denitrification pathway to ammonium. Similarly, dissimilatory sulfate reduction was also
observed in the abyssal plain region. Culture experiments have shown sulfate reduction
to be possible under aerobic conditions. Results from Dilling & Cypionka (2006), showed
sulfate reducing bacteria are capable of aerobic respiration, although not coupled with
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growth resulting in ATP formation (Dilling & Cypionka, 2006). In addition, and relevant
to the community core metabolism observed in the SW GoM sediments, results from
incubation experiments amended with amino acids showed sulfate reducing bacteria can
either complete oxidizing them to CO2 or perform a partial oxidation to organic acids
such as acetate, propionate or pyruvate (Burdige, 1991; Jacobson, Mackin & Caponet, 1987).
Understanding these metabolic interactions may guide future development of microbial
processes in new application scenarios such as bioremediation, C1 bioconversion and
biocatalysis, all relevant processes to the current Gulf of Mexico ecological and economical
needs.

CONCLUSIONS
In the present studyweusedmetagenomic analysis to determine the prokaryotic community
taxonomic and functional composition relevant to understanding its potential function
in the sediments of the continental slope and the abyssal plain of the Southern GoM, and
in consequence, their ecological importance. Our observations highlight the metabolic
potential and versatility for hydrocarbon degraders to potentially use alternative electron
acceptors for hydrocarbon removal with possible effects on nitrogen cycling processes in
the Southern GoM sediments, and with potential applicability to bioremediation strategies
to mitigate hydrocarbon pollution in this region. Further, results suggest amino acids
metabolismmay play a crucial role as a central carbon source to favor growth in the southern
GoM impoverished carbon environment. In addition, the prokaryotic community of the
Southern GoM showed a clear division between the continental slope and abyssal plain, the
formerwith themetabolic potential to thrive under oxidative stress conditions and the latter
to cope for carbon limiting growth conditions. Our observations highlight the potential of
hydrocarbon degraders, nitrate and nitrite reducers, and sulfate reducers to carry out these
types of metabolism. The results presented here provide unprecedented information for
potential metabolisms carried out by specific taxa in the Southern GoM sediments. This
information is relevant to future studies that consider developing methodologies that can
be used as microbial-based bioremediation strategies, as well as developing modeling tools
that allow to predict the effects of microbial community’s response to perturbation that
could feed back on ecosystem’s biogeochemical cycling, as well as for designing contingency
plans and mitigation activities associated with oil-related environmental impacts.
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