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The more than 100,000 protein structures determined by X-ray crystallography provide

a wealth of information for the characterization of biological processes at the molecular

level. However, several crystallographic “artifacts,” including conformational selection,

crystallization conditions and radiation damages, may affect the quality and the

interpretation of the electron density maps, thus limiting the relevance of structure

determinations. Moreover, for most of these structures, no functional data have been

obtained in the crystalline state, thus posing serious questions on their validity in

infereing protein mechanisms. In order to solve these issues, spectroscopic methods

have been applied for the determination of equilibrium and kinetic properties of proteins

in the crystalline state. These methods are UV-vis spectrophotometry, spectrofluorimetry,

IR, EPR, Raman, and resonance Raman spectroscopy. Some of these approaches

have been implemented with on-line instruments at X-ray synchrotron beamlines.

Here, we provide an overview of investigations predominantly carried out in our

laboratory by single crystal polarized absorption UV-vis microspectrophotometry, the

most applied technique for the functional characterization of proteins in the crystalline

state. Studies on hemoglobins, pyridoxal 5′-phosphate dependent enzymes and green

fluorescent protein in the crystalline state have addressed key biological issues, leading

to either straightforward structure-function correlations or limitations to structure-based

mechanisms.

Keywords: protein crystal, microspectrophotometry, conformational changes, X-ray crystallography, metastable

intermediate, structure-function relationship, synchrotron source

Introduction

Structural biology is significantly contributing to the current goal of unveiling the molecular bases
of biological processes ranging from cell life to cell death, from health status to pathological
conditions. This intense effort and the wealth of generated information are well summarized by
the astonishing increase in the number of protein structures determined by X-ray crystallography,
as deposited in the Protein Data Bank (Figure 1). Whereas, most of the structures provide
only a static view of proteins, time-resolved crystallographic methods (Moffat, 1989; Hajdu,
1993; Hajdu et al., 2000; Schlichting and Chu, 2000) have further expanded the exploration

Abbreviations: PDB, protein data bank; FP, fluorescent protein; Hb, hemoglobin; PLP, pyridoxal 5′-phosphate; MGL,
methionine γ–lyase.
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FIGURE 1 | Cumulative number of protein structures deposited in the

Protein Data Bank per year up to the end of 2014 (www.pdb.org).

of the protein conformational landscape. Along this effort, the
very recent achievements using femtoseconds pulses from X-ray
free electron lasers have allowed to detect early molecular events
triggered by light on photosystem II (Kupitz et al., 2014) and
photoactive yellow protein (Tenboer et al., 2014), opening new
avenues to the understanding of protein dynamic and function.

Protein structures are a key information for a variety of
research fields that exploit structural data to pursue very distinct
goals, such as the elucidation of protein-protein interaction, the
determination of enzyme catalytic mechanisms and allosteric
regulations, the development of drugs via structure-based
and computer-based methods, the comprehension of protein
flexibility viamolecular dynamics simulations, and the prediction
of protein structures using homology modeling. Therefore, the
correspondence between the protein structure determined in
the crystal and the structure in solution is critical. There are
at least three distinct issues that may affect the determination
and interpretation of a crystal structure. First, a crystal structure
is a model generated through a series of experimental and
computational steps including the fitting of the electron density
to the amino acid sequence, ligand and water molecules, and the
energy minimization to remove steric clashes. In the model, the
position of each atom is associated with a B factor that depends
on atom mobility, and the protonation state of ionizable groups
cannot be determined, except in cases where the resolution
is better than about 1 Å. Second, there are many possible
crystal “artifacts,” including effects due to the composition of
the crystallization medium, lattice forces constraints, and X-ray
radiation damage. Third, a native protein is an ensemble of
many different conformations, generating the so called energy
landscape (Frauenfelder et al., 1991; Bryngelson et al., 1995;
Carlson, 2002; Boehr et al., 2009; Nussinov and Tsai, 2014).

It is well known that the most stable and the most populated
protein conformation is not necessarily the species that plays
the most significant functional role. Furthermore, the protein
conformation that is less soluble is likely to be selected in the
crystallization process.

These considerations pose several questions:

- Which conformation is selected by crystallization and how
active is it?

- How different is the crystallized conformation with respect to
the conformation active in solution?

- How can the activity of a protein in a crystal be assessed in a
quantitative way and compared with its activity in solution?

An answer to these questions for most of the protein
structures deposited in the PDB is scarce. With more than
100,000 solved structures, functional/spectroscopic/dynamic
measurements have been carried out for less than 100 proteins
in the crystalline state. In turn, this implies that many protein
function and regulation mechanisms are based on weak grounds
and many studies aimed at developing drugs are exploiting a
shaky target conformation.

Assessing Protein Function in the
Crystalline State by Spectroscopic
Methods

Functional properties in the crystalline state have been
investigated over the years predominantly exploiting two
distinct approaches: (i) measurements of enzyme activity on
microcrystalline suspensions, and (ii) spectroscopic studies on
single crystals. The former approach involves activity assays
under conditions in which the enzyme is in the crystalline
state and the crystal size is such that the rate of the catalytic
reaction is not limited by reagent diffusion to and from enzyme
active sites. The suitable crystal size is calculated by a formula
developed several years ago at the dawn of structural biology
(Hoogenstraaten and Sluyterman, 1969). This approach, rarely
exploited, was used to evaluate the activity of microcrystals
of papain (Hoogenstraaten and Sluyterman, 1969) tryptophan
synthase (Ahmed et al., 1987), and pyridoxal 5′-phosphate
(PLP)-dependent enzymes encapsulated in micrometer-size wet
nanoporous silica gels (Pioselli et al., 2004, 2005).

The second approach relies on the spectroscopic techniques
that are able to measure the dynamic and functional properties
of protein single crystals of the same quality and size as those
used for the structural determination. These include UV-vis
absorption microspectrophotometry, microspectrofluorimetry,
microRaman, and Resonance Raman, IR and EPR. Spectral
changes of either endogenous or exogenous chromophoric
probes are monitored, reflecting protein molecular events. A few
reviews have been previously published summarizing the basic
principles required for carrying out spectroscopic measurements
on single crystals (Hofrichter and Eaton, 1976; Mozzarelli and
Rossi, 1996; Pearson et al., 2004; Bourgeois and Royant, 2005; De
La Mora-Rey andWilmot, 2007; Pearson and Owen, 2009; Carey
et al., 2011; McGeehan et al., 2011; Ronda et al., 2011b; Sage et al.,

Frontiers in Molecular Biosciences | www.frontiersin.org 2 April 2015 | Volume 2 | Article 12

www.pdb.org
http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Ronda et al. Protein function in the crystal

2011; von Stetten et al., 2015). Here, we will predominantly focus
on UV-vis absorption microspectrophotometry because it is the
most widely used approach.

The development of protein crystal optical spectroscopy
was primarily carried out by a few laboratories (Eaton and
Hochstrasser, 1967; Rossi and Bernhard, 1970; Berni et al.,
1977; Eichele et al., 1978; Metzler et al., 1988) in order
to obtain structure-function correlation from measurements
carried out in the same physical state. With the increase
in the number of solved protein structures, crystallographers
understood the relevance and power of coupling X-ray
diffraction data with spectroscopic measurements. This led to the
development of on-line and off-line microspectrophotometers
and optical spectroscopy laboratories at synchrotron sites. The
first on-line microspectrophotometer was developed by Hajdu
(1993) and applied to investigate the release of phosphate
triggered by photolysis of a caged compound, 3,5-dinitrophenyl
phosphate, in crystals of glycogen phosphorylase b (Hadfield
and Hajdu, 1994). The first on-line and off-line optical
laboratory was set-up at ESRF by Bourgeois and coworkers
(Bourgeois et al., 2002), and further implemented by Garman
(McGeehan et al., 2009) and Royant (von Stetten et al., 2015).
Nowadays, single crystal spectroscopic instrumentations are
present at most synchrotrons with beamlines dedicated to
protein crystallography (Pearson et al., 2004; Pearson and Owen,
2009; Pearson and Mozzarelli, 2011; von Stetten et al., 2015)
(Table 1). The on-line microspectrophotometer geometry varies
significantly from site to site depending on the geometry of the
beamline and specific needs. Some of the issues and potentialities
of an on-line microspectrophotometer for UV-vis absorbance,

fluorescence and Raman measurements have been very recently
summarized for the instrumentation available at ESRF (von
Stetten et al., 2015). However, it should be pointed out that not
all on-line instrumentations work with linearly polarized light,
a strong requirement for obtaining absorbance intensity strictly
proportional to crystal thickness, chromophore concentration
and extinction coefficients, i.e., spectra that obey to the Beer-
Lambert law (Hofrichter and Eaton, 1976). When unpolarized
light is used, only qualitative information is derived from
spectra that are generally of lower quality. In any event, such
unpolarized spectra are useful for determining the occurrence
of a reaction, for monitoring the time course of metastable
intermediates accumulation and breakdown and the redox state
of a protein. This information is crucial for the definition
of freeze-flashing times in cryo-crystallographic experiments.
Furthermore, single crystal spectroscopic measurements are
valuable to assess whether X-ray radiation has caused any
undesired effect on protein crystals (Leiros et al., 2006 and
references therein). Damages that can be spectroscopically
detected are photoreduction of metals, such as ferric to ferrous
iron conversion, and disulfide breakage (see below), whereas
decarboxylation can only be assessed with structural methods,
including mass spectrometry.

Examples of Protein Structure-Function
Correlation in the Crystalline State

In recent years single crystal optical spectroscopy measurements
have been carried on several proteins, as reported in Table 2.
Here, we report some representative investigations of protein

TABLE 1 | Single crystal spectroscopy instrument at synchrotron centers.

Synchrotron center, location Web site Available equipment References

Swiss Light Source (SLS), Villigen,

Switzerland–Beamline X10SA (PXII)

http://www.psi.ch/sls/pxii/spectrolab UV–vis absorption, Raman and

fluorescence multimode

spectrometer; on-axis geometry

Beitlich et al., 2007; Owen et al.,

2009

BioCARS, Chicago, IL,

USA–Beamline 14-BM-C

https://biocars.uchicago.edu/page/biology-custo

mized-macromolecular-crystallography

On-line 4DX systems

microspectrophotometer

De La Mora-Rey and Wilmot,

2007; Pearson et al., 2007

ESRF, Grenoble, France (MX

diffractometers)

http://www.esrf.eu/UsersAndScience/Experiments/

MX/Cryobench/Equipment/Microspec

CryoBench microspectrophotometer

for UV-vis absorption, fluorescence

and Raman measurements

Royant et al., 2007; McGeehan

et al., 2009; von Stetten et al.,

2015

National Synchrotron Light Source

(NSLS), Upton, NY, USA–Beamline

X26C

http://beamlines.ps.bnl.gov/beamline.aspx?

blid=X26C

On-line 4DX System for visible

absorption and Raman

measurements

Orville et al., 2011; Stoner-Ma

et al., 2011

Synchrotron Radiation Source (SRS)

at the Daresbury Laboratory,

UK–beamline 10

Recently decommisioned UV-vis absorption measurements Ellis et al., 2008

Diamond Light Source Oxfordshire,

UK–MX beamline I02

http://www.diamond.ac.uk/Beamlines/Mx/

Equipment-on-Demand/Spectroscopy.html

On line and off-line UV-vis absorption

measurements, at the final stages of

commissioning

–

SPring-8, Hyôgo Prefecture,

Japan–BL38B1 beamline

http://www.spring8.or.jp/en/ UV-vis absorption measurements Shimizu et al., 2013
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function in the crystalline state carried out in our laboratory and
a few studies carried out in other laboratories.

Hemoglobins
The Monod, Wyman and Changeux (MWC) allosteric model
was developed to explain the sigmoidal binding curves that
characterize the interaction between ligands and some oligomeric

TABLE 2 | Proteins investigated by single crystal optical

microspectrophotometry since 2011.

Protein References

Baeyer-Villiger monooxygenase Orru et al., 2011

Catalase Purwar et al., 2011

Methionine gamma lyase Ronda et al., 2011a

Bacterioferritin Antonyuk and Hough, 2011

Green Cu nitrite reductase Antonyuk and Hough, 2011

Myoglobin Hersleth and Andersson, 2011

Catechol 1,2 dioxygenase Micalella et al., 2011

3-Isopropylmalate dehydrogenase Graczer et al., 2011

Green fluorescent protein Royant and Noirclerc-Savoye, 2011

Metalloproteins Owen et al., 2012

Copper amine oxidase Johnson et al., 2013

Lysozyme Sutton et al., 2013

HbTb Merlino et al., 2013

HbTb Ronda et al., 2013b

Hb II Ronda et al., 2013a

Hb Shibayama et al., 2014

Bacteriorhodopsin Borshchevskiy et al., 2014

Cystalysin Spyrakis et al., 2014

For earlier studies, see Mozzarelli and Rossi (1996), Pearson et al. (2004), and Pearson

and Mozzarelli (2011).

FIGURE 2 | (A) Absorption spectra of Hb crystals collected as a function of

oxygen pressure between 0 and 760 torr, with the electric vector of linearly

polarized light parallel to a and c crystallographic axes of orthorhombic

crystals grown from polyethylene glycol with dimensions of about 20× 60µm

(Rivetti et al., 1993a). Spectra of deoxyHb crystals exhibit a peak at about

555 nm, whereas spectra of oxyHb exhibit peaks at about 541 and 577 nm.

(B) Oxygen fractional saturation was calculated by fitting the observed

spectrum (solid line), recorded at a defined oxygen pressure, to a linear

combination (dotted line) of the reference spectra, deoxyHb, oxyHb, metHb,

and a baseline (dashed lines) (Rivetti et al., 1993a). (C) Heme projection

along the a and c crystal axis that leads to a higher absorbance intensity for

spectra recorded along the a axis.

proteins (Monod et al., 1965). Along the years, several studies
challenged the validity of the MWC model applied to Hb
(Eaton et al., 1999, 2007; Peracchi and Mozzarelli, 2011),
either proposing its extension or completely discarding it. Key
assumptions of the MWCmodel are that (i) only two quaternary
states, T and R, exist and are endowed with different functional
properties, and (ii) within each quaternary state, ligand binding
is fully non-cooperative. In order to verify the validity of the
MWC model oxygen binding curves were determined for Hb
crystals constrained in the T state by lattice forces (Mozzarelli
et al., 1991, 1997; Rivetti et al., 1993a; Bettati et al., 2009).
Since Hb structures in the absence and presence of oxygen were
obtained from crystals grown from polyethylene glycol of the
same size and quality (Liddington et al., 1992; Paoli et al., 1996)
as those used for the functional measurements, a straightforward
structure-function relationship could be derived. Absorption
spectra were recorded as a function of oxygen pressure by a
single crystal microspectrophotometer (Figure 2A) using light
linearly polarized along the a and c crystal axes of orthorhombic
plates (Figure 2B) (Mozzarelli et al., 1991; Rivetti et al., 1993a).
Fractional saturation was determined by fitting the observed
spectra to a linear combination of pure deoxy-, oxy-, and metHb
plus a baseline (Figure 2C) (Ronda et al., 2008). It was found that
oxygen binding is non-cooperative, with a p50, i.e., the oxygen
pressure at half-saturation, of 130–150 torr, at 15◦C (Table 3).
This affinity is the same as that for the first oxygen molecule
that binds to Hb, determined in solution in the presence of
strong allosteric effectors (Marden et al., 1990; Bruno et al.,
2007). To evaluate the role of the salt bridges and residues at the
α1β2 interface in controlling oxygen affinity, binding curves were
determined for desArgHb (Kavanaugh et al., 1995), desHisHb
(Bettati et al., 1997), Cowtown Hb (His β146Leu) crystals (Bettati
et al., 1998), and for Hb Rothschild (Trp β37Arg) (Rivetti et al.,

Frontiers in Molecular Biosciences | www.frontiersin.org 4 April 2015 | Volume 2 | Article 12

http://www.frontiersin.org/Molecular_Biosciences
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Biosciences/archive


Ronda et al. Protein function in the crystal

TABLE 3 | Oxygen binding parameters for hemoglobin crystals.

Conditions p50a (Torr) Hill na References

HbA no allosteric effectors 136/133 1.00/1.01 Mozzarelli et al., 1997

HbA +IHP 139/132 0.94/0.95 Mozzarelli et al., 1997

HbA +BZF 138/127 0.94/0.97 Mozzarelli et al., 1997

des(αArg141)Hb 12.7/9.6 0.97/0.99 Kavanaugh et al., 1995

des(βHis146)Hb 81/76 0.98/1.01 Bettati et al., 1997

βTyr35Phe 157/148 0.88/0.91 Kavanaugh et al., 2001

βTry35Ala 79/80 1.16/1.15 Kavanaugh et al., 2001

βTrp37Arg (HbRothschild) 22/16 0.80/0.88 Rivetti et al., 1993b

βTrp37Glu 2.6 ND Noble et al., 2001

βAsn102Ala 112 0.94 Noble et al., 2001

βAsn108Leu 145 ND Noble et al., 2002

βAsn108Gly 80 1.15 Noble et al., 2001

βTyr145Ala 28 ND Noble et al., 2002

βHis146Leu (HbCowtown) 44/45 0.99/0.98 Bettati et al., 1998

αTyr42Ala 33 1.06 Noble et al., 2001

α(Fe2+)2β(Ni2+)2 95/87 0.96/0.90 Bruno et al., 2000

α(Ni2+)2β(Fe2+)2 123/102 0.90/0.90 Bettati et al., 1996

α(Fe2+)2β(Zn2+)2 81/81 1.08/1.10 Samuni et al., 2003

α(Zn2+)2β(Fe2+)2 155/152 1.13/1.08 Samuni et al., 2003

ap50 and Hill n were calculated from oxygen binding curves measured with light linearly polarized along two perpendicular crystal optical axes. ND, not defined. Measurements were

carried out at 15◦C.

1993b), Tyr β35Phe, Tyr β35Ala (Kavanaugh et al., 2001), Asn
β108Gly, Asn β102Ala, Tyr β35Ala, Trp β37Glu, and Tyr α42Ala
(Noble et al., 2001) (Table 3). These measurements confirmed
that oxygen binding to T state Hb is non-cooperative, a low
affinity conformation is stabilized in the crystal, and His β146
plays a limited role in controlling oxygen affinity and a key role
in the quaternary transition, as also recently proposed based on
computational analyses (Fischer et al., 2011). Remarkably, the
effect of mutations on the oxygen affinity detected for mutant
Hb crystals was the same as that observed in solution for the
binding of the first oxygen. Furthermore, a good correlation was
observed between the p50 of these Hbmutants determined in the
crystal and the rate of reaction of the first CO molecule with Hb
in solution (Noble et al., 2002). Overall, the functional properties
detected in T state Hb crystals were the same as in solution
in the presence of strong allosteric effectors. The robustness of
functional data obtained in the crystals was further evaluated by
encapsulation of Hb in wet, nanoporous silica gels either in the T
or R quaternary state, in the absence and presence of allosteric
effectors (Shibayama and Saigo, 1995; Bettati and Mozzarelli,
1997; Abbruzzetti et al., 2001; Bruno et al., 2001a; Ronda et al.,
2006). Protein encapsulation in silica gels is a powerful strategy
to stabilize tertiary/quaternary states (Bruno et al., 2011). Crystal
and gel Hb oxygen binding curves in the absence and presence
of allosteric effectors fully agree (Figure 3). These equilibrium
experiments triggered an extensive series of laser flash photolysis
experiments of CO rebinding to Hb gels in the T and R state
(Abbruzzetti et al., 2001; Viappiani et al., 2004, 2014) that support
the Tertiary Two-State (TTS) model of Eaton and coworkers.
This model extends the MWC taking into account preexisting

tertiary equilibria partially uncoupled from quaternary states
(Henry et al., 2002; Eaton et al., 2007). The TTS model has been
further supported by resonance Raman spectroscopic studies on
Hb gels monitoring the quaternary transition (Jones et al., 2012,
2014). It is interesting to note that investigations on Hb fixed in a
defined quaternary state either by crystallization or encapsulation
have allowed to unveil conformational properties that escape to
notice in solution because of the confounding overlapping of
binding and tertiary and quaternary relaxations.

A remarkable investigation was recently carried out by
determining the structure and oxygen binding affinity for nine
equilibrium conformers of partially and fully ligated human β–
β cross-linked [α(Fe2+-CO)β(Ni2+)][α(Ni2+)β-(Fe2+-CO)] Hb
in the presence and absence of phosphate on three isomorphous
crystals, covering the conformations of Hb from T to R2
(Shibayama et al., 2014). A previously unidentified intermediate
conformer, between T and R, was also identified exhibiting
an intermediate oxygen affinity. Whether these findings are
revealing novel functional and conformational features of Hb
remains to be established, given the conformational constraints
of the cross-linking on the metal-hybrid Hb derivatives.

Microspectrophotometric studies on single crystals of fish
Hbs, and of HbI and HbII from Scapharca inaequivalvis,
represent good examples of functional and structural data
that fully agree and led to straightforward structure-function
correlation in the explanation of cooperative behavior (Ronda
et al., 2013a). Oxygen binding curves were determined for
crystals of the homodimeric HbI and found that HbI exhibits
in the crystalline state the same cooperativity observed in
solution (Mozzarelli et al., 1996). This finding is fully in keeping
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FIGURE 3 | Comparison of oxygen binding curves of HbA in the crystal,

in gel and in solution. Oxygen binding to: R state Hb C crystals (red

continuous line) (Shibayama et al., 2011), R state Hb gels (red dot-dash line)

(Shibayama and Saigo, 1995), R state Hb in solution (red dash-dash line)

(Yonetani et al., 2002), T state Hb crystals (blue continuous line) (Mozzarelli

et al., 1997), T state gels in the presence of allosteric effectors (blue dot-dash

line) (Viappiani et al., 2004), Hb in solution in the presence of allosteric

effectors (blue dash-dash line) (Yonetani et al., 2002), T state Hb gels in the

absence of allosteric effectors (green dot-dash line) (Bruno et al., 2001a), T

state Hb in solution in the absence of allosteric effectors (green dash-dash line)

(Poyart et al., 1978).

with the proposal based on structural data that purely tertiary
conformational changes are responsible of the cooperative
behavior (Chiancone et al., 1990). Oxygen binding curves of
tetrameric HbII in the crystal as well as in gels were found to
be apparently non-cooperative (Ronda et al., 2013a) (Figure 4).
However, when the significant functional inequivalence of A
and B chains was taken into account, both crystal and gel
encapsulated HbII oxygen binding data were consistent with
a tertiary contribution to cooperativity, quantitatively similar
to that measured for HbI, as proposed on the basis of X-
ray diffraction data. Furthermore, results indicate that to fully
express the cooperative ligand binding, HbII also requires
quaternary transitions hampered by crystal lattice and gel
encapsulation.

In order to gain insight on the Root effect, a marked
dependence of oxygen affinity and cooperativity on proton
concentration observed in fish Hbs, structural and functional
studies were carried out on crystals of deoxyHb from the
Antarctic fish Trematomus bernacchii (HbTb) at pH 6.2 and pH
8.4 (Ronda et al., 2013b). Whereas, at low pH ligation causes
negligible structural changes, an observation that correlates with
low affinity and absence of cooperativity in oxygen binding,
at high pH ligation causes significant tertiary changes within

FIGURE 4 | Comparison of oxygen binding curves of HbII from

Scapharca inaequivalvis in the crystal, in gel, and in solution. Oxygen

binding to: HbII crystals, grown in 2.2M phosphate, measured with light

linearly polarized along two perpendicular directions (dash-dot-dot line, and

dash-dot), R state HbII gels (dash-dash line), T state HbII gels (continuous

line), HbII in solution (closed inverted triangles) (Ronda et al., 2013a).

the T state. Oxygen binding curves of T-state HbTb crystals
were consistent with the structural evidence. These findings
indicate that, differently from mammalian Hbs, in HbTb a
significant degree of cooperativity in oxygen binding is associated
to tertiary conformational changes. The same HbTb crystals were
investigated by Raman spectroscopy as a function of radiation
dose to understand the stability of the nitrosylated derivatives
(Merlino et al., 2013). It was found that radiation-triggered NO
photodissociation causes a conformational transition at the beta
chain forming a pentacoordinate species.

Overall, spectroscopic studies of Hbs crystals have allowed to
unequivocally associate structural changes, crystallographically
detected, with molecular events triggered by ligand binding
and eventually linked to cooperativity, and to discriminate
between function-related and function-unrelated structural
changes.

Enzymes
Single crystal microspectrophotometry has been applied to
characterize the ligand binding and catalytic competence of many
enzymes. In some cases, chromophoric substrate analogs have
been used, whereas, in most of the cases, the signals generated by
cofactors bound to the active site have been monitored as suitable
reporter of molecular events associated with enzyme function.

Representative case-studies are the pyridoxal 5′-phosphate
(PLP)-dependent enzymes cystalysin (Spyrakis et al., 2014) and
methionine gamma lyase (Ronda et al., 2011a), and the iron-
containing catechol 1,2 dioxygenase (Micalella et al., 2011).
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PLP is the coenzyme of enzymes involved in themetabolism of
amino acids, amines and ketoacids (Mozzarelli and Bettati, 2006).
PLP spectral properties depend on enzyme-bound substrate,
substrate analogs, inhibitors and catalytic intermediates,
thus providing a signal for determining binding constants
and rate of reactions. Several PLP-dependent enzymes have
been investigated in the crystalline state, including aspartate
aminotransferase (Eichele et al., 1978; Mozzarelli et al., 1979;
Metzler et al., 1988), serine hydroxymethyltransferase (Schirch
et al., 1981), tryptophan synthase (Mozzarelli et al., 1989),
cystathionine beta-lyase (Bruno et al., 2001b), O-acetylserine
sulfhydrylase (Mozzarelli et al., 1998), DOPA decarboxylase
(Peracchi et al., 1994) and GABA aminotransferase (Storici et al.,
2004).

Cystalysin catalyzes the breakdown of cysteine in pyruvate,
ammonia and sulfide. The enzyme is considered a virulence
factor in adult periodontitis since sulfide contributes to hemolysis
sustaining pathogen survival and proliferation in the gingival
crevice. For this reason, cystalysin is a promising target for
antibiotic agents (Amadasi et al., 2007). The three-dimensional
structure of the enzyme has been determined in the absence and
presence of an aspecific covalent inhibitor, AVG (Krupka et al.,
2000). In order to exploit these structures for a virtual screening
campaign aimed at identifying potential active site inhibitors,
cystalysin structure was first validated by determining spectral
properties and ligand binding using single-crystal absorption
microspectrophotometry (Spyrakis et al., 2014). Overall, the
enzyme in the crystal and in solution exhibits the same
absorption spectra for the catalytic intermediates, similar pKa

values for the residue controlling the formation of ketoenamine
species, and close dissociation constants for glycine, serine and
methionine (Figure 5). Upon this validation step, the cystalysin
structure was used in a virtual screening, carried out using
FLAP (Baroni et al., 2007). A list of compounds predicted to act
as reversible, non-covalent active site inhibitors was obtained.
Compounds were docked in cystalysin active site using GOLD
(Jones et al., 1995), their interaction energy was scored using

HINT (Kellogg et al., 2001; Spyrakis et al., 2004, 2007a,b;
Amadasi et al., 2006; Marabotti et al., 2008; Salsi et al., 2010), and
compound-enzyme complexes were visually inspected. The top
17 compounds were selected and assayed in solution, identifying
two inhibitors with Ki of 25 and 37µM (Spyrakis et al., 2014).

A single crystal microspectrophotometric study (Ronda et al.,
2011a) was carried out on methionine γ-lyase (MGL), an
enzyme that catalyzes the γ-elimination reaction of L-methionine
to produce α-ketobutyric acid, methanethiol and ammonia.
Free and PEGylated MGL are potential biopharmaceutical
drugs against cancer because cancer cells exhibit a strong
dependence on methionine and delivered MGL is able to
reduce the methionine level in the cell medium (Takakura
et al., 2006). Furthermore, MGL can activate the pro-drug
trifluoromethionine that is a recognized antibiotic agent
(Coombs and Mottram, 2001). To be applied in cancer therapy,
MGL needs to be genetically engineered in order to improve
its catalytic efficiency and stability, whereas to be used as an
effective pro-drug activator for antibiotic therapy its active site
needs to be fullymapped in order to design novel, more efficiently
activated pro-drugs. Therefore, in both cases, the availability
of the three-dimensional structure of wild type MGL is a
fundamental requirement. In order to validate MGL structure,
enzyme crystals were reacted with the substrate methionine
(Figure 6), the substrate analog vinylglycine, and the competitive
inhibitors glycine and cycloserine, monitoring the reaction with
single crystal microspectrophotometry (Ronda et al., 2011a). The
observed dissociation constants were found to be slightly higher
than in solution, pointing to some changes in the conformational
distribution in the crystal with respect to solution. This finding
suggests that this MGL structure should be considered with
some caution and further activities should be carried out for
the crystallization of fully active MGL. Furthermore, the three-
dimensional structure of the native enzyme, determined from
crystals grown in PEG, in the presence of ammonium sulfate,
revealed the absence of the aldimine bond between the active
site Lys210 and PLP, whereas absorption spectra collected for

FIGURE 5 | Binding of substrate analogs to PLP-dependent

cystalysin crystals. Absorption spectra were recorded in the absence

(solid line) and presence (dashed line) of saturating concentrations of (A)

glycine, (B) L-serine, and (C) L-methionine. Insets: fitting of titration data

points to binding isotherms with Kd of (A) 6.3 ± 0.3mM, (B) 16 ±

2mM, and (C) 33 ± 5mM (Spyrakis et al., 2014).
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FIGURE 6 | Binding of methionine to PLP-dependent methionine

gamma lyase crystals. Polarized absorption spectra were recorded along

two perpendicular directions (light and dark gray) for the enzyme in the

absence (solid lines) and presence of 100mM L-methionine (dash-dot line)

(Ronda et al., 2011a).

the same enzyme crystals were consistent with the presence
of the aldimine bond. Different hypothesis were proposed and
discussed in the light of spectral and structural data.

Catechol 1,2 dioxygenase is a Fe (III)-dependent enzyme that
catalyzes the oxygenation of catechol and substituted rings. The
Fe (III) is coordinated in a trigonal-bipyramidal geometry by
two histidine and two tyrosine residues and a hydroxyl ion in
the equatorial plane. When catechol binds at the active site, the
axial tyrosine and the hydroxyl ligand are displaced, allowing a
direct coordination of the diol to the Fe(III). The enzyme exhibits
a broad band centered at around 440 nm, indicative of the
ligand-to-Fe(III) charge transfer transition, typical of tyrosinate
coordination to the Fe ion. When the enzyme binds cathecol
in an improductive fashion (i.e., under anaerobic conditions),
a decrease in intensity of the 440 nm band is observed. In
view of determining the structure of isolated intermediates,
polarized absorption spectra were collected on single crystals of
catechol 1,2 dioxygenase from Acinetobacter radioresistens (Ar-
1,2-CTD) (Micalella et al., 2011). The maintenance of the metal
coordination in the crystalline state was thus confirmed. As in
solution, the unproductive binding of catechol was observed
under anaerobic conditions. Spectra were also correlated with the
three dimensional structures of the wild type and two mutants
exhibiting higher specificity for chloro cathecols and designed as
the basis for bioreactors to be used in bioremediation (Micalella
et al., 2014). Overall, the consistency of the spectroscopic
properties of Ar-1,2-CTD in solution and in the crystalline state
indicated that Fe(III) coordination and ligand binding observed
through X-ray crystallography reflected those of the enzyme in
solution.

Green Fluorescent Proteins
The green fluorescent protein (GFP) from Aequorea victoria is
the prototype of a large family of fluorescent proteins (FPs)
from marine organisms, displaying a genetically encoded bright
fluorescence in several regions of the visible spectrum (Cubitt
et al., 1995; Pakhomov and Martynov, 2008). Moreover, FPs have
been extensively engineered to produce hundreds of variants
characterized by distinct fluorescent bands, emitting from yellow
to cyan, often endowed with pH and redox-sensitive properties
(Zhang et al., 2002; Remington, 2011). The endogenous
chromophore is formed upon an internal, autocatalytic, post-
translational modification (cyclization and oxidation) involving
three conserved amino acids. A key determinant of FPs spectral
variability is the nature and state of ionization of residues
surrounding the endogenous chromophore (Tsien, 1998).

Despite the wealth of structural information (from X-ray
diffraction and, in part, NMR studies) and functional data
in solution, only a few absorption, fluorescence, and Raman
spectroscopy studies have been carried out on single crystals of
FPs (Bettati et al., 2011). Pioneer studies by Ward and coworkers
exploited steady-state and time-resolved fluorescence to ascertain
that crystallization does not induce significant structural
distortions (Perozzo et al., 1988). Several years later, two
different groups exploited fluorescence polarization (Inoue et al.,
2002) and polarized light absorption microspectrophotometry
(Rosell and Boxer, 2003; Royant and Noirclerc-Savoye, 2011)
to extract information on the geometric relationships between
chromophore transition dipole moment directions, the crystal
axes and protein coordinates. This kind of information is of
high potential interest for spectroscopic applications relying on
geometric factors and their function-associated variations, like,
e.g., Forster Resonance Energy Transfer (FRET). A few other
groups exploited crystal spectroscopy to validate the correlation
between crystal structures and spectroscopic properties in
solution (Battistutta et al., 2000; Malo et al., 2007). However,
the most impressive effort to couple single crystal spectroscopy
to crystallographic studies of FPs has been carried out in
recent years by Bourgeois and coworkers (Royant et al., 2007;
Adam et al., 2008, 2009; Lelimousin et al., 2009; Violot et al.,
2009). The dedicated absorption and fluorescence spectrometers
assembled at the European Synchrotron Radiation Facility of
Grenoble, France, is equipped with a Time-Correlated Single-
Photon Counting system to measure fluorescence lifetimes
in the crystalline or solution state, at room and cryo
temperatures, and a Raman probe that can be used off-line
of the microspectrophotometer or on-line of diffractometers
(McGeehan et al., 2011). This apparatus has been exploited
to investigate the structural basis of X-ray or visible light-
induced photobleaching of IrisFP, a mutant of EosFP capable of
different phototransformation properties as irreversible green-
to-red photoconversion and reversible photoswitching between
fluorescent and dark states (Adam et al., 2008, 2009; Duan et al.,
2013, 2014).

With the goal of a better understanding of the interplay
between dynamics of the protein matrix and GFP
photochemistry and photophysics, with special regard to
acid-base properties, our group is currently investigating the pH
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dependence of the absorption spectra on crystals of GFPmut2
(Ser65Ala, Val68Leu, Ser72Ala GFP), grown in alkaline or acidic
conditions. Both crystals show reversible, pH-dependent spectral
changes, with pKa values and shapes of the transition curve
that differ from each others, and from the pH-dependence
determined in solution. These results are driving ongoing X-ray
diffraction studies aiming at determining the structural basis of
the observed behavior and the role of key residues known to
affect GFP structural dynamics and chromophore protonation
state. These activities, once again, highlight the necessity to
correlate structural and functional information collected in the
same physical state.

Detection of Protein Crystal X-Ray
Radiation Damage by Spectroscopic
Methods

Many investigations have reported that the intense X-ray beams
cause damages to proteins, casting doubts on the quality of
the solved protein structures and posing limitations to high-
resolution structural determination. Therefore, studies have
analyzed which are the main factors leading to protein radiation
damages (Garman and Weik, 2013).

The issue of radiation damage, well known since the inception
of protein crystallography, was limited for years by acquiring
data at cryo-temperature. However, both (i) the emerging of
third generation synchrotron sources, able to deliver much
higher radiation doses, and (ii) an increased interest in room
temperature X-ray data collection as a way to observe biologically
relevant conformations, caused an increase in the extent of
radiation damages. This, in turn, led to a renewed interest in the
factors influencing them. Specifically, it is widely recognized that
temperature has a relevant effect on determining the extent of
X-ray-induced damages, and the effective damage is markedly
dependent on the total number of deposited photons (Davis et al.,
2013).

Many complementary techniques, such as X-ray-excited
optical luminescence of protein crystals (Owen et al., 2012),
electron paramagnetic resonance (EPR) (Utschig et al., 2008),
UV–visible absorption and X-ray absorption spectroscopy
(XAFS) (Antonyuk and Hough, 2011), have been coupled to
crystallography to better understand the processes involved
in radiation damage with the aim of providing practical
recommendation for the optimization of data collection
conditions (Pearson et al., 2007; Hersleth and Andersson, 2011).
A possible strategy for mitigating the radiation damage during
protein crystallography data acquisition is the addition of radical
scavengers at the crystallization stage or by soaking of crystals
in radicals scavenger solution prior to data collection. This
approach provided inconsistent results, mainly for discrepancies
in metrics for evaluating damages and for the variability in the
reactions of the crystallization medium with radical scavengers,
as demonstrated by on-line microspectrophotometry (Allan
et al., 2013). Here, we report a few representative cases of
investigations exploiting protein crystal spectroscopy and X-ray
crystallography to assess radiation damages.

By combining EPR, on-line UV-visible absorption
microspectrophotometry and X-ray crystallography
measurements, the effect of X-ray radiation on lysozyme
crystals was carefully investigated. EPR showed a disulfide
bond radicalization at ∼0.2 MGy dose, lower than the
0.5–0.8 MGy saturating dose observed through UV-visible
miscrospectrophotometry for disulfide bond damaging. This
study demonstrated that disulfide bonds are reduced under a
radiation dose regime that is usually applied for data collection
(Sutton et al., 2013). In a similar study, the dose-dependent
radiation damage was evaluated for bacteriorhodopsin
(Borshchevskiy et al., 2014).

Metal centers in metalloproteins are particularly sensitive to
radiation damage. Photoreduction is critical when redox proteins
are investigated because proteins are in the oxidized state at the
beginning and become reduced at the end of data collection. This,
in turn, might cause conformational changes and uncertainty in
the structure-redox state relationship of the protein and derived
mechanisms. A very recent paper (Kekilli et al., 2014) reports
a detailed investigation of hemoprotein crystals exposed to
synchrotron radiation by using resonance Raman spectroscopy.
Furthermore, bovine catalase crystals in the absence and presence
of ammonia and nitric oxide were investigated by X-ray
crystallography and on-line microspectrophotometry, revealing
photoreduction of the central heme iron (Purwar et al.,
2011). Photoreduction of redox-active protein cofactors has
been also studied for Mn ions of oxygen-evolving complex of
photosystems II (PSII) by using X-ray emission spectroscopy
with wavelength-dispersive detection (Davis et al., 2013). Mn
ions, contained in PSII active sites, are in the Mn (III) and
Mn(IV) oxidation state and are known to undergo during
X-ray irradiation to the photoreduction to Mn(II) and to
the cleavage of Mn di-µ-oxo units (Yano et al., 2005). PSII
radiation damage was studied determining a kinetic model at
different experimental rates of dose deposition and excitation
wavelength. It was observed that high dose deposition rate
could be beneficial in terms of reducing radiation damages in
sensitive samples, although high rate of dose deposition could
generate other radicals or initiate other processes (Davis et al.,
2013).

Structures of T6 bovine insulin complexed with Ni(2+) and
Cu(2+) were solved using a synchrotron radiation, showing
a deterioration of the coordination of water for Cu (II)
site of the insulin derivative due to radiation damage. X-
Ray Absorption spectra (XAS) and EPR spectroscopy were
used to obtain information on the metal coordination and
the metal redox state. It was observed that in the insulin
copper derivative, during radiation-induced photoreduction,
the coordination geometry changes toward lower coordination
numbers. Different damages were studied as a function of the
dose of radiation with different tehniques, i.e., photoreduction
was monitored by XANES, while a diffractometer was used
to follow structural changes around Cu atoms. The solid
embedment of Cu insulin in a saccharose matrix partially
suppressed the photoreduction at 100 K, and a further 30%
suppression was obtained by cooling the samples to 20 K
(Frankaer et al., 2014).
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Controversies and Synergies between
X-Ray Crystallography and Single Crystal
UV-Vis Microspectrophotometry

Here, we discuss representative cases of strong discrepancies
between straightforward results from functional studies
carried out in the crystal and structurally-derived
functional interpretation, and representative cases were
microspectrophotometric measurements were instrumental to
the structural determination.

The first case is the structure of partially liganded human Hb
where apparently only the α subunits showed bound oxygen. It
was concluded that the Hb tetramer was functionally strongly
asymmetric with oxygen loading and unloading only by α hemes
(Brzozowski et al., 1984). Since polarized absorption spectra
measured along the a and c crystal axes depend on the sum
of the projections of the α and β hemes along these axes, and
α and β hemes contribute differently along the crystal optical
axes, it was possible to calculate separate oxygen binding curves
and to determine that α subunits bind oxygen with an affinity
about two fold higher than the β subunits (Mozzarelli et al.,
1997). This finding is fully consistent with solution studies on
mixed metal hybrid Hb, α(Fe2+)2β(Ni2+)2, α(Ni2+)2β(Fe2+)2,
α(Fe2+)2β(Zn2+)2, αZn2+)2β(Fe2+)2 (Shibayama et al., 1993;
Miyazaki et al., 1999), as well as on mixed metal hybrid
Hb crystals (Bettati et al., 1996, 2009; Bruno et al., 2000).
These findings cannot be reconciled with any structure-based
hypothesis of a high difference in oxygen affinity between α and
β subunits, and hint to crystallographic pitfalls.

The second case is based on the comparison between
liganded and unliganded T state Hb in the presence of allosteric
effectors. It was concluded that oxygen binding is associated
with intersubunit communication/conformation stabilization,
responsible for cooperativity within the T state (Paoli et al.,
1997). However, oxygen binding curves to Hb in the crystals
were systematically characterized by a Hill coefficient close to one
(Table 3) (Bettati et al., 2009), indicating absence of cooperativity
within the T state. This result was confirmed on all Hb
crystals that were analyzed, including metal hydrids and mutants
(Table 3). The relevant and general conclusion from these
two cases is that not all structural changes crystallographically
detected are associated with functional roles. Therefore, some
caution should be used in the “straightforward” exploitation of
structural data for proposing protein mechanisms.

The first example of a very tight complementarity
between microspectrophotometric measurements and X-ray
crystallography is represented by the NAD-dependent glycolytic
enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH).
This enzyme was one of the first to be structurally characterized,
by Rossmann and co-workers (Moras et al., 1975), and one of the
first to be investigated by microspectrophotometry (Berni et al.,
1977; Mozzarelli et al., 1982). GAPDH catalyzes the oxidation
of glyceraldehydes-3-phosphate to 1,3-bisphosphoglycerate
in the presence of NAD+ and phosphate. In spite of intense
investigations carried out over several decades, the structural
determination of the catalytic acyl-enzyme intermediate
remained elusive. By microspectrophotometric studies
monitoring at 340 nm the formation of NADH on single

crystals of GAPDH from Bacillus stearothermophilus the
experimental conditions for the accumulation of the metastable
acyl-enzyme intermediate were determined (Moniot et al., 2008).
On the basis of these results, GAPDH crystals were soaked
with the substrate at the required substrate concentration
for a defined time before flash-freezing. The structural
determination of the thioacyl-enzyme allowed to propose a
novel catalytic mechanism where the C3-phosphate group of the
substrate changes its conformation concomitantly or after the
redox step.

The second representative case of the complementary role
of single crystal spectroscopy and X-ray crystallography is the
investigation of the flavin-dependent enzyme phenylacetone
monooxygenase (PAMO) from Thermobifida fusca (Orru et al.,
2011). PAMO catalyzes the enantioselective Baeyer-Villiger
oxidation and sulfoxidation of phenylacetone as well as other
substrates. Single crystal UV-vis spectra of the enzyme, collected
prior and after reduction and cooling at 100 K, and after melting
and exposure to air, allowed to probe the redox state of flavin and
the catalytic competence of the enzyme. Furthermore, spectra
of PAMO crystals, recorded on-line with X-ray data collection,
evidenced the progressive reduction of the flavin as a function of
X-ray exposure, thus defining the time window for the structural
determination.

Another interesting example of the combination of X-
ray crystallography and absorption, fluorescence and Raman
single crystal spectroscopy is the investigation of the molecular
mechanism of the unusually large stokes shift of mKeima, a
monomeric red fluorescent protein (Violot et al., 2009). Raman
spectra on mKeima in the crystal state allowed to rationalize
the peculiar pH dependence of absorption bands, supporting a
“reverse protonation” effect consistent with crystallographic data
collected at different pH values. Opposite to the normal behavior
of GFP-like proteins, cis and trans chromophore conformations
dominate at acidic and alkaline pH, respectively.

Conclusions

Single crystal spectroscopies provide key functional information
on proteins in the crystalline lattice, allowing to assess whether
lattice forces, conformational selection and X-ray exposure
have caused the emergence of “artifactual” structures. These
investigations are of paramount relevance given the variety
of scientific fields that exploit the structural data for the
understanding of protein function or for the development of
novel drugs. The increasing use of on-line and off-line crystal
spectrometers at synchrotron sources clearly indicates that only
via a tight link between X-ray crystallography and spectroscopy
meaningful and robust protein structure and function correlation
can be proposed. Within this frame, single crystal optical
spectroscopy has been demonstrated to be by far the most
exploited and the most powerful technique.
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