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Quantification of Contractile 
Dynamic Complexities Exhibited 
by Human Stem Cell-Derived 
Cardiomyocytes Using Nonlinear 
Dimensional Analysis
Plansky Hoang1,2, Sabir Jacquir3, Stephanie Lemus1,2 & Zhen Ma1,2

Understanding the complexity of biological signals has been gaining widespread attention due to 
increasing knowledge on the nonlinearity that exists in these systems. Cardiac signals are known 
to exhibit highly complex dynamics, consisting of high degrees of interdependency that regulate 
the cardiac contractile functions. These regulatory mechanisms are important to understand for the 
development of novel in vitro cardiac systems, especially with the exponential growth in deriving 
cardiac tissue directly from human induced pluripotent stem cells (hiPSCs). This work describes a 
unique analytical approach that integrates linear amplitude and frequency analysis of physical cardiac 
contraction, with nonlinear analysis of the contraction signals to measure the signals’ complexity. 
We generated contraction motion waveforms reflecting the physical contraction of hiPSC-derived 
cardiomyocytes (hiPSC-CMs) and implemented these signals to nonlinear analysis to compute the 
capacity and correlation dimensions. These parameters allowed us to characterize the dynamics of the 
cardiac signals when reconstructed into a phase space and provided a measure of signal complexity 
to supplement contractile physiology data. Thus, we applied this approach to evaluate drug response 
and observed that relationships between contractile physiology and dynamic complexity were unique 
to each tested drug. This illustrated the applicability of this approach in not only characterization of 
cardiac signals, but also monitoring and diagnostics of cardiac health in response to external stress.

Over recent years, there has been increasing interest of using nonlinear analysis to study human biological signals, 
since maintenance of stability in physiological functions involves interconnected feedback loops between bio-
logical systems. Such high degrees of interdependency require in-depth investigation on the level of complexity 
and variability of the biological systems for better understanding of their regulatory mechanisms. Specifically, 
cardiac rhythm has gained widespread attention, because it is known to exhibit considerable signal complexity in 
healthy individuals from normal day-to-day activities. Additionally, cardiovascular diseases are often associated 
with irregularities in cardiac contraction, frequency and rhythm1. Cardiac physiology is traditionally quantified 
using linear analytical approaches that analyze acquired physiological signals (e.g. electrocardiograms (ECG)) in 
the time and frequency domains2–4. There is increasing evidence suggesting that nonlinear analysis can be used 
in conjunction with standard diagnostic methods to quantify individual physiological states5. Differences in the 
nonlinear indices can be monitored between healthy and sick individuals, including cases of emotional stress, 
environmental changes, or genetic cardiomyopathies.

Methods from chaos theory and nonlinear dynamics give us the opportunity to study these complex biological 
signals, including entropy6, complexity indexes7 and dimensional analysis8. Phase space reconstruction (PSR)9,10 
and dimensional analysis has been implemented to characterize the intrinsic nonlinear complexity within the 
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time series signals11–13. Specifically, the phase space consists of a set of typical trajectories of the system, in which 
each point corresponds to one system state. The dimensionality of PSR can be quantified by determining the 
fractal properties of the attractors in a dynamic system based on different calculation methods, including capac-
ity, information and correlation dimensions. The fractal is a subset of points at small scale that can resemble 
the whole object. The fractal properties represent the degree of complexity, to which the object differs from the 
Euclidean geometry with integer topological dimensions. Analyzing the fractal properties of a waveform repre-
sents a useful tool for identifying the number of independent variables necessary for generating a corresponding 
process or state.

Despite the application of nonlinear analysis to the clinically acquired signals (e.g. ECG), such analysis has 
not been widely applied for in vitro cardiac model systems. With the rising interest in human induced pluripotent 
stem cell (hiPSC) derived cardiomyocytes (hiPSC-CMs), it is of utmost importance that we are able to charac-
terize their contractile functions and heartbeat rhythm in a more precise and comprehensive manner. However, 
current approaches to characterize the contractile physiology of hiPSC-CMs still heavily depend on amplitude3 
and frequency2 analyses of physical and electrophysiological data. These conventional analytical tools only draw 
simplified readouts from complex biological signals, which poses the challenge of gaining informative analytical 
outcomes from hiPSC-CMs to assess comparability with native tissue and responsiveness to external stress14. In 
addition, hiPSC-CMs exhibit higher variability15,16 in their contractile behaviors than the adult human heart even 
under normal conditions, which further emphasizes the need to integrate novel analytical methods to in vitro 
cardiac model systems.

In this work, we have introduced a novel analytical tool that performs nonlinear dimensional analysis on the 
contractile dynamics of hiPSC-CMs. More specifically, we used optical flow analysis based on block matching to 
detect cardiac contractile motions of hiPSC-CMs within a video, generate contractile motion waveform in the 
time domain, and perform conventional amplitude and frequency analyses. Then, we implemented PSR to the 
motion waveforms to derive dimensional parameters that will quantify the complexity of contractile motion sig-
nals. To assess the applicability of this new analytical approach, we applied this analytical workflow to analyze the 
contractile complexity of hiPSC-CMs exposed to various external stressors, including drug exposure and electri-
cal stimulation. We envisage that this analytical tool can be complemented to the rapid expanding field of in vitro 
cardiac tissue model by quantifying the irregularity and complexity of cardiac contractile motions, which have 
been difficult to answer via conventional methods. This approach also will provide new insights on how chaotic 
theory and nonlinear dynamics can be used for in vitro biological experimental models.

Materials and Methods
hiPSC culture and differentiation.  Wild-type (WT) hiPSCs were grown on hESC-qualified growth 
factor-reduced Geltrex (Life Technologies) coated substrates and maintained in Essential 8 medium (E8) (Life 
Technologies). Differentiation of hiPSC-CMs were performed based on the protocol that uses two small mol-
ecules to modulate canonical WNT pathway17. hiPSC-CMs were maintained in RPMI basal medium supple-
mented with B27 complete (RPMI + B27-C), and medium was changed every two days. After 12 days culturing 
in RPMI + B27-C, hiPSC-CMs were dissociated, singularized and replated for purification procedures with glu-
cose-depleted lactate medium18.

Drug exposure.  To evaluate drug response, hiPSC-CMs were treated for both long and short terms to the 
drugs affecting the heart rate. For long term exposure, hiPSC-CMs were treated with a constant 10 nM isopro-
terenol in RPMI + B27-C for 1 week. The drug-supplemented medium was changed every two days and videos 
were recorded daily. For short term exposure, hiPSC-CMs were treated with three drugs (alfuzosin, flecainide and 
isoproterenol) at two doses and videos were recorded 10 minutes after each dose. Doses were increased by adding 
the appropriate volume of stock solution to the hiPSC-CM culture medium.

Electrical stimulation.  hiPSC-CMs were electrical stimulated using a C-Pace unit and a 6-well C-Dish, 
according to the manufacturer manual (Ion Optix, Milton, MA, USA). The carbon electrodes supplied with rec-
tangular, 5 V/cm, 2 ms and 2 Hz electrical pulses to the hiPSC-CMs. The baseline beating videos were recorded 
as Pre Stim before the electrical stimulation was supplied, and then hiPSC-CMs were stimulated for 30 minutes 
as the conditioning stimulation. Next, three beating videos were recorded from the hiPSC-CMs under electrical 
stimulation as ON 2 Hz Stim with 30-minute time intervals between two videos. Last, 2 hours after the stimulation 
was removed, the beating videos of the hiPSC-CMs were recorded as Post Stim.

Video recording and motion-tracking analysis.  hiPSC-CMs were imaged in an onstage microscope 
incubator at 37 °C and 5% CO2 to maintain standard physiological conditions on a Nikon Ti-E inverted micro-
scope with Andor Zyla 4.2+ digital CMOS camera. Videos of the beating hiPSC-CMs were recorded at 100 fps 
over 20 seconds in bright-field, and exported as a series of single-frame image files. The image series were then 
analyzed using in-house and open source motion tracking software19 that calculates motion vectors based on 
block matching of macroblocks of pixels from one frame to the next. The software then generates motion wave-
forms that represent the contractile physiology of hiPSC-CMs.

Calculation of the capacity dimension.  The capacity dimension of contraction motion waveforms 
(Supplemental Fig. 1a) was calculated using the variogram method based on a “variation estimator”20. The var-
iation estimator plots the variance γ (τ) of values given for the points separated by a certain distance τ, given by
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where N is the number of neighboring data points within the time lag distance specified, Si+1:N is the value of the 
initial point, and S1:N−i is the value of the neighboring point being compared in the range of i bounded by the time 
lag distance τ and the length N of the contraction motion waveform S. Thus, for computing capacity dimension 
using variogram approach, first step is to compute the variance γ(τ) for different time lag τ. This can be plotted as 
a curve, in which the variogram value increases with time lag to a maximum, and levels off at a time lag where the 
total variability of the data field is reached. Next, log(γ(τ)) vs. log(τ) is plotted, and regression method is used to 
calculate the slope P of the line. Finally, the capacity dimension is given by

= −D P2 /2 (2)capacity

Calculation of the correlation dimension.  The correlation dimension (Dcorrelation) measures the geomet-
rical complexity of an attractor21 and has become a standard measure of the fractal properties of attractors that 
have been reconstructed in the state space. A larger value of the correlation dimension depicts a higher degree of 
complexity in the signal dynamics. If the dynamics is stochastic, D tends to infinity and the attractor is obtained 
when the signal is embedded in a phase space. From a cardiac contractile motion waveform (Sn; n = 1, …, N) with 
N samples, considering Takens theorem22, an m-dimensional phase-space is constructed as follows:
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The phase space reconstruction depends on two parameters: time lag τ and embedding dimension m. If τ is 
too small, the trajectories of Sj and Sj+τ are too close to be separated. In contrast, if τ is too large, the trajectories 
of attractor projected on the two axes are not correlated, which makes the reconstructed phase space useless. 
The goal is to find the smallest value of τ to ensure the independence of resulted coordinates in the phase space. 
Herein, the time lag τ is computed using the method of autocorrelation function (ACF)23, and it corresponds to 
the time required for the ACF to decrease to 1/e of its original value as follows:

τ = τ−C C e( ) (0) (4)k

where C(0) is calculated without a time lag (τ = 0). τ can be defined when τ =C( ) C
e
(0)  (where k = 1/τ), which 

corresponds to the time required for the ACF to decrease to 1/e of its original value.
In terms of the embedding dimension m, a well-defined embedding dimension is essential to a phase space to 

describe all possible states of a dynamic system. Since the dimension of the phase space reconstructed from exper-
imental data is not known in priori, embedding dimension m will be determined to ensure that reconstructed 
phase space is topologically identical to original data. From a geometrical point of view, the time series (exper-
imental data) is the projection of a m-dimensional system (reconstructed phase space) to a one-dimensional 
space. Therefore, two points in the m-dimensional space, even far from each other, could be very close in the 
original 1D space, which makes them false neighbors. In the reconstructed phase space, the distances between 
a point and its nearest neighbor will be measured. If two points are real nearest neighbors, the distance will not 
change with the increase of dimension. Herein, the embedding dimension m is estimated using the method of 
False Nearest Neighbors (FNN)24, where the optimal value of m corresponds to the minimum value of m for 
which the FNN is close to zero.

In our work, the correlation dimension is determined using the Grassberger-Procaccia method25, based on the 
following approximation: the probability of having a couple of points in a box of size r is equal to the probability 
of having a couple of points with separation distance less than r when →r 0. The correlation dimension is defined 
by:
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where Θ(x) is the Heaviside step function. The summation counts the number of pairs (xi xj) for which the dis-
tance || xi, xj || is less than r. For each reconstructed phase space trajectory, the distances between all points in the 
trajectory are calculated. The logarithm of the smallest distance (represented by rmin) and the logarithm of the 
largest distance (represented by rmax) are then computed. A series of bins is created to record the correlation sum, 
Cm(r), which is the normalized number of couples of points with a separation distance less than a specified dis-
tance r. The process of depositing counts of data into bins is analogous to recording counts of the occurrence of 
events within data in a frequency histogram. In this study, an arbitrary number of 32 bins is used and the width of 
each bin is set to −r r

32
max min . Thus, from first to last, the separation distances = + −r rn min

n r r( )
32

max min , where n = 1 to 
32 are considered. In practice, the correlation dimension is obtained from the slope of log (Cm(r)) versus log (r). 
Several Cm(r) are computed for increasing values of the embedding dimension m, and the slopes are determined 
from a scaling region of the log-log plot, as shown in Supplemental Fig. 1b. When m increases, Dcorrelation reaches 
to a saturation value corresponding to a steady correlation dimension26,27 (Supplemental Fig. 1c). From the distri-
bution of the correlation dimension values (Supplemental Fig. 1d), the averaged value of the correlation 
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dimension of this set is computed. Based on the curvature of Dcorrelation values, the steady correlation dimension 
corresponding to the curve plateau was computed for each set of Dcorrelation, illustrated in Supplemental Fig. 1c.

Statistical analysis.  Data was plotted as the mean ± s.d. For single comparisons between groups, a 
two-sided Student’s t-test was used, and p ≤ 0.05 was considered significant.

Results
Nonlinear dimensional analysis on contractile motions.  In order to determine the complexity of 
cardiac contractile dynamics, we performed phase space reconstruction of the contractile motion waveforms 
recorded from hiPSC-CMs. To analyze the fractal properties of reconstructed phase space, we can compute 
capacity and correlation dimensions based on different methods (Fig. 1a). hiPSC-CMs were differentiated from 
WT hiPSCs via modulation of the WNT/β-catenin pathway and enriched using a lactate-supplemented purifica-
tion method17. After purification, we recorded the beating videos of hiPSC-CM clusters (Fig. 1b), and compared 
the difference in both linear and nonlinear parameters between two independent tissue cluster samples (Cluster 
A vs. Cluster B). Motion waveforms corresponding to Cluster A and Cluster B were visibly comparable based on 
visual inspection (Fig. 1c), which was corroborated with similar motion results (Table 1), including comparable 
beat rates (33.17 vs. 33.99 beats per minute), contraction velocities (24.65 vs. 22.46 µm/s), and relaxation velocities 
(18.69 vs. 19.97 µm/s). Based on these two motion waveforms, the peak-to-peak (PP) interval was also computed 
as a traditional linear assessment. Similarly, the average PP interval remained relatively consistent between both 
samples (1.81 vs. 1.77 seconds). Therefore, from motion tracking analysis, we concluded that these two samples 
exhibited similar contractile features based on linear time series analysis.

Nonlinear PSR analysis was then applied to extend the characterization of these two contraction motion 
waveforms (Fig. 1c). The raw data acquired from motion tracking analysis was processed using custom algo-
rithms, from which we were able to calculate the capacity and correlation dimensions based on time lag (τ) and 
embedding dimension (m), respectively. The mean capacity dimension (Dcapacity) was also similar between two 
samples (1.354 vs. 1.350) (Fig. 1d), inferring that the geometrical capacity of phase space between two clusters 
was comparable. We also calculated and plotted the correlation dimension (Dcorrelation) with respect to embedding 
dimension, which is a measure of the dynamic distribution of points in the phase space (Fig. 1e). In contrast, 
Cluster B exhibited a greater steady correlation dimension (1.193 v.s. 1.354). Therefore, the correlation dimension 
was able to detect the contrasts in system dynamics of the nonlinear plots between two samples exhibiting similar 
contractile behaviors. Computation of the correlation dimension provided quantification of additional aspect 
of the system dynamics, which were not visibly apparent in the motion waveforms as well as not reflected in the 
capacity dimension.

Contractile variability over daily and hourly time scales.  To examine natural variability of contractile 
physiology exhibited by hiPSC-CMs, we first recorded the beating videos and assessed the contraction motions 
of hiPSC-CMs daily over a course 30 consecutive days (long time scale) as well as hourly over a 7-hour time 
frame (short time scale). For both long and short time series, six beating tissue clusters were used for video 
recording and each sample was recorded once at each time point. Each beating video was analyzed for the entire 
field-of-view and outputted a single time series contraction motion waveform. Throughout these periods, we 
observed fluctuations in the average values and standard deviations of the beat rate and contraction/relaxation 
velocities across 6 different samples (Supplemental Fig. 2a–f). This observation demonstrated that hiPSC-CMs 
exhibited natural variations in their contractile behaviors over daily and hourly time scales.

By performing nonlinear analysis on the motion data, we plotted the mean capacity dimension and steady 
correlation dimensions for 6 samples over daily and hourly time scales (Supplemental Fig. 2g–j). Over the 30-day 
period, both the capacity and correlation dimensions exhibited significant fluctuations in the average values 
and relatively high variations across six tissue samples, which were illustrated by standard deviations for each 
value (Supplemental Fig. 2g,i) and daily trends for individual tissue cluster (Supplemental Fig. 3a). However, in 
the hourly time scale, these dimensional parameters remained relatively consistent over 7 hours (Supplemental 
Figs 2h,j, 3b), which implied that the hiPSC-CMs exhibited higher degrees of contraction complexity on daily 
basis as opposed to hourly.

We then compared the standard deviations of the nonlinear metrics reflecting the variability across the studied 
time periods and across the six tissue clusters. The standard deviations in capacity dimensions showed greater var-
iations among different hiPSC-CM clusters, in contrast to the variations among different days or hours (Fig. 2a, 
Supplemental Fig. 3c). This implies that the overall geometric capacity of reconstructed phase space varies at a 
higher degree between tissue samples, because although each cluster has its unique contraction behaviors, overall 
contraction trends of all clusters over time appear to follow similar trends (Supplementary Fig. 3a). Contrastingly, 
the correlation dimensions with respect to the embedding dimension (Fig. 2b; Supplemental Fig. 3d) illustrated 
larger deviations across the 30 days in comparison to clusters. This might be caused by the greater variations 
in the signals’ dynamic distribution within the phase space over the course of 30 days. This indicated higher 
instances of subtle changes in the cardiac contraction, such as aberrations, that occur over the course of 30 days 
are more prominent in comparison to the variations among clusters. Hourly variability (Supplemental Fig. 3c) 
shows comparable trends between hourly and cluster deviations. Based on our previous conclusions, the compa-
rability can be attributed to the signal variability due to the significantly shorter time scale.

To correlate the linear analysis with nonlinear metrics, we chose four arbitrary days (Day 9, Day 13, Day 19, 
and Day 24), and compared contractile physiology (Supplemental Fig. 4a–d) of all six clusters with their corre-
sponding correlation and capacity dimensions. We observed that hiPSC-CMs clusters on Day 19 and Day 24 
exhibited higher beat frequency than the same ones on Days 9 and Day 13. All cluster samples on Day 24, how-
ever, exhibited high degrees of irregular arrhythmia-like contractile behavior, as the motion waveforms illustrated 
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Figure 1.  Nonlinear reconstruction of time series contractile motion signals. (a) Contraction motion 
waveforms were analyzed using phase space reconstruction to determine the fractal properties of the signals, 
including two parameters: capacity dimension and correlation dimension, which characterize the geometric 
space and distribution dynamics of the signals. (b) Two hiPSC-CM clusters (Cluster A and Cluster B) exhibited 
comparable contractile physiology, (c) which were compared in time domain and respective nonlinear phase 
spaces. (d) The capacity dimension with respect to time lag (τ) was comparable between the two clusters, 
(e) but the correlation dimension with respect to embedding dimension (m) showed different trends. Scale 
bars = 100 μm.
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significantly reduced contraction peaks and increased presence of signal aberrations. The increase of abnormal 
cardiac behavior over time was captured in the capacity dimensions, since the variations in capacity dimension 
curves across time lag τ are more scattered among clusters on Day 19 and particularly on Day 24 (Fig. 2c). These 
high variations are also illustrated in the correlation dimension, as the correlation plateaus significantly vary on 
Day 24, in comparison to the relatively consistent correlation plateaus of the other three days (Fig. 2d).

To understand how the nonlinear metrics are influenced by contraction amplitude and frequency, the steady 
correlation and mean capacity dimensions of individual clusters were plotted against the respective contraction 
velocity and beat rate. The steady correlation dimensions for Days 9, 13, and 19 remained relatively consistent, 
despite the considerable range in contraction rate and velocity across all samples (Fig. 2e,f). In contrast, clusters 
on Day 24 exhibited the greatest variation among different clusters in terms of contraction rate, velocity and 
correlation dimension. This was attributed to the irregular arrhythmia-like contractile behaviors observed from 
each individual cluster on this specific day. The mean capacity dimensions also remained consistent for all days 
with respect to beat rate and contraction velocity for all days except Day 24 (Fig. 2g,h). Overall, these associations 
suggest that the fractal properties of the reconstructed phase space were not intensively influenced by contraction 
rate and velocity averaged from time series data, but rather reflected the presence and severity of arrhythmic 
behaviors that contribute to the signal complexity.

Drug response.  To investigate the capability of our new analytical approach to evaluate the responsiveness 
of hiPSC-CMs to drug interference, hiPSC-CMs were exposed to three drug compounds (alfuzosin, flecainide 
and isoproterenol) known to modulate heart contractile behaviors. For this study, we recorded the beating videos 
for both untreated baseline controls and drug-treated hiPSC-CMs over short- and long-term drug exposure. For 
short-term dose-response assessment, hiPSC-CMs were treated with incremental doses of specific drugs and sub-
sequently recorded as beating videos following each dosage. The videos were then analyzed with motion tracking 
to generate the corresponding waveforms (Supplemental Fig. 5a–c) and followed with nonlinear dimensional 
analysis. Alfuzosin is an alpha-adrenergic blocker prescribed to treat benign prostatic hyperplasia28. However, 
alfuzosin use has also shown adverse effects on prolongation of QT interval by delaying cardiac repolarization28. 
Treatment with alfuzosin significantly increased the beat rate of hiPSC-CMs (Fig. 3a), but with negligible change 
in average contraction velocities (Supplemental Fig. 5d). Despite the induced changes in contraction rate, non-
linear analysis showed insignificant changes in capacity dimension with increasing dose. Alternatively, the drug 
treatment at both the 1 nM and 100 nM concentrations resulted in an observable decrease of the correlation 
dimension relative to the baseline control (Fig. 3a). Next, hiPSC-CMs were treated with flecainide, which is a 
sodium ion channel blocker and is prescribed to restore normal heart rhythm from arrhythmias29. In contrast to 
alfuzosin, the introduction of flecainide caused a decrease in the beat rate, with slight, but insignificant increases 
in contraction velocities (Supplemental Fig. 5e). This corresponded to insignificant variations in capacity dimen-
sion and correlation dimension with each incremental dose (Fig. 3b). Lastly, we treated the hiPSC-CMs with iso-
proterenol, which is a potent β adrenergic agonist that is used clinically to treat bradycardia. hiPSC-CMs treated 
with isoproterenol had significantly greater beat rate and contraction velocities (Supplemental Fig. 5f), as well as 
higher capacity and correlation dimensions (Fig. 3c).

For the long-term drug exposure study, hiPSC-CMs were treated continuously with a constant dose (10 nM) 
of isoproterenol for 7 consecutive days, wherein the drug supplemented media was changed every two days and 
videos were recorded daily (Fig. 3d). Throughout the entire treatment period, the average contraction velocities of 
the tissues remained relatively consistent (Supplemental Fig. 4g,h). Regarding contraction frequency, a significant 
increase in beat rate was found only after the first hour of treatment. Subsequent days after, the contractile physi-
ology returned to the baseline level, indicating desensitization of the hiPSC-CMs to the drug. The reduced sensi-
tivity can be attributed to the fact that hiPSC-CMs are still physiologically immature with limited responsiveness 
to β adrenergic stimulation30,31. Regardless of the drug-induced changes to contractile physiology, the capacity 
dimension remained consistent with insignificant fluctuations, after the initial hour and over the 7-day period. 
In contrast, the correlation dimension exhibited significant variation only towards the last two days of treatment.

Electrical stimulation.  Electrical stimulation is commonly applied to hiPSC-CMs to control intermittent 
pacing and promote cell maturity. We subjected hiPSC-CMs to 2 Hz stimulation and recorded videos before (Pre 
Stim), during (ON 2 Hz Stim) and after stimulation removal (Post Stim) (Fig. 4a). During stimulation, videos were 
recorded with 30-minute intervals. At Timepoint 2, the hiPSC-CMs gained half the supplied pacing (60 BPM) 
and attained full pacing at time-point 3 (120 BPM) (Fig. 4b) as well as an overall increase in contractile physiol-
ogy. We first performed individual assessments on a single sample and found that increased pacing of hiPSC-CMs 
was accompanied with increases in both capacity and correlation dimensions (Fig. 4c). On average for all tissue 

Cluster A Cluster B

Beat Rate (BPM) 33.17 ± 0.349 33.99 ± 0.227

Peak-Peak Interval (s) 1.81 ± 0.016 1.765 ± 0.012

Contraction Velocity (µm/sec) 16.02 ± 0.187 14.599 ± 0.143

Relaxation Velocity (µm/sec) 12.15 ± 0.075 12.98 ± 0.142

Mean Capacity Dimension 1.354 1.350

Steady Correlation Dimension 1.193 1.354

Table 1.  Comparison of linear and nonlinear parameters of Cluster A and Cluster B.
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Figure 2.  Effects of contractile physiology on nonlinear metrics. (a) The capacity dimension and (b) correlation 
dimension were plotted with respect to their nonlinear domains. The error bars represent the standard deviation 
over the 30-day period or across the six tissue clusters. Four arbitrary days were chosen for in-depth analysis 
(Days 9, 13, 19, and 24). (c) Capacity dimensions and (d) correlation dimensions for these particular days 
were plotted for each tissue cluster with respect to its’ nonlinear domain, illustrating greater fractal properties 
for tissues exhibiting arrhythmia-like characteristics (Day 24). (e,f) The steady correlation dimension relative 
to the beat rate and contraction velocities were plotted for each individual cluster on these specific days. (g,h) 
Similarly, the relationship between mean capacity dimensions with respect to the beat rate and contraction 
velocities were plotted for each tissue cluster.
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samples undergoing stimulation, the contraction rates and velocities increased, and the capacity and correlation 
dimensions were greater relative to their state prior to stimulation (Fig. 4d,e), indicating the changes in signal 
complexity and fractal characteristics due to the stimulatory conditions. This implied that nonlinear contractile 
dynamics was highly sensitive to the stimulatory conditions, as they significantly vary between prior and during 
stimulation. According to the comparison between Pre Stim and Post Stim, we observed that hiPSC-CMs returned 
to the baseline contractile behaviors (beat rate, contraction velocity, and relaxation velocity), resulting in no 
significance before and after electrical stimulations (Fig. 4f). Despite negligible change of contractile physiology 

Figure 3.  Nonlinear analysis on hiPSC-CM drug response. hiPSC-CMs was treated with 3 drugs, including (a) 
alfuzosin, (b) flecainide and (c) isoproterenol over a short period with incremental doses. The beat rate, capacity 
dimension and correlation dimension were compared respectively in response to the drug dosages. (d) A long-
term drug study was also conducted by supplying a constant dose of isoproterenol over the course of 7 days.
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motion, the nonlinear analysis showed higher values corresponding to Post Stim results, especially for the capacity 
dimension (Fig. 4g), which suggested that nonlinear dimensional analysis can possibly distinguish subtle differ-
ences underlying the stimulatory response of complex cardiac contractile physiology.

Discussion
In this work, nonlinear dimensional analysis was supplemented to traditional linear approaches to characterize 
contractile dynamics exhibited by hiPSC-CMs. Specifically, we explored the variances in the fractal properties 
of reconstructed phase space by deriving two different parameters, capacity and correlation dimensions, which 
described the geometrical structure and frequency distribution of the points in the phase space reconstructed 
based on the contractile motion signals. We demonstrated that hiPSC-CMs with similar contractile physiology 
can express different nonlinear dynamics metrics, since linear analysis of contraction motion only addresses bulk 

Figure 4.  Changes in fractal properties induced by electrical stimulation. (a) hiPSC-CMs under electrical 
stimulation were recorded before (Pre Stim), during (ON 2 Hz Stim), and 2 hours after stimulation removal 
(Post Stim). (b) Corresponding motion waveforms illustrated that hiPSC-CMs were able to acquire the pacing 
of 2 Hz stimulatory conditions. (c) The stimulation induced changes in the system dynamics, as illustrated by 
the increases in the capacity and correlation dimensions of an individual hiPSC-CMs sample. For an average 
of 8 samples, ON 2 Hz Stim not only increased (d) beat rate, contraction and relaxation velocities, but also 
increased (e) capacity and correlation dimensions, comparing to Pre Stim condition. (f) Removal of stimulation 
(Post stim) resulted in recovery to their Pre-Stim state of beat rate, contraction and relaxation velocities. (g) 
However, the capacity and correlation dimensions of Post Stim state were still greater than the Pre Stim state.
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average values of amplitude and frequency. In contrast, nonlinear analysis of the contraction motion assesses the 
signal on a point-by-point basis, and takes into account the entire structure of the signals.

We also demonstrated that this nonlinear analytical tool can supplement existing measures of contractile 
physiology, in order to more precisely characterize hiPSC-CM drug response. The key findings based on nonlin-
ear analysis indicated that each drug produced unique effects on not only contractile frequency and amplitude, 
but also contractile dynamics by accounting for inter-beat arrhythmic behaviors reflected by their nonlinear 
characteristics. By comparing drug response of alfuzosin and isoproterenol, we found that though both drugs 
increased the beat rate of hiPSC-CMs (contractile frequency), but only isoproterenol enhanced the contraction/
relaxation velocities (contractile amplitude). Such differences between two drugs led to the opposite changes in 
correlation dimension, shown as a decrease of correlation dimension with alfuzosin but an increase of correlation 
dimension with isoproterenol corresponding to increment dosage of each drug. However, although flecainide 
induced significant changes in contractile frequency, it did not influence significantly on the contractile dynam-
ics determined by the nonlinear analysis. These results highlight that incorporation of nonlinear dimensional 
analysis into current available analytical toolboxes can be useful for quantifying the variability, complexity and 
irregular arrhythmic behavior in cardiac contractile dynamics in response to different drug exposure.

Arrhythmia classification in ECGs and cardiac signals is widely recognized as a critical measure for the 
diagnostics and management of heart-related disorders. Many traditional techniques, however, are limited in 
their processing capabilities. As described by Guitierrez-Gnecchi et al., digital signal processing algorithms 
were implemented to classify various heartbeat conditions32. ECGs have also been classified automatically using 
Support Vector Machines, which produced more favorable outcomes than other machine learning techniques33. 
Both techniques and many others, however, rely on singular analysis of inter-beat time intervals. As such, these 
methods require additional processing techniques, such as segmentation and feature extraction of the signals34. 
This not only extends the analytical time, but can also omit potentially critical signal characteristics. Although 
this research direction has promising potential for clinical application of beat-to-beat analysis for heart rate varia-
bility, conditions where severe arrhythmic activity and abnormalities are prominent throughout the entire signal 
will present challenging obstacles. Nonlinear analysis overcomes many of these challenges because of the ability 
to characterize a signal in its entirety and classify the complex dynamics exhibited.

In previous work applying nonlinear signal reconstruction to biological systems, cortical function at different 
sleep stages were quantified using EEG signals. This analysis illustrated that the entropy and correlation param-
eters of phase space plots are unique to each stage of sleep. In addition, nonlinear transforms of cardiac sig-
nals have been widely performed to characterize cardiology from ECG signals and assess heart rate variability 
(HRV)35–37. Patients prone to high risk of cardiac disease and mortality showed distinct heart rate dynamics, 
including decreased fractal organization38, based on nonlinear analysis of biological signals. Furthermore, evi-
dence also strongly suggests that signals acquired from patients suffering with life-threatening conditions, such as 
disease, aging, and trauma, exhibit loss of multiscale complexity38–41. Since these changes are shown to be promi-
nent under certain physiological conditions, nonlinear analysis has evolved to become an important clinical tool 
for clinicians and cardiologists.

The development of signal processing techniques in biomedical research remains a priority in order to diag-
nose and treat patients sooner. Because of its’ increasing recognition in clinical settings, we have extended phase 
space reconstruction signal analysis to in vitro cardiac model systems for characterizing the cardiac signals 
obtained from hiPSC-CMs. Implementation of optical-flow based motion tracking to hiPSC-CMs has allowed us 
to quantify the variations in contractile physiology, providing a linear time domain assessment of beat rate and 
contraction velocity. The essential effort of this work is to reconstruct these time series of experimental data into 
a multi-dimensional phase space for nonlinear analysis on the contractile dynamics of hiPSC-CMs, providing a 
quantitative measure of in vitro system complexities. We envision that this integrated approach can potentially be 
useful for health monitoring and diagnostics, such as assessment of heart rate variabilities and for early predic-
tions of disease onset. In addition, the application of this analytical toolbox in pharmacological cardiotoxicity is 
essential to better understand drug effects on cardiac health that are not readily apparent and cannot be observed 
through time domain cardiac signals.
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