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Abstract

The ultimate goal of metabolic engineering is to produce desired compounds on an industrial

scale in a cost effective manner. To address challenges in metabolic engineering, computa-

tional strain optimization algorithms based on genome-scale metabolic models have

increasingly been used to aid in overproducing products of interest. However, most of these

strain optimization algorithms utilize a metabolic network alone, with few approaches provid-

ing strategies that also include transcriptional regulation. Moreover previous integrated

approaches generally require a pre-existing regulatory network. In this study, we developed

a novel strain design algorithm, named OptRAM (Optimization of Regulatory And Metabolic

Networks), which can identify combinatorial optimization strategies including overexpres-

sion, knockdown or knockout of both metabolic genes and transcription factors. OptRAM is

based on our previous IDREAM integrated network framework, which makes it able to

deduce a regulatory network from data. OptRAM uses simulated annealing with a novel

objective function, which can ensure a favorable coupling between desired chemical and

cell growth. The other advance we propose is a systematic evaluation metric of multiple

solutions, by considering the essential genes, flux variation, and engineering manipulation

cost. We applied OptRAM to generate strain designs for succinate, 2,3-butanediol, and eth-

anol overproduction in yeast, which predicted high minimum predicted target production

rate compared with other methods and previous literature values. Moreover, most of the

genes and TFs proposed to be altered by OptRAM in these scenarios have been validated

by modification of the exact genes or the target genes regulated by the TFs, for overproduc-

tion of these desired compounds by in vivo experiments cataloged in the LASER database.

Particularly, we successfully validated the predicted strain optimization strategy for ethanol

production by fermentation experiment. In conclusion, OptRAM can provide a useful

approach that leverages an integrated transcriptional regulatory network and metabolic net-

work to guide metabolic engineering applications.
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Author summary

Computational strain design algorithms based on genome-scale metabolic models have

increasingly been used to guide rational strain design for metabolic engineering. However,

most strain optimization algorithms only utilize a metabolic network alone and cannot

provide strategies that also involve transcriptional regulation. In this paper, we developed

a novel strain design algorithm, named OptRAM (Optimization of Regulatory And Meta-

bolic Network), which can identify combinatorial optimization strategies including over-

expression, knockdown or knockout of both transcription factors and metabolic genes,

based on our previous IDREAM integrated network framework. OptRAM uses simulated

annealing with a novel objective function, which can ensure a favorable coupling between

the production of a desired chemical and cell growth. This strategy can be deployed for

strain design of bacteria, archaea or eukaryotes. The other advantage of OptRAM com-

pared with previous heuristic approaches is that we systematically evaluated the imple-

mentation cost of different solutions and selected strain designs which are more likely to

be achievable in experiments. Through the in-silico strain design case studies for produc-

ing succinate, 2,3-butanediol, and ethanol in yeast, we demonstrated that OptRAM can

identify strategies that increase production beyond what is seen currently, or found as

potential designs using alternative methods. We also validated the modified genes chosen

by OptRAM in example cases against previous in vivo experiments in the LASER database.

Additionally, we experimentally validated the ethanol strain design by evaluating its per-

formance in fermentation. OptRAM provides a robust approach to strain design across

gene regulatory network modification and metabolic engineering.

Introduction

Microbial-based cell factories can be used to advance environmentally friendly and economi-

cally viable industrial bioprocesses. Various strategies have been suggested to modify industrial

strains to improve desired product yields. Traditional methods of strain screening mainly rely

on mating, hybridization and mutagenesis techniques [1,2], which are time consuming and

costly, and have struggled to keep up with current industrial needs. In 1991, Jay Bailey pro-

posed the term "metabolic engineering" to show how using recombinant DNA and other tech-

niques could improve specific metabolic activity in cells by manipulating enzymes,

transporters, and regulation to make cells meet human-specified goals [3]. Rational strain

design methods suggest particular genes or enzymes to alter in order to achieve desired strain

characteristics for metabolic engineering [4].

Systems biology is a powerful approach to uncover genotype-phenotype relationships,

which can guide rational design-build-test iterations on strains to improve phenotypic proper-

ties in metabolic engineering. Next-Generation Sequencing (NGS) [5] and semi-automatic

annotation techniques [6] have produced an increasing number of well annotated microbial

genomes, enabling the collection of reasonably comprehensive information about which meta-

bolic enzymes are encoded. This information has greatly contributed to the reconstruction of

the genome-scale metabolic models of various organisms [7].

GEnome-scale metabolic Models (GEMs) are mathematical representations of the complete

network of known biochemical reactions that can occur in a particular cell, assembled as a col-

lection of metabolites, reaction stoichiometries, compartmentalizations, and gene-protein-

reaction associations [8,9]. One of the main analysis approaches of GEMs is the well-known

Flux Balance Analysis (FBA) [10], which can predict phenotypes for cells under different
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genetic and environmental conditions based on the stoichiometric matrix without requiring

kinetic parameters [11,12]. It has been demonstrated that computational simulation on GEMs

can predict effective engineering strategies for strain design [13,14]. Since the first strain

design method OptKnock [15] was proposed in 2003, several computational methods for effi-

cient automated identification of genetic strain modifications have been developed, such as

RobustKnock [16], OptGene [17], OptORF [18], GDLS [19], and FSEOF (Flux Scanning based

on Enforced Objective Flux) [20]. These algorithms have already yielded successful strain

design applications. In an early example, Fong et al. designed E. coli strains for lactate produc-

tion with a maximum 73% increase by using OptKnock [21]. Researchers from Tianjin Uni-

versity utilized a GEM of B. subtilis and elementary mode analysis to design an engineering

strain for isobutanol production, and experimentally verified a 2.3-fold increase compared to

wild type strain [22]. Recently, Otero et al. designed a strain using OptGene to overproduce

succinate in S. cerevisiae, and experimentally validated a 43-fold improvement in succinate

yield on biomass after directed evolutions [23].

However, a metabolic model alone has a significant limitation in revealing condition-spe-

cific metabolic activity [24,25] because gene regulation plays an important role in constraining

the particular metabolism available under any given condition. Also, the complex crosstalking

mechanisms between gene regulation and metabolism are not captured by a metabolic model

alone. To overcome the limitation, methods that systematically integrate a transcriptional reg-

ulatory network and a metabolic network have been developed [26], including regulatory Flux

Balance Analysis (rFBA) [27], steady-state rFBA (SR-FBA) [28], Probabilistic Regulation of

Metabolism (PROM) [29], and Integrated Deduced REgulation And Metabolism (IDREAM),

developed by our group [30]. Modification of gene regulatory circuits is an important strategy

for transforming engineering strains [14]. In fact, modifications of regulatory factors (e.g.

upregulation of biosynthetic pathway activators) contribute to more than half of the genetic

operations in E. coli and S. cerevisiae engineering strains, but most of these interventions are

based on human intuition [31]. Therefore, some strain design methods have utilized transcrip-

tional regulation information to propose more effective metabolic engineering strategies.

OptORF [18] was the first approach using integrated regulatory-metabolic models, which fol-

lowed the framework of two-layer optimization as did OptKnock. In 2011, the heuristic strain

design method OptGene also updated a version which introduced integrated regulatory-meta-

bolic models [32]. In 2012, a series of approaches based on minimal cut sets (MCSs) was fur-

ther developed to include a new tool (rcMCSs), that incorporates regulatory constraints [33].

However, since the above algorithms used manually curated integrated regulatory-metabolic

models, where the regulatory network is a Boolean network, there are some limitations to

application. Firstly, only some well-studied microorganisms may have existing integrated net-

works, such as E. coli [34], M. tuberculosis[35], and yeast [36]. Reconstructing such models

requires extensive manual adjustment and additional information for generating Boolean

logic rules in the regulatory network [37], which hinders the ability of these algorithms to be

broadly applicable across many organisms. Secondly, these algorithms have to assume that the

target gene is completely active or inactive, which ignores the range of possible regulatory

intensities between regulatory factors and the target genes. In addition, Boolean networks can

only suggest the manipulation of transcription factor by knockouts (ON to OFF) and cannot

provide guidance for more quantitative adjustment of transcriptional regulation.

Recently, a method named Beneficial Regulator Targeting (BeReTa), used gene expression

to infer the interaction between regulatory factors and target genes, combined with FSEOF

[20] for identifying transcription regulators to enhance desired production. According to the

correlations between the different transcription factor expression levels and target reaction

flux rates, beneficial scores are calculated to judge whether the transcription factor can

In-silico strain design with OptRAM

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006835 March 8, 2019 3 / 25

https://doi.org/10.1371/journal.pcbi.1006835


enhance or inhibit the target reaction. The algorithm was applied to E. coli, as well as S. coelico-
lor, which does not currently have an integrated metabolic-regulatory model. BeReTa repre-

sents a significant advance, but it cannot predict an expected product rate or yield of the

mutant, or make predictions about the combined manipulations of multiple sites.

Herein, we report a new strain design algorithm, named OptRAM (Optimization of Regu-

latory And Metabolic Networks), which can identify combinatorial optimization strategies

including overexpression, knockdown or knockout of both metabolic genes and transcription

factors, based on our previous IDREAM integrated network [30]. OptRAM also aims to

achieve optimal coupling between biomass and target production, and can be used for strain

design of bacteria, archaea or eukaryotes. The other advantage of OptRAM compared with

previous heuristic approaches is that we systematically evaluated the implementation cost of

different solutions and selected strain designs which are more likely to be achieved in

experiments.

Materials and methods

Yeast metabolic network

Saccharomyces cerevisiae S288c has been studied and simulated extensively through a series of

models [38] reconstructed based on the genome sequence and literature annotations [39]. We

used the latest metabolic reconstruction, Yeast 7.6, which includes 3493 metabolic reactions,

2220 metabolites and 909 metabolic genes.

Integrative regulatory-metabolic network modeling

Integration of a gene regulatory network with a metabolic network at the genome-scale poses

significant challenges, in part because they are distinct network types requiring very different

modeling frameworks. PROM uses probabilities to represent gene states and TF–gene interac-

tions from abundant gene expression data, and then uses these probabilities to constrain the

fluxes through the reactions controlled by the target genes [29]. A limitation of PROM is that a

pre-built transcriptional regulatory network is required as an input. In our previous work, we

developed a framework called Integrated Deduced REgulation And Metabolism (IDREAM),

which uses bootstrapping-EGRIN-inferred [40,41] transcription factor (TF) regulation of

enzyme-encoding genes, and then applies a PROM-like approach to apply regulatory con-

straints to the metabolic network. In Yeast, we collected 2929 microarray datasets with 5939

yeast genes and evaluated 392 of those genes as possible regulators. For each of the 5939 target

genes, we constructed separate models from 200 randomly selected subsets of the 2929 experi-

ments, as well as a 201st model constructed using the entire data set. This resulted in 201 gen-

erated gene regulatory models for each of the 5939 yeast genes, for a total of 1,193,739 models.

For each gene, we estimated a false discovery rate (FDR) for each factor by tallying the fraction

of models from random subsets that identified that factor as a regulator. Thus, if factor X was

predicted to regulate gene Y in 191 of 200 models, then X would have an FDR = 1–191/

200 = 0.045. If X is predicted to activate Y with an FDR of 0.045, only 4.5% of Y’s activity

would be predicted to remain if X was deleted. If X is predicted to deactivate Y, then we use

the much larger 1-FDR (e.g., 95.5% of activity) to represent that Y is somehow disturbed with-

out a significant reduction in activity. We included only those interactions that passed an FDR

cutoff of 0.05. Then we predicted whether a factor was an activator or repressor by testing if its

mRNA expression was correlated or anti-correlated with the expression of its target using the

model from the entire expression dataset. Finally, we retrieved an integrated regulatory-meta-

bolic network including 2626 inferred influences consisting of 91 TFs transcriptionally regulat-

ing 803 genes encoding enzymes of the metabolic network.
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It should be noted it is impossible to cleanly differentiate between the false discovery rate

and the strength of the regulatory role for multi-cell microarrays or RNA-Seq because from

bulk measurements we can’t differentiate a strong regulation occurring in a small portion of

cells from a weak regulation happening in a large fraction of the cell population. In other

words, because we are using a ground up mixture of cells, then we might reasonably expect a

few cells with high expression related to a rarely used promoter to appear similarly to a low

level, frequently used promoter. Perhaps single cell RNA-Seq will help disentangle this prob-

lem in the future.

Strategies of gene expression mutation and the translation to reaction level

OptRAM is a meta-heuristic strain optimization method based on an integrated model of an

inferred regulatory network and a constraint-based metabolic network. It aims to identify the

modifications of TFs and metabolic genes, including overexpression, knockdown, and knock-

out, to achieve the maximal production of desired chemical. OptRAM will simulate a series of

mutations to get the optimized strategy for target overproduction by simulated annealing. We

adopt 11 kinds of mutations on gene expression of TFs or metabolic genes, represented as FC

(TF) and FC(G), with overexpression and knockdown fold change of 2, 4, 8, 16, 32 respec-

tively, and 1 knockout, as shown in Table 1.

The expression level of these genes will be translated to corresponding metabolic reactions

by the integrative network. First, expression levels of metabolic genes are calculated according

to expression of corresponding transcription factors. In the EGRIN algorithm, a linear equa-

tion of the target gene and the TFs is generated:

target ¼ coeff1TF1 þ coeff2TF2 þ � � � þcoeffnTFn ð1Þ

Where the variable target is the expression level of a target gene regulated by n TFs, TFi are

the expression level of these TFs, and Coeffi are the corresponding coefficients of each TF.

In OptRAM, for a target gene regulated by one TF, tfExpr is the relative expression level of

the mutated TF, then the relative expression level of the target gene is calculated as:

targExpr ¼ 2coeff�log2 tfExpr ð2Þ

When a target gene is affected by more than one TF, the expression level of the target gene

is calculated as:

targExpr ¼ 2

Pn

i
coeffi�log2 tfExpri ð3Þ

Having the relative expression level of all metabolic genes, the change of relevant reactions,

represented as FC(R), is calculated according to the gene-reaction rules in the metabolic

model. For reactions with ‘AND’ rules of different genes, we selected the minimum value of

relative gene expression level, since ‘AND’ indicates that the combination of multiple enzymes

is required, so the enzyme with lower expression determines the upper bound of the reaction

Table 1. Mutations of the gene expression fold change (FC) over wildtype.

Overexpression FC 2 4 8 16 32

Knockout FC 0.001

Knockdown FC 1/2 1/4 1/8 1/16 1/32

For knockout, the fold change is set as 0.001, because 0 has no logarithm, which will generate error for calculation of

the target gene expression change.

https://doi.org/10.1371/journal.pcbi.1006835.t001
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rate. For reactions with ‘OR’ rules of different genes, the mean value of relative gene expression

level is calculated, because ‘OR’ indicates that multiple enzymes have the same catalytic func-

tion and can be substituted for each other. Therefore, the average expression level of enzymes

in the set can better reflect upper bound of the reaction rate. While the average was used

herein, it would also be reasonable to use the max of the enzymes being expressed in this

scenario.

Flux constraints of reactions induced by the gene expression mutation

In order to simulate the flux change of reactions induced by the gene expression mutation, we

first need a reference flux value for each reaction, which is obtained by pFBA (Parsimonious

enzyme usage FBA) method [42]. pFBA is an algorithm based on FBA. For a metabolic net-

work with M metabolites and N reactions, the FBA formulation is shown below:

Maximize vobjective

Subject to
PN

j¼1
Sijvj ¼ 0; i ¼ 1; . . . ;M

lbj � vj � ubj; j ¼ 1; . . . ;N

ð4Þ

Where Sij stands for the stoichiometric coefficient of metabolite i in reaction j, and vj stands

for the flux of reaction j, lbj and ubj are the constraints for reaction j. The most commonly

used objective function (vobjective) is biomass synthesis [43]. Here the simulation condition for

yeast metabolic flux was set corresponding to the YPD medium, with glucose 20 g/L and

blocking other carbon source.

The pFBA algorithm is divided into three steps. First, the max biomass rate is obtained by

FBA with the original model. Secondly, the constraint of biomass is set equal to the max bio-

mass value. Finally, a new objective function is set as the minimization of total flux values car-

ried by all reactions, to generate the flux distribution. According to the reference flux values

from pFBA and the level of expression change for mutated reactions, we set the new con-

straints of reactions as shown in Table 2, where FC(R) is the change of reaction, v is the refer-

ence flux value, lb and ub are the original lower bound and upper bound for the reaction.

New objective function in OptRAM

In the previous meta-heuristic strain optimization methods, such as OptGene, BPCY (bio-

mass-product coupled yield) is used as the objective function [17]:

BPCY ¼
Product � Growth

Substrate
ð5Þ

Where Product represents the flux of the reaction synthesizing the desired product, Growth
represents the flux of biomass, and Substrate represents the uptake rate of the nutrient sub-

strate. The ultimate goal of the optimization algorithm is to identify the mutated solution with

the largest BPCY value, which ensures a considerable growth when improving the target

product.

Table 2. New constraints added to the mutated reactions induced by modified gene expression.

v>0 v< = 0

FC(R)<1 [0, FC(R)�v] [FC(R)�v, 0]

FC(R)>1 [FC(R)�v, ub] [lb, FC(R)�v]

https://doi.org/10.1371/journal.pcbi.1006835.t002
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A limitation of the simulation using pFBA is that this framework does not guarantee that

the target reaction flux will be coupled to biomass. That is, even if the BPCY score of a mutated

solution is high, the flux value of the target reaction is unstable with the max biomass. Because

the flux variability of target reaction is a wide range and the minimum flux may even be zero,

there is no guarantee that the target product can have a certain output under natural growth.

Moreover, since the objective function of pFBA is biomass, there is often no flux through the

desired target reaction, although the flux range of that reaction may be 0 to a positive value. In

this situation, BPCY remains 0 and the algorithm reports no feasible solution.

Therefore, we defined a new objective function (Eq 6) in OptRAM to couple maximizing

biomass production and the target reaction of interest.

Obj ¼
Target � Growth

Substrate
� 1 � log

Range
Target

� �

ð6Þ

Where Target ¼ VmaxþVmin
2

; Range ¼ Vmax� Vmin
2

; Vmax is the maximum flux value of target

reaction and Vmin is the minimum flux value by FVA (flux variability analysis) [44]. Target
means the average flux value of target product. Range is set to half of the interval between min

and max target flux value. When Vmin is 0,
Range
Target ¼ 1, the coefficient 1 � log Range

Target

� �
is 1. And

when Vmin is greater than 0,
Range
Target > 1 the coefficient will be greater than 1, which is a reward

coefficient for BPCY. Compared to BPCY, this objective function will induce solutions to have

a higher and narrower flux range of target product, which reduces the uncertainty caused by

alternative solutions in constraint-based modeling. Hence, by using the refined objective func-

tion, OptRAM can provide solutions with better biomass-product coupled.

Implementation of strain optimization by simulated annealing

Fig 1 illustrates the strategy of the OptRAM approach, and the detailed pipeline can be down-

loaded from supplemental files (S1 Script and S1 Code). OptRAM requires a transcriptional

Fig 1. Overall framework of OptRAM. TRN indicates “Transcriptional Regulatory Network” and GEM indicates

“GEnome-scale metabolic Model”. FC(TF), FC(G) and FC(R) indicate the fold of expression level of the transcription

factors, metabolic genes and reactions respectively in the mutated strain over the wild type, which are set according to

Table 1, ranging from 1/32 to 1/2 for knockdown in 5 levels, and 2 to 32 for overexpression in 5 levels. For knockout,

the FC is set as 0.001 (0 will result in overflow). The formula of ‘obj’ indicates the objective function optimized by

simulated annealing.

https://doi.org/10.1371/journal.pcbi.1006835.g001
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regulatory network (or a gene expression data set) and a genome-scale metabolic model as

input. Then IDREAM method will be run to get an integrated model. For organisms with no

existing TRN, users can input a set of expression data from which the IDREAM method will

automatically infer the TRN and generate an integrated model. Then the core strain design

process within OptRAM will simulate a series of mutations to get the optimized strategy for

target overproduction. The output from OptRAM includes the maximized objective score, flux

of the target reaction, and the corresponding mutated solution with suggested modification of

TFs and/or metabolic genes.

We used simulated annealing for the core strain design part, which is able to accept a worse

solution in the early stage (avoiding getting stuck in local maximal), to pursue finding the

global optimal screening for mutated models. The simulated annealing algorithm is derived

from the simulation of the solid annealing process, an idea first proposed by Metropolis in

1953 [45]. In 1983, Kirkpatrick et al. introduced the idea of simulated annealing algorithm

into the field of optimization problems, making the algorithm practical in engineering [46].

The simulated annealing algorithm introduces Metropolis criterion, which help escaping local

optimum, to accept new solutions, including not only better solutions but also worse ones,

according to the probability. By simulating the drop of temperature, the algorithm controls

parameters during the process and gives an approximate optimal solution in polynomial time.

In our algorithm, we replace the internal energy of the annealing process with the refined

objective function Obj (Eq 6), which is the prospective score for each mutated strain. The fol-

lowing steps show the implementation of the simulated annealing algorithm in our specific

optimization problem:

1. Initialize the simulated annealing parameters, including the initial temperature T0 of the

control parameter T, the attenuation factor (α<1), and the maximum number of iterations L
at each temperature. Then generate the initial solution, Ind0.

2. When T = T (k), search L times according to the following process:

(1) For the current solution Indk, randomly mutate the expression of TFs and metabolic

genes, translate to effects on reaction flux, and get a new Obj score and a new mutation solu-

tion Ind'k.
(2) Calculate ΔObj = Obj(Ind'k)—Obj(Indk), where Obj(Ind) is the value of objective func-

tion for each solution.

(3) If ΔObj> 0 then Ind'k is received as the new solution, let Indk = Ind'k; otherwise generate

a random number R on the even distribution in (0,1), calculate the probability P according to

Metropolis criterion:

P ¼ e
DObj
TðkÞ ð7Þ

If R<P, then accept the new solution, let Indk = Ind'k; otherwise keep the current solution;

(4) If the number of iterations is less than L at this temperature, repeat step 2; otherwise,

proceed to step 3.

3. If the convergence condition is satisfied, the algorithm ends and the current solution is

the optimal solution, represented by a two-dimensional array of the mutated strain. The first

array contains all the mutated gene IDs. The second array stores the expected fold change of

expression level of the mutated gene over the wild type expression. The convergence condition

is that the value of objective function has not improved for a number of continuous tempera-

tures (here we set 100 temperatures); otherwise, proceed to step 4.

4. Decrease the control parameter T, let T (k + 1) = T (k) ×α, simultaneously reset the num-

ber of iterations and go to step 2.
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Comprehensive evaluation of solutions

Post-processing of the optimized solution. First, we eliminate redundancies in the opti-

mized solution. For each candidate site in the optimal solution, we set gene expression to the

original level of wild type, then recalculate the objective function to compare with the objective

score of the optimal solution. If the score does not decrease, this mutation site will be excluded.

Second, we check critical metabolic genes and reactions. Since a transcription factor usually

affects more than one target gene, and one metabolic gene may catalyze more than one reac-

tion, we need to search for critical metabolic genes and reactions for further analysis. We list

all changed metabolic genes/reactions involved in the optimal solution and then examine their

effects by excluding each mutated gene/reaction individually. We calculate the objective score

of new models and compare it to the original score. The genes/reactions with the ratio between

new and original score less than 0.9 are defined as critical genes/reactions.

Exclude solutions with essential genes knocked out or knocked down. We collected a

list of essential genes from SGD (Saccharomyces Genome Database) [47] and DEG (Database

of Essential Genes) [48], in supplemental S1 Table. There are 1192 and 1110 essential genes

annotated in SGD and DEG respectively, among them 1021 essential genes are shared and 110

of them mapped to the Yeast metabolic network. In OptRAM, the solutions with essential

genes knocked out or knocked down will be excluded, and the TF modification inhibiting

essential genes will also be excluded, because such alterations might cause no growth of cell.

Implementation cost analysis based on network path. Usually strategies such as simu-

lated annealing will find several different solutions with equivalent (or nearly equivalent) pre-

dicted optimal performance strain designs. Therefore, we implemented a metric to compare

the implementation cost of different strategies in order to select designs that are easier to

experimentally implement. To elucidate how the strategy of optimal solution can achieve the

yield of the target product, we analyzed the main path from substrate to target using a directed

network with reactions as nodes and metabolites as edges. Here, we excluded the “minor”

metabolites (i.e. highly abundant in the network), including H+, H2O, O2, CO2, ATP, ADP,

AMP, dATP, dADP, dAMP, NAD, NADH, NADP, NADPH, bicarbonate, phosphate, 5-phos-

phoribosyl-ATP, 3,5-cyclic AMP. The direction is determined by the flux value of pFBA with

the mutated model. When searching for the main path from nutrient substrate to target prod-

uct, we do not simply identify the shortest path connecting these two exchange reactions,

because many reactions on the shortest path may carry zero flux. The shortest path may not

reflect the actual flow of substance. We instead searched for the path that maximizes the mini-

mum flux value of the entire path, which can reflect the actual substance flow from carbon sub-

strate to target product to a certain extent.

Next, we constructed another undirected graph to analyze the relationship of critical reac-

tions to the main path. If we were to use a directed graph, we would not be able to observe the

connection of the main path with critical reactions having no flux. We then identify the short-

est paths between these critical reactions and the main path as branch paths. For a mutant

strain, we calculate a score according to connection of branch paths to the main path:

Score ¼

Pk

1
dist½i�½j�

C2
k
�
P

Branch Length

MaxfDegree½i�g
ð8Þ

Where the numerator is the average distance between all junctions of branch paths and the

main path (

Pk

1
dist½i�½j�

C2
k

) multiplied by the total length of all branch paths (∑Branch_Length), and

the denominator is the largest numbers of branches that connected to one node on the main
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path (Max{Degree[i]}). A smaller score means a higher concentrated level of the engineered

branches, which corresponds to a lower cost implementation.

As shown in Fig 2, mutant A and mutant B are two hypothetical mutants for one desired

product. For mutant A, the average distance between the 4 junctions of branch paths and the

main path is (1+1+1+2+2+3)/6 = 1.67. The total length of all branch paths is 1+1+1+2+2 = 7.

The largest number of branches that connected to one node on the main path is 2. Then the

implementation cost score of mutant A is 1.67�7/2 = 5.83. For mutant B, the average distance

between the 3 junctions is (1+1+2)/3 = 1.33. The total length of all branch paths is 1+1+2+2

+2 = 8, and the largest number of branches connected on the main path is 3. Then the imple-

mentation cost score of mutant B is 1.33�8/3 = 3.55. Mutant A has a higher score than mutant

B, which means engineered branches in mutant A are lowly centralized. If these two mutants

have very close objective scores, mutant B will be the prioritized choice.

Measure the overall adjustment between modified strain and the wild type. In

OptRAM, another factor affecting the choice from multiple optimal solutions is the overall

adjustment between mutant strains and the wild type. We prefer to select parsimonious solu-

tions requiring fewer genetic interventions to ensure the robustness of biological system in

case of unexpected impact and to make the strain design experiments more feasible. To quan-

tify the extent of genetic adjustment, we calculated the Cosine function of the two vectors

including all reaction flux values for particular mutant strain and the wild type.

Cosine ¼
j vmt
�! � vwt

�!j

j vmt
�!jj vwt

�!j
ð9Þ

Where vmt is the vector of flux values of all reactions in mutated model and vwt is the flux

vector for wild type. The range of Cosine is between -1 and 1, with the larger value means

smaller variation of the mutated strain.

Fig 2. A diagram of implementation cost calculation according to connection of branch paths to the main path.

This figure shows the main path and branches of two hypothetical mutant strains. Blue circles indicate metabolites,

arrows in blue and orange indicate reactions on the main path and branch paths respectively.

https://doi.org/10.1371/journal.pcbi.1006835.g002
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Strain and fermentation. The S. cerevisiae strain used for the genes disruption is labora-

tory strain S288C, which was cultured in the YPD medium to the mid-log phase (around 18 h)

in shake flasks and inoculated into the fermenter with 1 L working volume. A 10% inoculum

was provided, and culturing was performed at 30˚C, pH 4.5, 150 r/min, without aeration. The

E. coli DH5α was used for construction of gRNA expression vector, and was routinely grown

on LB medium at 37˚C. YPD medium (g/L): 20 glucose, 10 yeast extract, 20 peptone; YPD

plates: YPD medium and agar 15 g/L. LB medium (g/L): 5 yeast extract, 10 tryptone, 10 NaCl;

LB plates: LB medium and agar 15 g/L. Yeast fermentation medium (g/L): 90 glucose, 10 yeast

extract, and 20 peptone. Selection plates containing corresponding antibiotics were used for

selecting transformants. All experiments were triplicates.

Target product and biomass measurement. A 2-mL of the sample was collected from the

fermentation broth at 24 h. The cells were removed by centrifugation (10000 × g for 5 min),

and the supernatant was subjected to glucose, ethanol quantification using HPLC (Model:

Waters 1525) with an RI detector (Model: Waters 2414) at 50 ºC. An ion-exclusion column

(Model: Aminex HPX-87 H 300 × 7.8 mm, Bio-Rad, USA) was employed to separate metabo-

lites. While 10 mmol/L H2SO4 served as mobile phase at the flow rate of 0.6 mL/min. The cell

growth was measured using the optical density at 600 nm.

Mutated strain construction. BDH1 knock-out strain was constructed through homolo-

gous recombination of a resistance gene Kan MX4, which was amplified from HO plasmid

using primer 1 and 2 containing homologous sequence of BDH1. The PCR products were

purified and transformed into S288c. S288cΔBDH1 were selected by YPD with G418.

MDH2 and COX4 knock-out strain were constructed by CRISPR/Cas9 as Zhang et. al

described [49]. First, gRNA-expressing plasmid was constructed by introducing synthesized

MDH2 or COX4 gRNA DNA fragments into the BsaⅠ digested pRS42H-gRNA. Second, dou-

ble-stranded 90 bp repair DNA for MDH2 or COX4 disruption was amplified by introducing

stop codon TAA into the PAM sequence, respectively. Third, Cas9-NAT was transformed into

cells to generate Cas9 protein. Lastly, pRS42H-gRNA-MDH2 or pRS42H-gRNA-COX4 were

transformed together with the 90 bp donor DNA (~2 μg) into Cas9-expressing strain and

selected by nourseothricin and hygromycin, respectively.

Results

Integrated regulatory-metabolic network of yeast

We used flux variability analysis on the Yeast7.6 model to analyze the range of possible flux

values for all reactions and excluded the reactions that could not have a non-zero value since

these would not have any effect on the strain optimization calculations. The processed meta-

bolic model has fewer reactions, metabolites and genes compared to the original Yeast7.6

model (Table 3). By using the IDREAM approach, we integrated the deduced regulatory net-

work from 2929 microarray datasets with the Yeast7.6 metabolic network to generate an inte-

grative gene regulatory-metabolic network (Table 3).

Case study: Strain optimization for succinate production

We performed 10 parallel simulated annealing runs, which set succinate as the target product,

and obtained 10 solutions (Supplemental S3 Table). We first filtered the solutions with in silico
knockdown or knockout of known essential genes. Then we selected solutions with the maxi-

mal fluxes of the target reaction. For solutions with the same predicted yield in succinate, we

chose the one with a smaller implementation cost and a larger Cosine function representing

smaller variation of genetic manipulation. Finally, we selected one optimized strain design

from ten runs, with the mutation sites and expression modifications shown in Table 4.
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The upper two rows show mutation sites with overexpression manipulation, while the rows

below show mutation sites with knockdown manipulation. Corresponding numbers are per-

turbation fold change of expression as defined in Table 1. PDR1 and PHO4 are TFs, and others

are metabolic genes. For this complicated combination of TFs and metabolic genes, we ana-

lyzed the critical sites corresponding to metabolic reactions. A ‘critical reaction’ here means

that the removal of the reaction can cause more than a 10% reduction in the objective function

(See Methods). There are 5 critical reactions (marked in Fig 3) involved in this solution: up-

regulation in cystathionine beta-synthase, down-regulation in ferrocytochrome-c: oxygen oxi-

doreductase, pyruvate decarboxylase, citrate transport, and oxoglutarate/malate exchange.

There are two main processes in the production of succinate from glucose (Fig 3). First, glu-

cose is used to make pyruvate in cytoplasm. Next, pyruvate converts to oxaloacetate, then to

malate, then to fumarate, and finally to succinate. Comparison of the flux values in the two

models revealed that the succinate exchange flux increases about 66-fold theoretically in the

strain-optimized model. All critical reactions we found are closer to the path from pyruvate to

succinate. Up-regulation in cystathionine beta-synthase will promote more L-cystathionine to

pyruvate. Decreasing the constraints of ferrocytochrome-c:oxygen oxidoreductase and pyru-

vate decarboxylase directly affects the pyruvate flux from lactate and acetaldehyde. So pyruvate

mostly comes from phosphoenolpyruvate in the mutated strain. Meanwhile, citrate transport

and oxoglutarate/malate exchange are limited to prevent malate in cytoplasm to transport to

mitochondrion, which enable more malate flux to succinate synthesis. We compared the best

solution in Table 4 with the previous literature in which the succinate was successfully

improved in yeast assisted by strain design method [23]. This study used OptGene to get the

optimized strategy including deletion of SDH3, SER3 and SER33. SDH3 (Succinate dehydroge-

nase) catalyzes the reaction from succinate to fumaric acid, its deletion will obviously promote

flux to succinate. Deletion of SER3 and SER33 can facilitate TCA Cycle, and improve succinate.

We also identified SER1 as engineering site by OptRAM. To compare with other strain design

methods, we chose the widely used OptFlux [50] to find overexpression, knockdown, and

knockout of metabolic genes. For the mutant models generated from literature, OptFlux, and

OptRAM, we used FVA to investigate the range of target reaction under constraints of being

able to achieve 99% and 50% biomass respectively. The 99% biomass constraint means that the

Table 3. Components in the integrated regulatory-metabolic network of yeast.

Metabolic network Reactions Metabolites Genes

Yeast7.6 3493 2220 909

Processed 2676 1629 714

Regulatory network TFs Targets Regulations

Raw 396 5938 208487

FDR< = 0.05 91 628 2146

Processed metabolic network means the reactions with zero flux are excluded. Regulatory network incorporated with metabolism includes the interactions filtered by

FDR < = 0.05.

https://doi.org/10.1371/journal.pcbi.1006835.t003

Table 4. Modification sites in best solution for succinate as target.

Gene THI3 CYS4 ACO1 PDR1 PHO4
Overexpression fold change 32 32 4 4 4

Gene CTP1 MDH3 PDC5 COX7 SER1
knockdown fold change 1/2 1/8 1/2 1/4 0

https://doi.org/10.1371/journal.pcbi.1006835.t004
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lower bound of biomass reaction is set as the 99% of maximum biomass in each mutant model

respectively, similarly for 50% biomass. The 99% biomass is a relatively strict constraint on

biomass and the 50% biomass is a loose constraint. A strict constraint on biomass will make

Fig 3. Flux comparison of a mutated model and wild type for succinate overproduction. This figure shows the main path of succinate production in yeast

and critical reactions identified by OptRAM. Solid arrows indicate the direction of metabolic reactions. Red arrows indicate that the fluxes are predicted to be

higher in the mutated strain and green arrows indicate the flux is predicted to be lower than in wildtype. Gray arrows indicate the reactions are not significantly

different between the designed strain and the wildtype. Red dotted boxes highlight the critical up-regulated reactions and green ones highlight the down-

regulated reactions.

https://doi.org/10.1371/journal.pcbi.1006835.g003

In-silico strain design with OptRAM

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006835 March 8, 2019 13 / 25

https://doi.org/10.1371/journal.pcbi.1006835.g003
https://doi.org/10.1371/journal.pcbi.1006835


the flux range of target reaction much more narrow. We compared the resulting flux range of

these mutant models with the wild type model (Table 5).

When biomass is constrained to 99% of the maximal theoretical value, our strategy makes

an obvious improvement for predicted succinate production, even the minimal succinate

exchange flux is higher than the max value in wild type and the strategy in literature [23].

Although the max biomass flux is relatively low, it is still acceptable for strain growth. When

biomass is constrained to half of the theoretical max value, the model comparison suggests

that our strategy makes succinate production strongly coupled with growth. The performance

of solution from OptFlux seems good, but the overall interval in OptRAM solution is much

larger than other strategies.

We also compared all the mutation sites from 10 solutions with the experimental design in

LASER database, as shown in S4 Table. There are 9 genes presenting in more than 2 solutions

matched with the experimental modifications in LASER, such as MDH2, SDH3, and several

mutated TFs, including CAT8, HAP2, have targets modification improving succinate validated

in LASER. Overexpression of CAT8 can promote succinate production by increasing flux of

glycolysis and TCA Cycle, DIC1 and ICL1 are regulated by CAT8, which have significant

effects on succinate reported by Agren et al [51] and Otero et al [23]. HAP2 is a global regula-

tor responsible for respiration gene expression, one of its targets IDP1 has been validated to

improve succinate [52].

Case study: Strain optimization for 2,3-Butanediol production

We performed 10 parallel simulated annealing runs with 2,3-butanediol as target product

(Supplemental S3 Table). According to the filtering process similar with succinate case, we

selected one optimized solution from the results of the ten runs. Table 6 shows the mutation

sites suggested by OptRAM, among which GLN3 and RTG3 are TFs. There are 4 critical meta-

bolic reactions (marked in Fig 4) involved in this mutated model, respectively catalyzed by

mitochondrial alcohol dehydrogenase, ferrocytochrome-c:oxygen oxidoreductase, malate

dehydrogenase, and cytoplasmic alcohol dehydrogenase (acetaldehyde to ethanol), all of them

are predicted to be knocked down.

There are two main processes in the production from glucose to 2,3-butanediol (Fig 4), just

as for succinate. Pyruvate comes from glucose and is converted to acetoin and then to

Table 5. Comparison of flux ranges of succinate production in mutant models by different methods and literature.

Succinate (99%biomass) Succinate (50%biomass) Biomass

Wild type [0.00, 0.18] [0.00, 8.85] 0.95

Literaturea [0.10, 0.43] [0.00, 8.20] 0.90

OptFlux [6.78, 7.46] [0.03, 11.91] 0.51

OptRAM [11.62, 11.88] [1.11, 13.20] 0.26

Values in the square brackets are minimal and maximal flux values of succinate exchange reaction respectively. The flux unit is mmol/KgDW.h.
aStrain design from literature with experimentally validation[23].

https://doi.org/10.1371/journal.pcbi.1006835.t005

Table 6. Manipulation sites in best solution for 2,3-butanediol as target.

Gene SOL3 GLN3
Overexpression fold change 8 8

Gene COX4 POX1 MDH2 RTG3
knockdown fold change 1/4 1/4 1/4 1/32

https://doi.org/10.1371/journal.pcbi.1006835.t006
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2,3-butanediol. By comparing the flux values in the two models (mutated and wild type), the

flux of 2,3-butanediol exchange reaction increases about 61-fold theoretically in the mutated

model. Reduction of ferrocytochrome-c:oxygen oxidoreductase will affect pyruvate in cyto-

plasm coming from lactate. Repressing alcohol dehydrogenase and mitochondrial alcohol

dehydrogenase, both of which convert acetaldehyde to ethanol, will prevent acetaldehyde to

ethanol. Downregulation of malate dehydrogenase changes the direction of the reversible reac-

tion from malate to more oxoglutarate, and promote the flux of pyruvate to final

2,3-butanediol.

We also compared the best solution in Table 6 with the previous literature in which Ng et al
succeeded in improving 2,3-butanediol in yeast [53]. They used OptKnock to explore optimi-

zation design including the deletion of ADH1, ADH3 and ADH5 under an anaerobic condi-

tion. We used OptRAM to identify knockdown of ADH3, and the TF STE12 regulating ADH1
and ADH3 to improve 2,3-butanediol. Also, we ran OptFlux to get strain design solution for

comparison. For the mutant models generated from literature, OptFlux, and OptRAM, we

Fig 4. Flux comparisons of mutated model and wild type for 2,3-butanediol overproduction. This figure shows the main path of 2,3-butanediol production

in yeast and effective reactions identified by OptRAM. Solid arrows indicate the direction of metabolic reactions. Red arrows indicate that the fluxes are

predicted to be higher in the mutated strain and green arrows indicate the flux is predicted to be lower than in wildtype. Gray arrows indicate the reactions are

not significantly different between the designed strain and the wildtype. Green dotted boxes highlight the critical down-regulated reactions.

https://doi.org/10.1371/journal.pcbi.1006835.g004
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used FVA to obtain the range of 2,3-butanediol target under constraints of being able to

achieve 99% and 50% biomass, respectively. The comparison of mutant models with wild type

model is shown in Table 7.

Similarly, when biomass is constrained to 99% of the max theoretical value, even the mini-

mal flux value of 2,3-butanediol exchange reaction by OptRAM is higher than other strategies.

While the minimum predicted target flux in OptFlux drops to 0 with the constraints of 99%

max biomass, it means the good performance of OptFlux for succinate production coupled

with biomass might be a case-specific outcome, whereas OptRAM can ensure the coupling for

overproduction of different targets, because of the improved objective function.

We also compared all the mutation sites from 10 solutions with the experimental design in

LASER database (Supplemental S4 Table). There are 6 genes presenting in more than 2 solu-

tions matched with the experimental modifications in LASER, such as ADH3, GPD2. Knock-

down of ADH3 (alcohol dehydrogenase) can keep more flux to acetaldehyde and impress the

flux to ethanol. Deletion of GPD1/2(glycerol-3-phosphate dehydrogenase) can improving eth-

anol by effectively decreasing flux to glycerol [54]. We also found several mutated TFs, such as

STE12 and OAF1, have targets modification improving 2,3-butanediol validated in LASER.

STE12 is an important global regulator for yeast growth, whose target genes including ADH1/
2, ALD6, BDH1, GPD1/2, have been reported as effective modification for improving 2,3-buta-

nediol [49]. OAF1 also regulates ADH1/2. It demonstrated that by our strain design method

based on integrated model, the global TF could be identified for modification to accomplish

the roles of several metabolic genes.

Case study: Strain optimization for ethanol production

We performed 10 parallel simulated annealing runs with ethanol as target product (Supple-

mental S3 Table). According to the similar filtering process, we selected one optimized solu-

tion from the results of the ten runs. Table 8 shows the mutation sites suggested by OptRAM.

There are 3 critical metabolic reactions (marked in Fig 5) involved in this mutated model,

respectively catalyzed by (R,R)-butanediol dehydrogenase, ferrocytochrome-c:oxygen oxidore-

ductase and malate dehydrogenase in cytoplasm, all of them are predicted to be knocked

down.

Table 7. Comparison of flux ranges of 2,3-butanediol production in mutant models by different methods and literature.

2,3-butanediol (99%biomass) 2,3-butanediol (50%biomass) Biomass

Wild type [0.00, 0.12] [0.00, 5.88] 0.95

Literatureb [5.07, 6.42] [0.00, 9.76] 0.24

OptFlux [0.00, 5.90] [0.00, 8.34] 0.47

OptRAM [6.86, 7.20] [0.00, 8.54] 0.37

Values in the square brackets are minimal and maximal flux values of 2,3-butanediol exchange reaction respectively. The flux unit is mmol/KgDW�h.
bStrain design from literature with experimentally validation[53].

https://doi.org/10.1371/journal.pcbi.1006835.t007

Table 8. Manipulation sites in best solution for ethanol as target.

Gene DGA1 HAP2
Overexpression fold change 8 4

Gene COX4 BDH1 ELO3 MDH2
knockdown fold change 1/16 1/2 1/4 1/4

https://doi.org/10.1371/journal.pcbi.1006835.t008
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We experimentally implemented the OptRAM-based design by modifying yeast strains

using CRISPR-Cas9 and measuring the effects on ethanol production by fermentation. Three

genes (BDH1, MDH2 and COX4) in totally different pathways were firstly considered simulta-

neously to enhance the ethanol pathway, which were deleted separately as well as in combina-

tion. The growth of the modified strains was slightly reduced compared to wildtype with all of

the strains showing an increase in ethanol production (Fig 6). The performance of these genes

depends on their molecular function in yeast cells. BDH1 encoding 2,3-butanediol dehydroge-

nase had the smallest effect on growth and ethanol production. MDH2 and COX4 encode cyto-

plasmic malate dehydrogenase in the TCA pathway and subunit IV of cytochrome c oxidase in

mitochondrial inner membrane electron transport chain, respectively. These two pathways are

Fig 5. Flux comparisons of mutated model and wild type for ethanol overproduction. This figure shows the main path of ethanol production in yeast and

critical reactions identified by OptRAM. Solid arrows indicate the direction of metabolic reactions. Red arrows indicate that the fluxes are predicted to be

higher in the mutated strain and green arrows indicate the flux is predicted to be lower than in wildtype. Gray arrows indicate the reactions are not significantly

different between the designed strain and the wildtype. Green dotted boxes highlight the critical down-regulated reactions.

https://doi.org/10.1371/journal.pcbi.1006835.g005
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primary competitors to the fermentation pathway for carbon flux. Thus the significant ramp-

ing up of ethanol, as well as growth decline, was observed on the yeast cells without MDH2 or

COX4. Since the metabolic burden and metabolic optimization are two sides of coin, the fer-

mentation results of double deletion become much more complex. The yeast without genes

BDH1 and COX4 produced the highest ethanol, but the yeast without BDH1 and MDH2 even

could not keep consistent ethanol titer. Taken together, the prediction of OptRAM for three

key genes to improve ethanol fermentation has been partially validated. However, the meta-

bolic burden must be taken into consideration especially when carrying out multiple gene

manipulation on microbes.

We also compared the best solution with the previous literature in improving ethanol in

yeast [55]. The best strategy in this study included the deletion of GDH1 and overexpression of

GLT1 and GLN1. Also, we ran the optimization algorithm OptFlux to get its strain design solu-

tion. For the mutant models generated from literature, OptFlux, and OptRAM, we used FVA

to obtain the range of ethanol target under constraints of being able to achieve 99% and 50%

biomass, respectively (Table 9).

When biomass is constrained to 99% of the max theoretical value, even the minimal flux

value of ethanol exchange reaction in OptRAM is higher than other strategies. When biomass

Fig 6. The cell growth and ethanol production of gene-deleted strains. Yeast Saccharomyces cerevisiae S288C was

incubated in YPD medium consisting of glucose 90 g/L, yeast extract 10 g/L, and peptone 20 g/L. Samples were taken

at 24 h. All experiments were triplicates.

https://doi.org/10.1371/journal.pcbi.1006835.g006

Table 9. Comparison of flux ranges of ethanol production in mutant models by different methods and literature.

ethanol (99%biomass) ethanol (50%biomass) Biomass

Wildtype [0.00, 0.21] [0.00, 10.93] 0.95

Literatureb [0.00, 0.22] [0.00, 10.94] 0.94

OptFlux [8.13, 12.88] [0.00, 17.20] 0.39

OptRAM [15.70, 15.98] [4.78, 18.16] 0.26

Values in the square brackets are minimal and maximal flux values of ethanol exchange reaction respectively. The

flux unit is mmol/KgDW�h.
bStrain design from literature with experimentally validation [55].

https://doi.org/10.1371/journal.pcbi.1006835.t009
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is constrained to half of the theoretical max value, we can still see our strategy make ethanol

production coupled with growth.

In addition, we compared all the mutation sites from 10 OptRAM solutions with the experi-

mental design in the LASER database (Supplemental S4 Table). MDH2 (malate dehydroge-

nase) is the top recurrent mutation found by all 10 solutions, whose deletion represses the

TCA Cycle, increases flux of anaerobic respiration, and improves ethanol production [56].

BDH2 is another recurrent mutation found by 8 solutions, whose knockdown can increase

flux from acetaldehyde to ethanol. There are also some TFs having targets whose modification

improves ethanol validated in LASER. HCM1 is found as a TF to modulate using OptRAM

and it regulates ACC1, GLN1, and TKL1, all of which have been reported to improve ethanol

production as reported in LASER [57–59]. For example, knockdown of HCM1 can repress

ACC1 (acetyl-CoA carboxylase), and make more flux from pyruvate to ethanol.

Comparison of OptRAM with other strain design methods

We systematically compared our OptRAM method with existing representative constraint-

based strain optimization methods. OptKnock is the first method in this field, OptGene is the

first trial of meta-heuristic method, OptORF is the first strain design method utilizing regula-

tory information, and BeReTa is the latest method utilizing regulatory information, which can

suggest manipulations of transcription factors to be knocked down or overexpressed. Table 10

shows the different properties of these methods.

We can see that only OptORF, BeReTa and OptRAM integrate a regulatory network.

OptORF utilizes the Boolean network which has more limitations in practice, while BeReTa

cannot give a combination of multiple engineering sites. OptRAM can simultaneously identify

transcription factors and metabolic genes to be targeted for overexpression, knockdown, and

knockout. Solutions from OptRAM ensure that the target product is better coupled with cell

growth, and further systematical evaluation can help biologists to choose a relatively reliable

solution for experiment validation.

When performing OptRAM on MATLAB (2017a) with GUROBI version of 7.5, the average

time of one SA process is 3.7 hours. Overall, the computation time is comparable to the time

running optimization algorithm once on the OptFlux platform. The processor of PC is i7-6700

CPU with 3.40GHz frequency, and the RAM is 16.0GB.

Table 10. Comparison of characteristics of some computational strain design methods.

OptKnock OptGene OptORF BeReTa OptRAM

Type of algorithm Bilevel Meta-heuristic Bilevel Flux

distribution

Meta-heuristic

Integration of TRN No No Boolean Inferred Inferred

Metabolic gene strategies Knockout/

down

Knockout/down &

Overexpression

Knockout/down &

Overexpression

/ Knockout/down &

Overexpression

Transcription factor strategies No No Knockdown Knockdown&

Overexpression

Knockout/down&

Overexpression

Coupled with Biomass Maximal

target

Maximal target Maximal target Maximal target Ensure coupling & Maximal

target

Mutant sites

combination

Yes Yes Yes No Yes

Max yield prediction Yes Yes Yes No Yes

Comprehensive evaluation of

solutions

No No No No Essential genes;

Implement cost; Global

adjustment

https://doi.org/10.1371/journal.pcbi.1006835.t010
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The performance of OptRAM has been compared with OptFlux by three strain design cases

in yeast, including production of succinate, 2,3-butanediol, and ethanol. To make a more suit-

able comparison with a previous strain optimization method using an integrated regulatory-

metabolic model, we compared OptRAM with OptORF, the first strain design method utiliz-

ing regulatory information, for ethanol overproduction. We used the integrated E.coli model

iMC1010 by OptORF to simulate the modification strategy for ethanol production with

OptRAM. We found the best solution of OptRAM includes knockdown of Pta, TpiA, AldB,

ZntA, YbiV, Fre, OmpL, AceA, and GpmB, as well as overexpression of Acs. The ethanol pro-

duction improved 1.8 fold with 7% reduction in biomass compared to wild-type. In compari-

son, OptORF suggested deletion of ArcA, Pta, TpiA, EutD, and PtsH, and overexpressing gene

Edd, which was predicted to improve ethanol production by 2.2 fold with 54% reduction in

biomass. However, ArcA has positive regulation on AckA, which is one of the essential genes

for E.coli (from DEG). Hence, this solution from OptORF may cause death of E.coli. While

there are benefits to both approaches, in this case it may be that OptRAM identified a more

biologically feasible modification strategy with similar improvement on target production

compared to OptORF.

Discussion

Integrated regulatory-metabolic network can improve in silico strain

design

With the development of industrial biotechnology, there is an increasing need to design high

producing strains in an economic and efficient manner. Computational strain optimization

algorithms have been developed for this purpose as an important application of metabolic net-

work reconstructions and constraint-based modeling. These methods can automatically search

for sites of genetic modification for increasing any desired product. However, most strain opti-

mization algorithms can only utilize a metabolic network alone and cannot provide strategies

also involving transcriptional regulation. Although some methods can utilize gene regulatory

information now, they have some limitations since they are based on integrating a boolean

regulatory network, which is not suitable for TF overexpression (e.g. OptORF). Reconstructing

such models requires extensive manual adjustment and additional information for generating

boolean logic rules in the regulatory network [37], which hinders the ability of these algo-

rithms to be broadly applicable across many organisms. In this study, we developed OptRAM

to identify the manipulations of both TF and metabolic genes including overexpression,

knockdown and knockout. OptRAM uses the framework of simulated annealing and is based

on the integration of an inferred regulatory network with a metabolic network from our previ-

ous work (IDREAM) [30]. Through the in silico strain design case studies for producing succi-

nate, 2,3-butanediol, and ethanol in yeast, we demonstrated that OptRAM can identify

solutions containing both TF and metabolic gene manipulations that are predicted to increase

production beyond what is seen currently, or found as potential designs using alternative

methods.

OptRAM outperforms other methods for succinate, 2,3-butanediol and

ethanol overproduction

OptRAM used simulated annealing with a novel objective function, which can ensure a favor-

able coupling between desired chemical production and cell growth. We applied OptRAM in

succinate, 2,3-butanediol, and ethanol overproduction in yeast. By setting a loose constraint

(at least 50%) and a strict one (99%) to biomass respectively, we compared the flux ranges of
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target reaction in different mutant models by different methods. In both cases, strategies from

OptRAM led to higher minimum fluxes for target production under the strict constraints

(Tables 5, 7 and 9) than alternative approaches, which indicated that the target chemical is

strongly coupled with growth from the OptRAM designs. However, the minimum predicted

output fluxes of target in other models are lower and may even be close or equal to zero, which

means the coupling relationships are likely weak. We also found most of the genes predicted to

be altered could be matched with the reported gene modifications, and some altered TFs hav-

ing their target genes validated to improve the desired chemical in LASER database. In particu-

lar, we conducted fermentation experiment to validate the predicted deletion of MDH2,

BDH1, and COX4 has significant improvement on ethanol production. Therefore, OptRAM

provides in silico predictions of improved strains over other methods tested.

Comprehensive evaluation of mutant solutions is helpful for rational

design

Meta-heuristic algorithms commonly provide several optimized solutions with close objective

scores, and it is difficult to select a best one for practical operation, such as OptFlux. Thus, we

try herein to give a systematic evaluation for these solutions. First of all, essential genes cannot

be knocked out without making growth of the cell impossible, so strategies are filtered accord-

ing to essential genes with experimental validation in DEG and SGD databases. Then, we esti-

mate the implementation cost by setting a score according to connection distance of shortest

paths from critical reactions to the main path. Another factor that is weighed is minimizing

the adjustment needed to make from the wild type in order to achieve the optimal designed

performance. The latter two quantitative indicators are used to assist our selection, along with

the flux value of producing the target compound. For succinate overproduction in yeast, there

were three solutions excluded since some essential genes for growth were predicted to be

knocked out or knocked down. After eliminating these three solutions, we then selected the

best remaining solution with maximum target production, which also has lower score of

implementation cost and global flux adjustment (S3 Table). For the case of 2,3-butanediol

overproduction in yeast, also three solutions with essential gene knockouts were excluded. Of

the other solutions that have the same maximum target production (S3 Table), we selected the

solution with the lowest summation of path score and flux variation, which provided more

suitable design modifications for real experiment design. For the case of improving ethanol

production in E.coli, OptORF predicted deletion of ArcA as the modification site, but ArcA
positively regulated AckA, which is one of the essential genes for E.coli. While OptRAM will

avoid knockout or knockdown of such essential genes to keep better growth and/or viability of

the organism.

Future challenge in computational strain design

Despite the above highlights of our new algorithm, OptRAM can be further strengthened in

various ways. First, the performance of integrative regulatory-metabolic modeling for pheno-

type simulation can be improved by introducing more information such as kinetic parameters

to set more precise ranges for critical reactions in a kinetic model. Also, by introducing more

potential sites, the solution space for exploration increases sharply. It is also favorable to seek

new ideas for optimization framework other than focusing on the branches from previously

proposed computational strain design methods [60]. On the other hand, the in-silico strain

design can be enhanced by the inclusion of other forms of regulation, such as allosteric regula-

tion. A constraint-based method (arFBA) for modeling the contribution of allosteric regula-

tion for flux control in the central carbon metabolism of E. coli has been reported [61]. Most
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importantly, the method needs to be validated experimentally in many different situations and

cases and these data compiled, so that this method and future methods can be iteratively

enhanced. In conclusion, in current situation, OptRAM provides a good solution to assist the

biologists to identify strain design strategies for particular applications.
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