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Abstract

Advances in recent years have made molecular dynamics (MD) and Monte Carlo (MC) sim-

ulations powerful tools in molecular-level research, allowing the prediction of experimental

observables in the study of systems such as proteins, membranes, and polymeric materials.

However, the quality of any prediction based on molecular dynamics results will strongly

depend on the validity of underlying physical assumptions. Unphysical behavior of simula-

tions can have significant influence on the results and reproducibility of these simulations,

such as folding of proteins and DNA or properties of lipid bilayers determined by cutoff treat-

ment, dynamics of peptides and polymers affected by the choice of thermostat, or liquid

properties depending on the simulation time step. Motivated by such examples, we propose

a two-fold approach to increase the robustness of molecular simulations. The first part of

this approach involves tests which can be performed by the users of MD programs on their

respective systems and setups. We present a number of tests of different complexity, rang-

ing from simple post-processing analysis to more involved tests requiring additional simula-

tions. These tests are shown to significantly increase the reliability of MD simulations by

catching a number of common simulation errors violating physical assumptions, such as

non-conservative integrators, deviations from the Boltzmann ensemble, and lack of ergodic-

ity between degrees of freedom. To make the usage as easy as possible, we have devel-

oped an open-source and platform-independent Python library (https://physical-validation.

readthedocs.io) implementing these tests. The second part of the approach involves testing

for code correctness. While unphysical behavior can be due to poor or incompatible choices

of parameters by the user, it can just as well originate in coding errors within the program.

We therefore propose to include physical validation tests in the code-checking mechanism

of MD software packages. We have implemented such a validation for the GROMACS soft-

ware package, ensuring that every major release passes a number of physical sanity checks

performed on selected representative systems before shipping. It is, to our knowledge, the

first major molecular mechanics software package to run such validation routinely. The tests

are, as the rest of the package, open source software, and can be adapted for other soft-

ware packages.
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Introduction

Advances in recent years have made molecular dynamics (MD) simulations a powerful tool in

molecular-level research, allowing the prediction of experimental observables in the study of

systems such as proteins, drug targets [1, 2], membranes and polymers [3]. However, the qual-

ity of any prediction based on molecular dynamics results will strongly depend on the validity

of underlying physical assumptions [4].

There are two main sources of errors that violate physical assumptions, the programmer

and the user. Errors introduced by the programmer can range from simple bugs to hard-to-

catch corner cases when combining seldom used techniques or running the program on exotic

hardware. A perfect implementation alone does, however, not guarantee that the program is

applied correctly. Using a method or a combination of methods inappropriate for the investi-

gated system will lead to wrong results even in the hypothetical case of a perfect program. Two

trends are increasing the risk for such unsuitable use. First, modern molecular simulation pro-

gram packages allow for a multitude of methods to be applied, and are increasingly allowing

users to interact with low-level functionality via APIs, further increasing the risk for inappro-

priate applications. Additionally, the advances in both hardware and software over the past

years have made MD simulations available to many users to examine complicated problems,

many of whom are not experts in molecular simulations.

The lack of physical validity can strongly influence the results obtained from molecular sim-

ulations in both biomolecular and materials applications, and lead to a significant lack of

reproducibility in the field. For example, Ni and Baumketner found that the treatment of non-

bonded interaction cutoffs affects the folding of biomolecules such as proteins and DNA frag-

ments in reaction-field simulations [5]. The truncation of electrostatic interactions can mean-

ingfully influence the properties of lipid bilayers such as enhanced ordering and decreased

area per lipid [6, 7]. Wong-ekkabut et al. noted that reported water flow through nanotubes

could be attributed to the use of charge-group cutoff and the lack of buffers in pairlist genera-

tion [8]. They further noted an influence of the thermostatting algorithm on the flux. Similar

artifacts causing continuous water flow were found in MD simulations of amyloid crystals [9].

By comparing results from different MD packages (but identical cutoff scheme), Bonthuis

et al. found that spurious flow effects of water in static electric fields due to force-cutoff were

implementation-related [10]. The treatment of long-range electrostatic forces was also shown

to influence the free energy of transfer of tryptophan analogs [11] and the energetic, structural

and dielectric properties of water [12]. The choice of thermostat does not only determine the

kinetic energy distribution sampled [13], but was also shown to influence the distribution of

temperature between degrees of freedom [14, 15] (“flying ice cube effect”). The impact of this

effect on physical observables was demonstrated by Leyssale and Vignoles [15] finding graph-

itization of nanodiamonds severely impaired by the loss of internal kinetic energy. The cou-

pling of solute and solvent to separate heat baths has been used to mitigate the hot-solvent/

cold-solute problem [16]. It was later shown, however, that this approach can significantly

impact the dynamics of macromolecules [17, 18], affecting for example the flip rates of pep-

tides [17]. Winger et al. reported that the choice of too large timesteps for systems of pure

coarse-grained water and hexadecane does impact properties such as the density, the potential

energy, or the excess free energy [19]. These are just as small sampling of the many studies

that show how incorrect simulation choices can significantly affect the physical validity of the

simulations.

A two-fold approach on testing for physical validity can strongly increase the robustness,

reliability, and reproducibility of molecular simulations. The first part of this approach

involves tests which can be easily performed by the users of MD programs on their respective
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systems and setups. We present a number of tests of different complexity, ranging from simple

post-processing analysis to more involved tests requiring additional simulations. In this work,

we show that these tests can significantly increase the reliability of MD simulations by catching

a number of common simulation errors violating physical assumptions, such as non-conserva-

tive integrators, deviations from the Boltzmann ensemble, and lack of ergodicity between

degrees of freedom. To make them as easy as possible to use, we developed an open-source

and platform-independent Python library containing these tests (see https://physical-

validation.readthedocs.io).

The second part of this approach involves testing for correctness of the simulation pack-

ages themselves. While unphysical behavior can be due to poor or incompatible choices of

parameters by the user, it can just as well originate in coding or algorithm errors within the

program. Traditional software testing focuses on the correctness of code, but it cannot gener-

ally guarantee physical correctness. Violation of physical assumptions can occur in perfectly

valid code, e.g. by operating outside the range of validity of a model, or by allowing the com-

bination of incompatible methods or parameters. We therefore propose to include physical

validation tests in the code-checking mechanism of MD software packages. We have imple-

mented such a validation for the GROMACS software package [20, 21] ensuring that every

major releases passes a number of physical sanity checks performed on selected representa-

tive systems before shipping. It is, to our knowledge, the first major molecular mechanics

software package available for general usage to run such validation routinely. (We have, how-

ever, learned through personal communication with Bill Swope of IBM Research that ‘Blue

Matter’, the internal molecular dynamics code that IBM Research used on the Blue Waters

petascale computing project, did use an automated physical validation suite with some over-

lap with the current suite, but neither the suite nor the code was ever made publicly avail-

able.) The tests are, as the rest of the package, open source software, and can be adapted for

other software packages.

Validation of physical assumptions

Integrator validation

Integrators routinely used in MD simulations do not sample the actual Hamiltonian H of the

system, but a closely related shadow Hamiltonian [22] ~H. For symplectic second-order integra-

tion algorithms such as velocity-verlet [23] or leap-frog [24] using a timestep Δt, the physical

and the shadow Hamiltonian are related by

~H ¼ HþO ðDt2Þ : ð1Þ

The shadow Hamiltonian is generally not known analytically. Its expectation value is constant,

h ~Hi ¼ ~E ; ð2Þ

where the shadow energy, ~E, is a constant which differs from the physical constant energy

hHi ¼ E by a small bias factor that depends on the details of the simulation, notably on the

chosen time step, but not on the length of the simulation. The expectation value of the physical

Hamiltonian (“the total energy”) of a constant energy simulation using a symplectic second-

order integration algorithm will hence be

hHi
Dt ¼

~E ; ð3Þ
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while its instantaneous value will deviate from the average on the order of Δt2,

H ¼ ~E þO ðDt2Þ : ð4Þ

The fluctuation in Δt2 of the Hamiltonian with respect to the average value can be used to

asses simulation correctness. Combining Eqs 3 and 4, we see that the fluctuations of the instan-

taneous H around its average value hHimust be of the order of Δt2,

sðHÞ � Dt2 : ð5Þ

Comparing the fluctuations around the average total energy of two (otherwise identical) simu-

lation runs performed at different timesteps, one therefore expects their ratio to be dependent

on the ratio of their squared timesteps,

sðHðDt1ÞÞ
sðHðDt2ÞÞ

¼
Dt2

1

Dt2
2

: ð6Þ

A deviation from the expected fluctuation ratio in Eq 6 hints at some inaccuracy in the sim-

ulation protocol. Effectively, it means that the simulation is not sampling the expected shadow

Hamiltonian. There are, however, many possible causes for such inaccuracies, such as discon-

tinuities in the potential or the forces, imprecisions in constraints, or a wrong integration algo-

rithm. While the failure of such a test cannot necessarily determine the actual source of error,

they permit to detect problems in the simulation protocol, which can be introduced by coding

bugs or inappropriate simulation parameters.

Kinetic energy validation

The distribution of the kinetic energy is well-defined in any constant temperature ensemble.

The three components pi,x of the momentum vector momentum pi of any particle i with mass

mi of a system in equilibrium at constant temperature T are individually normally distributed

[25] with mean zero and variancemikBT, having a probability density function (pdf) given by

f ðpi;xÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2pmikBT

r

e�
p2i;x

2mikBT : ð7Þ

The kinetic energy of a system of particles is the weighted sum of their individual momenta,

KðpÞ ¼
1

2

X

i

1

mi
pi � pi ¼

1

2

X

i;x

pi;x
ffiffiffiffiffimi
p

� �2

: ð8Þ

The kinetic energy is hence the sum of squared variables individually normal-distributed with

variance kBT. Sums of independent normally-distributed variables with zero mean are well-

known to necessarily follow a gamma distribution, with parameters α (the shape) and θ (the

scale) and pdf given by

fgðxja; yÞ ¼
y
� a

GðaÞ
xa� 1e� xy : ð9Þ

For N independent variables with variance kBT, the parameters take the values of α = N/2 and
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θ = kBT. This leads to the probability density function (pdf) of the kinetic energy,

f ðKjN;TÞ ¼
b
N=2

G N
2

� �KN=2� 1e� bK ; ð10Þ

where N denotes the number of degrees of freedom of the system, and β = (kBT)−1.

Kinetic energy separation. Not only the total kinetic energy of a system, but also the

kinetic energy of any of its subset of degrees of freedom follows the distribution described in

Eq 10, with the α value corresponding to the subset’s number of degrees of freedom divided by

two. This follows from the fact that the kinetic energies of orthogonal degrees of freedom are

uncorrelated and that the sum in Eq 8 can go over any subset of degrees of freedoms in the sys-

tem, a principle known as equipartition. Separation of the kinetic energy allows to validate that

functional parts of the system, such as solute and solvent or different components of liquid

mixtures, have the proper kinetic energy distribution. Separations can also be applied spatially

or randomly to arbitrary systems as a general sanity check. Any kinetic energy test that is pro-

posed can (and should!) hence also be applied to subsets of a system.

An especially useful application of the equipartition check separates the molecular degrees

of freedom into their translational, rotational, and internal components. Temperature control

algorithms scaling the velocities of decoupled degrees of freedom uniformly were found to sys-

tematically move energy from fast to slow degrees of freedom [14] (most famously observed as

the “flying ice cube” effect). Such systems can have correct distributions of total kinetic energy,

which is, however, only due to compensation effects between too hot (typically translational or

rotational) and too cold (typically internal) degrees of freedom. Condensed phase systems are

generally assumed to have enough energy exchange between degrees of freedom to mitigate

the effect of the velocity scaling. This is, however, an assumption worth checking in general,

and especially for systems with low density. Details on the separation of molecular degrees of

freedom are given in Ref. [26] and in S2 Text.

The tests presented here can be implemented independent of the exact estimator used for

the kinetic energy. Eastwood et al. [27] have shown that kinetic energy estimators exclusively

based on either the integrated momenta or the time-derivative of the positions can lead to vio-

lations of the equipartition principle when using integrators with finite timestep size. Unfortu-

nately, the more robust estimator proposed by Eastwood et al. is rarely available in standard

simulation packages. The discussion and implementation of alternative kinetic energy estima-

tors within software packages is not in the scope of this work, however. Since the discussed

tests are derived from physical principles, they will be valid up to the numerical error in the

kinetic energy estimate.

Full distribution test. The Kolmogorov-Smirnov (K-S) test [28, 29] makes it possible to

check simulated kinetic energy distributions versus the expected distribution. It has robust

implementations available, e.g. in the SciPy library [30]. The K-S test is a nonparametric test

assessing the equality of distributions. In this work, it is used to compare the observed distribu-

tion of the sample with the reference distribution described in Eq 10. It operates under the null

hypothesis that the presented data set was drawn from the reference distribution. The test

involves constructing a Kolmogorov distribution by computing the distance between the

cumulative distribution functions of the distributions, and calculating the p-value from the

critical values of the Kolmogorov distribution. This p-value can be identified as the probability

to observe a sample at least as extreme as the one at hand under the null hypothesis. As an

example, a p-value of 0.02 means that the probability to observe a sample at least as extreme

when drawing a new sample of the same size from the reference distribution is 2%.
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The K-S test does have some disadvantages, which we judge not to be of significance for the

current application. Specifically, the K-S test is not valid when testing distributions in which

the parameters of the distribution are inferred from the data set [31], and having declining sen-

sitivity around the tails of the distribution. Within the scope of testing the kinetic energy of

molecular simulations, we judge the advantages of a robust and readily available implementa-

tion to be important, and the disadvantages mentioned above to be largely insignificant. The

parameters (the number of degrees of freedom and the target temperature) are never inferred

from the trajectory of kinetic energies in our implementation, but rather from the actual sys-

tem and the chosen target temperature of the coupling algorithm. Very high tail sensitivity is

not generally desirable for most simulations of moderate length, as statistical noise in the tails

of the empirical distribution might be flagged by the rest of the test even when the simulations

is well-behaved. However, if particular simulations were calculating properties especially sensi-

tive to kinetic-energy tail behavior, choosing a different statistical test may be advisable.

Sample-size, system-size and temperature dependence of the statistical kinetic energy

test The K-S test can be too sensitive for certain applications. While the underlying theory

defines an unambiguous distribution, simulations introduce numerical artifacts which can

result in a slightly modified distribution. Very accurate tests are desirable when testing code

under well-controlled conditions, but might yield false positives in less sensitive applications.

It might for example not always be desirable to flag deviations from the desired kinetic energy

distribution which are smaller in magnitude than other well-controlled approximations such

as the interaction cutoff or the treatment of bond constraints.

The sensitivity of statistical tests like the K-S test increases with the number of samples [32].

With only a few observations, it is not possible to conclusively discriminate between closely

related distributions. However, as the size of a sample approaches infinity, the test will be able

to detect even slightest deviations in the parameters of the generating distribution versus the

tested distribution.

The sensitivity of the K-S test of the kinetic energy distribution also depends on the number

of degrees of freedom and the target temperature. Fig 1 illustrates this by drawing a number of

samples (x-axis) from a gamma distribution at a specific temperature (y-axis), and testing it

against an analytical gamma distribution at a specific temperature (300 K). The number of

degrees of freedom is thereby the same for the generating distribution and the reference distri-

bution, namely 103, 104, and 105 for the first, the second and the third panel, respectively.

Fig 1. Sensitivity of the K-S test. The sensitivity of the K-S test depends on the number of degrees of freedom and the number of realizations. Results from validating

25 different sample sizes (x-axis) drawn from a gamma distributions at 101 different temperatures (y-axis) but fixed number of degrees of freedom (103, 104, and 105,

for the first, the second and the third panel, respectively), against a gamma distribution at 300 K and the same number of degrees of freedom. All tests were repeated

1000 times. The color bars indicate the average p-value obtained from the tests, with two contour lines indicating the p = 10% and p = 1% levels. The values between the

sampled data points were approximated using bi-cubic interpolation.

https://doi.org/10.1371/journal.pone.0202764.g001
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Larger sample size, lower temperature, or more degrees of freedom all make the test more

sensitive. A deviation of 0.5 K in average temperature might well be within a typical cutoff

of p� 0.05 when analyzing 1000 samples, but might yield a p value very close to zero when

increasing sample size by a factor 10. Small deviations in the sampled ensemble can have many

reasons, including incorrect temperature-control algorithms, but also numerical noise from

interaction cutoff schemes and long-range corrections, integration timesteps, or constraining

algorithms. When developing or implementing new temperature control algorithms in a con-

trolled test environment keeping errors from other sources negligible, a very high sensibility is

certainly desirable. In many other, real-world applications, however, a deviation insignificant

in comparison with other sources of inaccuracies might be enough to flag long simulation tra-

jectories of large systems as not gamma distributed. It is therefore important to compare the

pure numerical result obtained from the statistical distribution test to other indicators, such as

the mean and the variance or even a visual inspection of the observed distribution compared

to the expected distribution, and choose the correct indicator for the application at hand.

Validation of mean and standard deviation. The mean and the standard deviation of the

simulated kinetic energy trajectory can be used to devise a less sensitive but more robust and

intuitive alternative to the K-S test. The gamma distribution of the kinetic energy has closed

formulas for the mean μ and the standard deviation σ,

m ¼ ay ¼
1

2
NkBT

s ¼
ffiffiffi
a
p

y ¼
1
ffiffiffi
2
p

ffiffiffiffi
N
p

kBT :
ð11Þ

Having means and averages consistent with the applied temperature is a necessary condition

for a trajectory sampled from the correct distribution, which can easily be verified by calculat-

ing the empirical mean m̂ and standard deviation ŝ. A standard error estimate for these empir-

ical quantities can be obtained by bootstrapping [33] the original trajectory. Estimates further

than 2-3 standard errors away from the expected value in Eq 11 can then easily be flagged as

violating physical assumptions. Furthermore, deviations in the mean or the standard deviation

can intuitively be understood as “the average temperature is wrong” or “the distribution is too

narrow / too wide”.

A possible cause for the failure to reproduce the expected mean and variance is lack of equi-

partition. Different sets of degrees of freedom may sample different distributions. As described

earlier, this can easily be verified by comparing the empirical estimators for subsets of the

system.

When assuming equipartition, the empirical moments can be directly related to tempera-

tures. To see this, we plug the empirical estimates m̂ and ŝ into Eq 11. As the principle of equi-

partition requires all degrees of freedom to be identically distributed, we can assume N to be

constant. The equations then define two different empirical temperature for each moment,

Tm̂ ¼
2m̂

NkB

Tŝ ¼

ffiffiffi
2
p

ŝ
ffiffiffiffi
N
p

kB
:

ð12Þ

These values can be understood as “the distribution has a mean equivalent to a physical distri-

bution at Tm̂” and “the distribution has a width equivalent to a physical distribution at Tŝ”.

Note that this interpretations serve only the intuitive understanding. If the two values differ
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significantly, the statistical conclusion is therefore that the trajectory was not sampled from the

physically expected distribution.

Ensemble validation

The ratio of distributions of certain system observables (such as the energy, volume, or number

of particles) for a system simulated at different state points define necessary conditions for the

distribution of these observables in the system. As the distribution of configurational quanti-

ties like the potential energy U, the volume V (for the isothermal-isobaric (NPT) ensemble)

or the number of each species N (for the grand-canonical (μVT) ensemble) are in general

not known analytically, testing the likelihood of a trajectory sampling a given ensemble is less

straightforward than for the kinetic energy. However, the ratio of the probability distribution

between samplings of the same system at different state points (e.g. at different temperatures,

different pressures, different chemical potentials) can still often be useful to diagnose simula-

tion errors. The logarithm of the probability densities of the configurational observables men-

tioned above is linearly dependent on the parameters [34],

log
PðE j b2Þ

PðE j b1Þ
� � ðb2 � b1ÞE NVT ð13Þ

log
PðE;V j b2; P2Þ

PðE;V j b1; P1Þ
� � ðb2 � b1ÞE � ðb2P2 � b1P1ÞV NPT ð14Þ

log
PðE;N j b2;μ2Þ

PðE;N j b1;μ2Þ
� � ðb2 � b1ÞE þ

X

i
ðb2m2;i � b1m1;iÞNi mVT : ð15Þ

where P(a | b) denotes the probability of the observables a (the total energy E, or the volume V
or species composition N) in the ensemble defined by parameters b. The ensemble of the phys-

ical system is defined by the temperature T, and possibly the pressure P or the chemical poten-

tials μi. More details on the derivation are provided in S1 Text or Ref. [34].

Eqs 13–15 define an easily verifiable condition for trajectories. Given two (otherwise identi-

cal) simulations performed at different state points, our analysis tool therefore performs a

maximum-likelihood analysis as described in Ref. [34] finding the most likely slope parameter

(s) to fit Eqs 13–15. Under NVT conditions, only one parameter can be estimated, the differ-

ence in target temperature β2 − β1 between the two simulations. Under NPT conditions, three

different cases with different parameters can occur:

1. If the two simulations differ only in target temperature, β2 − β1 is estimated by fitting to the

distributions of the enthalpyH = E + PV;

2. if the two simulations differ only in target pressure, P1 − P2 is estimated by fitting to the dis-

tributions of the volume V; and

3. if the two simulations differ in both the target temperature and pressure, a two-dimensional

fit estimating β2 − β1 and β2P2 − β1P1 simultaneously is performed.

Under μVT conditions, three cases in analogy to the NPT case can be distinguished, namely

1. differing temperatures,

2. differing chemical potentials, and

3. a two-dimensional fit with differing temperatures and chemical potentials.
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The assessment of the simulation quality can directly be tied to the estimated error of the

fit. The standard deviation σ of the max-likelihood fit can be estimated in two ways: Analyti-

cally, by taking the square root of the diagonal of the Hessian of the log-likelihood function at

the calculated minimum, or by bootstrap resampling. The quality of the simulation can then

be assessed by calculating the number of standard deviations the estimate deviates from the

expected value. The higher this number, the less likely it is that the observed deviation is solely

due to noise. As a rule of thumb, a difference of more than about 3σ can be seen as a clear sign

that some systematic error is causing the deviation.

Under NPT conditions, tests are currently only implemented for isotropic pressure condi-

tions. An unambiguous definition of the probability distribution, and hence the partition

function, of the ensemble is required to implement the test. For anisotropical pressure cou-

pling, such a definition requires the proper definition of the work of the box deformation and

treatment of the additional degrees of freedom due to the uncoupled box vectors. General liter-

ature descriptions of anisotropic barostats are often incomplete, and the exact distribution of

box degrees of freedom appears to be dependent on the implementation details of the barostat.

Implementing proper variants of nonisotropic barostats is therefore a future research question

that will remain of interest to this effort.

The maximum-likelihood slope analysis also allows to estimate a more intuitive parameter

interval. Under NVT or NPT conditions with two different temperatures T1 and T2, the slope

aE� β2 − β1 approximates β2 − β1 = (kBT2)−1 − (kBT1)−1 = (T1 − T2)/(kBT1T2). We can hence

define the interval estimate ΔT0 � T1 − T2 as

DT 0 ¼ aEkBT1T2 : ð16Þ

Under NPT conditions with varying pressures but identical temperature T, the slope aV� βP2

− βP1 is already estimating the interval P2 − P1 up to the factor β = (kBT)−1,

DP0 ¼ aVkBT : ð17Þ

Under NPT conditions with varying pressures and temperatures, a two-dimensional fit is per-

formed, with aE estimating β2 − β1 and aV estimating β2P2 − β1P1. ΔT0 is then calculated as

defined in Eq 16, while the estimated pressure interval is approximated as

DP0 ¼ aVkB
T1 þ T2

2
: ð18Þ

In all cases, an error estimate for these intervals can easily be obtained via uncertainty calcula-

tion from the error estimate of the slope calculation. As the estimates in Eqs 16–18 are more

intuitive than the pure slopes, they are reported along with the slopes, and used in the result

section of this work.

It is often more useful to use only potential energy U instead of the total energy E in these

calculations. As the kinetic energy K is independent of the configurational quantities in sys-

tems that properly obey statistical mechanics, Eqs 13–15 are fully valid also when replacing E
by U. As described above, the kinetic energy can be checked (more rigorously) separately. For

the same reason that the components of the kinetic energy may have incorrect distributions

even though the total kinetic energy is correct, testing the total energy can mask compensating

errors occurring in in the kinetic and potential energy.

Choice of temperature and pressure interval. As the ensemble tests presented above

require two simulations at distinct state points, the choice of the interval between the two

points becomes an important question. Choosing two state points too far apart will result in

very small or zero overlap between the distributions, leading to very noisy results (due to sam-

ple errors in the tails) or a breakdown of the method, respectively. Choosing two state points
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very close to each other, on the other hand, makes it difficult to distinguish the slope from sta-

tistical error in the samples.

A rule of thumb states [34] that the maximal efficiency of the method is reached when the

distance between the peaks of the distributions are roughly equal to the sum of their standard

deviations. For most systems (with the notable exception of extremely small or very cold sys-

tems), it is reasonable to assume that the difference in standard deviations of the distributions

will be negligible between state points located close to each others. This assumption leads to

the following equations [34] for the suggested approximate state point intervals:

DT ¼
2kBT2

sE
; ð19Þ

where σE is the standard deviation of the energy distribution used in the test (potential energy,

enthalpy, or total energy), and

DP ¼
2kBT
sV

; ð20Þ

where σV is the standard deviation of the volume distribution.

The standard deviations themselves can be obtained in two ways. Given a simulation at one

state point, and the previously mentioned assumption that the standard deviations will not sig-

nificantly vary between the state points, a good interval for the second one can be estimated by

simply calculating σE or σV (or both) from the simulated trajectories. Alternatively, the width

of the distributions can be estimated from experimental observables or simulation observables.

For the energy, the standard deviation can be estimated from the heat capacities,

s2
E ¼ 2kBT2CV ðNVTÞ

s2
E ¼ 2kBT2CP ðNPTÞ ;

ð21Þ

where CV and CP denote the isochoric and the isobaric heat capacities, respectively. For the

volume, the standard deviation can be estimated from the isothermal compressibility κT,

s2
V ¼ 2kBTVkT : ð22Þ

In many cases, when using atomistic models, the experimental values will be sufficiently close

to the simulated materials values that they can be used, since the range of intervals over which

the test is statistically useful is relatively broad.

Usage of the validation suite as an analysis tool

Uniform representation

As different molecular mechanics (MM) packages store system information and simulation

results in very different ways, a uniform representation is necessary to make analysis tools

universally usable. While a general abstraction of MM data would be highly desirable, it is far

beyond the scope of this work. The physical validation suite therefore defines a relatively simple

Python class named SimulationData abstracting the data used by the different tests. Most

tests presented need relatively simple information, such as the units and the time step used to

ensure proper calculation, information on the temperature and pressure control and the num-

ber of degrees of freedom to select the right tests, and trajectories of energies, volume and pres-

sure to perform the validation. The notable exception is the equipartition calculation, which

in general needs full position and velocity trajectories to calculate kinetic energies of subsam-

ples of the system, as well as information on the connectivity to distinguish single molecules.
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To make the use of the validation suite as easy as possible, we have developed offering pars-

ers generating SimulationDataobjects directly from the output file of simulation runs

for a number of widely-used MM packages. Currently, parsers are available for GROMACS,

LAMMPS, HOOMD, and GROMOS. For these packages, the creation of SimulationData
representations reduces to a few Python instructions at most.

For simulation packages not supported to date, we offer the possibility to create Simula-
tionData objects either from simple ASCII files, or from Python data structures. In both

cases, information about units, the sampled ensemble and the system need to be provided by

filling respective data structures by hand, as they cannot be read from simulation files directly.

The observable, position and velocity trajectories can then be added by either reading in one-

and three-dimensional “flat files” extracted from result files of MM programs, or by supplying

Python data structures such as lists or numpy arrays obtained from the Python API of a simu-

lation code or from other Python-based analysis tools.

Section A in S4 Text lists code snippets containing example usages of the different parsers.

Result validation

Given one or multiple uniform SimulationDataobjects, running the validation tests pre-

sented in this work requires just a few function calls. Section B in S4 Text lists examples for val-

idation of ensemble and integrator validation. The level of detail of the output of all tests can

be tuned with the verbosity argument. Additionally, most tests can be visualized using

the screen and the filename arguments, printing plots to screen and to file, respectively.

Most tests also allow tuning the sensitivity by choosing a tolerance. The official documentation

[35] contains references for all options and additional examples.

Usage of the validation suite as a code validation tool

The tests presented in this work lay the groundwork for frameworks to test simulation codes

for physical validity. Testing is an integral part of software development best practices. As

physical and mathematical assumptions are fundamental to molecular simulation software,

testing for their validity is a natural acceptance test.

Starting with version 2018, every major GROMACS releases is required to pass a set of

physical validation tests covering important code paths. It is, to our knowledge, the first major

molecular mechanics software package to run such validation routinely. The new physical vali-

dation tests thereby complement the established unit and regression tests.

The new tests aim at covering the most common code path and are built up in a hierarchical

way. First, the available integrators are validated using the integrator tests on a system of

mono-atomic Lennard-Jones (LJ) particles. These tests are then repeated on a system of TIP3P

water molecules to involve electrostatic interactions and different bond treatments: con-

strained via LINCS or SETTLE, or using harmonic potentials. Further, the velocity-rescale and

the Nosé-Hoover temperature control, and the Parrinello-Rahman and the MTTK pressure

control are validated on the same systems using the presented ensemble tests for the kinetic

and the configurational quantities. The tests are performed both in single and in double

precision.

Illustrative examples

Discontinuities in potential and forces

Using a Lennard-Jones (LJ) system, we demonstrate the ability of the integrator convergence

test to detect discontinuities in the potential or the forces of a MD simulation. Such imprecisions
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in the interaction potential can arise from code errors or the choice of inappropriate parameters.

To mimic these imprecisions, the LJ particles were simulated with three choices of interaction

cutoff handling. Scheme “simple” cuts off the interaction at a defined cutoff radius, leading to

discontinuities in both the potential and the forces. Scheme “shift” shifts the potential by a con-

stant in order to ensure that the potential reaches zero at the interaction cutoff boundary, but

leaves the forces unchanged. Scheme “switch” gradually switches the forces (and hence the

potential) to zero in a buffer region close to the cutoff radius, ensuring both smooth forces

and potential. The left and central panels in Fig 2 illustrate the potential and the forces for all

schemes.

The simulations were performed using GROMACS 2016.4 compiled in double precision.

The integrator test is naturally also valid in single precision. Notably, the GROMACS validation

suite described earlier tests both the single and the double precision versions. The system con-

sisted of 1000 LJ particles using Argon parameters by White [36] (σ = 0.3345 nm, � = 1.045 128

kJ mol−1) in a cubic periodic box of length 3.6039 nm corresponding to a reduced density ρ� =

0.8. The LJ interactions were cut off at 1 nm, using either no modification of the interactions

(scheme “simple”), using a potential shift (scheme “shift”) or switching the forces between 0.8

nm and 1 nm (scheme “switch”). The pairlist was calculated using the Verlet buffer scheme

[37], with a tolerance of 10−10 kJ mol−1. We chose this unusually low tolerance in order to avoid

any influence of the pairlisting algorithm on the simulation results. The initial box was created

by randomly placing the particles in the computational box and randomly assigning velocities

from a Maxwell-Boltzmann distribution at 125.707 K (reduced temperature T� = 1.0). The sys-

tem was then minimized and equilibrated for 1 ns under NVE conditions. The final configura-

tion of this equilibration run was then used to start the production simulations.

The production simulations consisted of 4 ps runs performed using six different timestep

sizes (4 fs, 2 fs, 1 fs, ½ fs, ¼ fs, ⅛ fs). For each simulation, the total energy was saved every 4 fs.

The root-mean-squared deviations (RMSD) of the total energy around its average value was

then calculated and compared to the value obtained at half the timestep size. As detailed in

earlier, the RMSD of a constant of motion is expected to be directly proportional to the square

of the timestep. Consequently, when comparing a simulation to another (otherwise identical)

Fig 2. Integrator convergence test. The integrator convergence test picks up discontinuities in the forces or the potential energy. The data is reported numerically in

Table A in S3 Text. Comparison of potential (left panel), force (central panel) and results from the integrator convergence test (right panel) for three different choices

of cutoff schemes, with cutoff at 1 nm. The potential shows a discontinuity at the cutoff distance for the “simple” scheme (blue line), while the “shift” scheme (orange

line) and the “switch” scheme (green line) are continuous. The forces, on the other hand, are only continuous in the “switch” scheme, while the other two schemes are

discontinuous at the cutoff distance. The results of testing these three schemes with the integrator convergence validation presented earlier are depicted in the right

panel, along with a horizontal dashed black line indicating the expected behavior. The “simple” scheme has no noticeable dependence of the fluctuations on the time

step. The “shift” scheme is closer to the expected behavior at high timesteps, but loses the expected dependence for smaller timesteps. The “switch” scheme, finally,

exhibits the expected convergence of the RMSD for all tested timestep sizes.

https://doi.org/10.1371/journal.pone.0202764.g002
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simulation performed at half the timestep size, we expect the RMSD to decrease by a factor

of 4.

We observed clear differences between the different cutoff schemes, and only the “switch”

schemes passing the integrator test. The results are depicted in the right panel of Fig 2 and

listed in Table A in S3 Text. The “simple” scheme does not display any dependence of the

fluctuations on the timestep size, while the “shift” scheme starts deviating from the expected

convergence at a timestep of ¼ fs. The error due to the cutoff treatment is of the order of

magnitude of the RMSD at which the convergence starts failing. The “switch” scheme, on

the other hand, shows little deviations from the expected convergence down to the lowest

employed timestep of ⅛ fs.

The energy drift does not have a significant effect on these results. For the presented results,

the fluctuations around the average energy measured over 4 ps were in all cases larger than

the total drift over the 4 ps simulation by at least a factor of 103 The influence of the long-term

drift on the fluctuations in the short simulations can hence be assumed to be negligible. All

drifts are listed in Table B in S3 Text.

Validating temperature and pressure control algorithms

The combined ensemble validation tests for the kinetic energy and the configurational quanti-

ties allow validation of temperature and pressure control algorithms. We illustrate this on a

simple water system simulated both under isochoric and isobaric boundary conditions. In

both cases, the temperature was controlled using weak-coupling [38] (WC) or velocity-rescale

[39] (VR) algorithm. For the isobaric simulations, these temperature-control algorithms were

complemented by a weak-coupling or a Parrinello-Rahman [40] (PR) pressure control algo-

rithm, respectively.

The simulations were performed using GROMACS 2018 compiled in double precision.

The system consisted of 900 TIP3P water [41] molecules in a cubic box. The water molecules

were kept rigid using the SETTLE [42] algorithm. The isochoric simulations were performed

at a density of 986 kg m−3 and temperatures of 300 K and 308 K. The isobaric simulations were

performed at four temperature / pressure points, 300 K / 1 bar, 308 K / 1 bar, 300 K / 301 bar,

and 308 K / 301 bar. The pairwise interactions were cut off at 1 nm, with PME at 0.12 nm

mesh size handling long-range interactions for both electrostatic and LJ interactions. The pair-

list was calculated using the Verlet buffer scheme with a tolerance of 10−10 kJ mol−1. The initial

box was created by randomly placing the water molecules in the computational box, minimiz-

ing the configuration, and randomly assigning velocities from a Maxwell-Boltzmann distribu-

tion at 300 K. The system was then equilibrated for 1 ns under NVE conditions, before

running the integration validation test to exclude errors from other sources influencing the

ensemble sampling. The simulations at the different state points were then equilibrated for 5

ns, before sampling for 15 ns using a timestep of 1fs and saving the energies every 1 ps. The

sampled energies were then tested for equilibration and statistically decorrelated before further

analysis. The coupling times for the temperature and pressure control algorithms were 0.1 ps

(WC temperature), 1 ps (WC pressure), 0.1 ps (VR), and 2 ps (PR).

We found that the different coupling schemes sample different kinetic energy ensembles.

For all state points simulated, the p-value obtained from the K-S test under the null hypothesis

that the kinetic energy is distributed according to Eq 10 is listed in Table 1. The trajectories

obtained using the WC algorithm have a p-value smaller than 10−82 in all cases, making it sta-

tistically extremely unlikely that the expected ensemble was sampled. This is in agreement with

the theoretical expectation that the WC algorithm does not sample a canonical distribution

[13]. The results obtained with the VR/PR algorithms, on the other hand, have p-values above
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0.23 in all cases, suggesting one should accept the null hypothesis that the kinetic energies are

sampled from the expected distribution. The left panel of Fig 3 (numerical values in Table C in

S3 Text) shows the temperature equivalent of the mean and variance as defined in Eq 12 for

the simulations at 300 K. While both the WC and the VR algorithms keep the mean tempera-

ture close to 300 K, only the VR algorithm samples the expected width. The variance sampled

with the WC thermostat is equal to the expected width around 220 K, and hence significantly

too narrow.

Only using the VR/PR algorithms produced configurational quantities (potential energy,

volume, enthalpy) that sampled the desired ensemble. Using Eqs 16–18, the difference in tar-

get temperature and / or pressure was calculated from the maximum-likelihood slope esti-

mates. The uncertainty of this estimate was obtained by bootstrapping the original trajectory

200 times. Fig 3 (numerical values in Table D in S3 Text) shows the results of this ensemble

checking for the different coupling schemes. The simulations controlled by the WC algo-

rithms show a temperature- and pressure-dependency which varies significantly from the

expected dependency. While the true temperature difference between the simulations was

8 K, the estimates based on the WC simulations range from 12.3 K to 16.6 K, 20.3 to 34.6

Table 1. Strict kinetic energy test. Only the VR algorithm samples the expected kinetic energy distribution. This table lists the p-values of the kinetic energy validation. All

results are from a water system of 900 TIP3P molecules. The temperature was controlled using either the weak-coupling (WC) or the velocity-rescale (VR) algorithm, com-

plemented in the NPT case by a weak-coupling and a Parrinello-Rahman (PR) pressure-control algorithm, respectively. For all state points, the null hypothesis that the sim-

ulations controlled by the WC algorithms sampled the expected kinetic energy distribution can easily be rejected. For the simulations controlled by the VR/PR algorithms,

however, the p-values indicate a high similarity between the sampled and the expected distribution.

NVT NPT

300 K 308 K 300 K 308 K 300 K 308 K

1 bar 1 bar 301 bar 301 bar

WC 1.55 × 10−88 1.08 × 10−90 1.49 × 10−93 1.91 × 10−89 8.41 × 10−83 2.73 × 10−86

VR 0.29 0.88 0.90 0.86 0.23 0.30

https://doi.org/10.1371/journal.pone.0202764.t001

Fig 3. Kinetic energy and ensemble test. The coupling algorithms sample significantly different energy distributions. The data is reported numerically in Tables C

and D in S3 Text. All results are from a water system of 900 TIP3P molecules. The temperature and pressure were controlled either using the VR algorithm in

combination with a PR barostat (blue bars), or using the WC algorithm (orange bars). The left plot depicts the results of the non-strict kinetic energy test for

simulations at 300 K. The distributions sampled by both algorithms are found to have the correct average temperature. The VR distribution also has the correct width,

while the WC algorithms samples a distribution which is significantly too narrow in all cases. The right plot shows the intervals estimated by the ensemble check. The

estimated temperature intervals for the VR algorithm lie all within 1.5 standard errors of the analytical value of 8 K (indicated by a dashed line). The WC algorithm, on

the other hand, is estimated to have a temperature difference of 12.3 to 16.6 K, 11.4 to 34.6 standard errors from the true value. The pressure difference shows similar

results. The true interval is 300 bar for the 1d-estimate, and 296.1 bar for the 2d-estimate. The VR estimates lie within 2.5 and 1.7 standard errors from the true value,

respectively, while the WC estimates are found to be more than 20 standard errors from the true value.

https://doi.org/10.1371/journal.pone.0202764.g003
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standard errors from the true value. The pressure-dependence does not yield better results,

with estimates being up to 46 standard deviations away from the true value. On the other

hand, the true temperature interval can be found within the standard deviation of the esti-

mates obtained from the VR/PR simulations in all cases. The pressure estimates were found

to be around 2 standard deviations from the true value, indicating roughly satisfactory agree-

ment with the expected ensemble.

Validating equipartition

Validating the equipartition allows detection of unsuitable simulation setups significantly

affecting physical observables. This is illustrated by calculating the heat of vaporization ΔHvap

of a set of eight linear alcohols with increasing chain length (methanol to octanol) using the

2016H66 parameter set [43]. See the first 8 rows of Table 1 in Ref. [43] for details on the test

set.

Calculating ΔHvap requires two simulations of the model, one in condensed phase and one

in gas phase.ΔHvap is calculated as the difference between the average energy in the gas and the

liquid phase increased by RT,

DHvap ¼ hUigas � hUiliq þ RT : ð23Þ

Different simulation setups to calculate the gas phase estimate were previously reported in

the literature. Here, we compare three methods: (i)Using stochastic dynamics (SD) implemen-

tation of the Langevin equations of motion [44, 45], as in Ref. [43], (ii) using MD and a WC

thermostat as in Refs. [46, 47], and (iii) using MD and a VR thermostat.

Most settings were identical for all simulations, adapting the GROMOS protocol in

Ref. [43] to fit the GROMACS 2018 standards. The pairlist was calculated using the Verlet

buffer scheme with a tolerance of 5 × 10−3 kJ mol−1 and a pairwise interaction cut-off radius

of 1 nm. For the liquid simulations, PME at 0.12 nm mesh size was used to handle long-range

effects for both electrostatic and LJ interactions. For the gas-phase simulations, a straight cut-

off with potential-shift was used for both electrostatic and LJ interactions. All simulations used

a timestep of 2 fs.

All simulations were initialized by randomly placing 512 molecules in cubic boxes of appro-

priate size for the experimental density (see Ref. [43], Table 1) and performing energy minimi-

zation on the obtained system. The following equilibration and liquid phase production runs

were performed under NPT conditions at 298.15 K and 1 bar. The temperature was controlled

using the v-rescale algorithm, while the pressure was controlled with a Parrinello-Rahman

barostat. The minimized configurations were equilibrated for 1 ns. The liquid phase were then

simulated for 2 ns, saving the energies every 2 ps for further analysis.

Starting from the equilibrated configuration, the gas phase was simulated by turning off all

inter-molecular interactions, mimicking an ideal gas. The pressure control was turned off,

keeping the volume constant. The temperature was, as mentioned above, controlled by either

controlling the temperature in MD using the VR or the WC thermostat, or by integrating the

SD equations of motion.

The gas-phase setup significantly influences the estimate of the heat of vaporization. As can

be seen in the left panel of Fig 4, the three schemes yield different ΔHvap estimates. Compared

to SD, the WC estimates are systematically lower, and the difference between the estimates is

around three standard errors for the longer alcohols with four or more carbon atoms in the

alkyl chain. VR, on the other hand, yields estimates which are systematically higher than the

SD estimates. The difference between the two estimates is around one standard error in all

cases. Please refer to Table E(a) in S3 Text for the numerical ΔHvap estimates.
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The difference in ΔHvap estimates is due to violation of equipartition in the MD schemes. Fig

4 plots the average internal temperature of the three gas-phase schemes. Please refer to Table E

(b) in S3 Text for the full numerical details on the total, translational, rotational and internal

temperatures averaged over the simulation runs for all three gas-phase schemes and the liquid

simulation. Unsurprisingly, the average total temperature is 298 K in all cases. The liquid simu-

lations show a slightly reduced rotational temperature, which is compensated by a slightly ele-

vated internal temperature. The SD gas-phase simulations follow this trend. The WC gas-phase

simulations display increased translational (in all cases but methanol) and rotational tempera-

tures, and reduced temperatures for the internal degrees of freedom. The VR scheme, on the

other hand, exhibits reduced translational and rotational (in all cases but methanol), but

increased internal temperatures. This analysis shows that the SD scheme is the only gas-phase

scheme preserving equipartition to a similar extent as the liquid simulations, and should hence

be preferred for the calculation of gas-phase estimates. (Note that while the gas-phase estimates

in Refs. [46, 47] were produced using an MD scheme potentially violating equipartition, corre-

spondence with the respective authors revealed that they drew new velocities from a Maxwell

distribution every 50ps. This led to estimates that show no significant deviation from SD results,

and hence did not negatively influence the quality of the published force field parameters).

The choice of kinetic energy estimator does not significantly influence these conclusions, as

the deviations due to the decoupling of the degrees of freedom in the gas phase simulations is

larger than the influence of the finite timestep on the temperature estimate. To document this,

we have have recalculated the equipartition for one molecule using robust temperature estima-

tors proposed by Eastwood et al. [27]. The results are listed in Table F in S3 Text and show that

the difference in equipartition due to the choice of temperature estimator is negligible com-

pared to the deviations due to the choice of thermostat.

Validating coupling schemes

Equipartition tests make it possible to determine the appropriate coupling scheme for a given

calculation. When determining how to couple a system to an external bath, the main criterion

Fig 4. Equipartition of ΔHvap estimates. Systematic differences between ΔHvap estimates from different gas-phase setups for a range of linear alcohols from methanol

to octanol are due to violation of equipartition. The data is reported numerically in Table E in S3 Text. The compound abbreviations are listed in Table E in S3 Text

and in Ref. [43]. The left plot depicts the differences between two MD protocols using the VR and the WC thermostats, respectively, to the SD protocol. Compared to

the SD setup, the WC setup is found to yield estimates that are consistently too low, while the VR setup yields estimates that are too high. The deviation between the

WC setup and the SD setup lies outside the sum of the standard errors for the compounds with alkyl chains of three or more carbon atoms. The deviation between the

VR and SD setup lies within the sum of the standard errors. The right plot depicts the internal temperatures averaged over the simulation runs for all three gas-phase

setups, as well as for the liquid setup. The total temperature is kept at 298K in all cases. The internal temperatures of the SD setup are very close to the target value and

virtually indistinguishable from the liquid simulations. The VR results show a significantly increased internal temperature, while the WC results show significantly too

cold internal temperatures.

https://doi.org/10.1371/journal.pone.0202764.g004
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must be a correct physical description. As an example, we apply different coupling schemes to

a Trp-cage mini-protein solvated in water. We used three different temperature-control algo-

rithms, the VR and the WC algorithms used previously, and the Nose-Hoover thermostat [13,

48] (denoted NH), all using a coupling time τT = 0.1 ps. All thermostats were applied in three

different ways: coupling the entire system to a single heat bath (subscript 1), coupling the solute

and the solvent separately (subscript 2), and coupling only the solvent to a bath (subscript s),

yielding 9 different coupling schemes.

The simulations were performed with GROMACS 2016.3. The Trp-cage parameters were

taken from the OPLS [49, 50] forcefield. The Trp-cage configuration was minimized and

solvated in 5228 TIP3P water molecules. One chloride ion was added to neutralize the total

charge of the solute. The pairlist was generated using the Verlet algorithm with a tolerance

of 0.005 kJ mol−1. The pairwise interactions were cut off at 1 nm, using PME to approximate

their long-range effects. The equations of motion were integrated using the leap-frog algo-

rithm with a timestep of 2 fs. All bonds were constrained using the LINCS [51, 52] algo-

rithm. The pressure was kept around 1 bar using the Parrinello-Rahman barostat. The

thermostats were used to keep the temperature around 300 K. For all schemes, the mini-

mized configuration was equilibrated for 1 ns, before a production run of 10 ns was started,

saving the energies, the atom coordinates and the atom velocities every 2 ps for further

analysis.

Examining the temperature of the solute degrees of freedom, we find clear differences

between the coupling schemes. The system used here has about 500 times more solvent atoms

than solute atoms. The kinetic energy of the system will hence be dominated by the solvent.

For typical applications, however, the distribution of the solute is far more important than the

one of the solvent. This energy distribution should therefore be checked to evaluate validity of

different system setups. In typical MD codes, the center of mass is usually artificially removed,

as with periodic boundary conditions, this degree of freedom is nonphysical. Although in prin-

ciple this should remain zero in a constant energy simulation due to conservation of momen-

tum, any source of numerical error, including roundoff error, will create motion around the

center of mass, and any variation of Langevin dynamics will also introduce center of mass

motion. This center of mass removal will therefore also remove three degrees of freedom from

the system. When analyzing only a part of the system, there is however no guarantee that the

center of mass of the subsystem is exactly zero. This includes the case presented here, in which

we are looking at a single solute molecule. Additionally, as described in earlier, the kinetic

energy distribution of the internal degrees of freedom is required to ensuring correct system

properties. We will therefore focus on the internal kinetic energy for the subsystems for the

remainder of this discussion. Fig 5 shows the mean and the width of the distribution of the

internal temperature of the solute. The values are given in terms of temperatures T(μ) and

T(σ), as described in Eq 12. The numerical values are listed in Table G in S3 Text, along with

the total temperature of the solute. As can be verified there, the internal and the total tempera-

ture do not differ significantly in this case.

When using a single thermostat coupling the entire system, the protein shows the correct

kinetic energy distribution in all cases. It is especially noteworthy that the WC1 algorithm,

albeit sampling the wrong kinetic energy distribution on a full system, shows the correct

behavior properties when looking at the solute only. This is in agreement with previous find-

ings [53].

Using two thermostats, the different algorithms all keep the mean temperature close to the

target value, but show significant differences in the width of the sampled distribution. The

NH2 thermostat samples a slightly too wide distribution, equal to the width expected at a

temperature of about 321 K. On the other hand, the WC2 algorithm shows a too narrow
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distribution as observed earlier, having a width as expected for a temperature of about 237 K.

The distribution generated by the VR2 scheme shows the correct width.

Coupling only the solute, slight deviations in the width of the sampled distributions can

be observed. All schemes keep the average temperature of the solute close to the target value

through energy exchange. The width of the distribution sampled by the NHs scheme is slightly

too high (corresponding to about 304 K), while the WCs and VRs schemes sample slightly to

small variances (corresponding to about 294 K and 296 K, respectively. These deviations have,

however, low statistical significance, as they are below 2 standard errors from the true value in

all cases.

Conclusions

In this paper, we have reviewed a number of important physical laws that valid molecular simu-

lations must satisfy, and demonstrated how these physical laws can be checked using a number

of simple tests, as well as presented an easy-to-use physical validation software suite to assess

molecular simulation correctness and improve simulation reproducibility. The increasing ver-

satility of simulation programs and the availability of APIs makes it very difficult for developers

to test all possible combinations of parameters and simulation conditions. Additionally, even a

bug-free program does not guarantee that the physical validity is maintained under all condi-

tions. The wide availability of high-performance computing resources attracts many users with

very different backgrounds to the field of molecular simulations. It is paramount that reliable

simulation results can be obtained without years of experience in molecular simulation. The

tests and software suite we present implementing these tests can help solve both problems.

We have shown how checking the timestep dependence of energy conservation can detect

even subtle inaccuracies in the simulation protocol. A deviation from the mathematically

expected quadratic dependence of the energy fluctuations on the timestep is a sensitive test for

Fig 5. Validation of temperature coupling schemes for Trp-cage. The width of the kinetic energy distributions

sampled by the different schemes differ significantly when the solute is coupled to a separate thermostat. The data is

reported numerically in Table G in S3 Text. This plot lists the temperature equivalent (see Eq 12) of the mean and the

variance of the internal temperature of the Trp-cage peptide for nine different thermostat coupling schemes. All

coupling schemes keep the average temperature close to its target value of 300K. When using a single thermostat to

couple the entire system, the width of the distribution is very close to the expected value for all thermostats. When

coupling the solute to a separate thermostat, the VR algorithm samples the expected distribution. The WC algorithm is

found to sample a distribution which is clearly too narrow, while the NH thermostat samples a slightly too wide

distribution. When coupling only the solvent to a heat bath, small deviations of low statistical significance can be

observed in all cases.

https://doi.org/10.1371/journal.pone.0202764.g005
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the health of a simulation setup. It is hence a powerful test to ensure that correctness is main-

tained when altering the program code. We have shown how this approach can detecting sub-

tle differences in consistency with Newton’s equations of motion caused by different cutoff

schemes for Lennard-Jones interactions.

We have also shown how testing the distribution of the kinetic energy allows to ensure that

the expected ensemble is sampled. The kinetic energy distribution is analytically known, and

can hence be checked using standard statistical methods. This results in a very sensitive test of

the validity of temperature control algorithms and the associated simulation setup. We used

this test to reproduce the well-known result that weak-coupling thermostat does not yield the

expected statistical mechanical distribution, while the addition of a stochastic term in the v-

rescale algorithm allows to remedy this short-coming. For many real-world applications, it is

sufficient and more intuitive to ensure that the kinetic energy has the proper average value and

distribution width. We have presented a less strict test relating these values to temperatures.

Using this test, we have compared the results of simulations of a mini-protein in water using

different temperature coupling schemes. We showed that the kinetic energy distribution of the

solute is nearly indistinguishable when using different thermostats, including the weak-cou-

pling algorithm, when coupling the entire system to a single thermostat.

Not only the kinetic energy of the entire system but the kinetic energy of the components of

the systems must satisfy a well-prescribed distribution. We have demonstrated how to divide

the kinetic energy in translational, rotational and internal components. We have then used

this division to explain why gas-phase estimates obtained using different temperature-control-

ling algorithms deviate significantly from each others.

While the distribution of other ensemble quantities are not known analytically in general,

the difference of their distributions at different state points can be used to check the sampled

ensemble. Using these tests, we have demonstrated that the thermostats not only sample differ-

ent kinetic energy distributions, but also significantly alter the distribution of the potential

energy and the volume.

We have developed a Python package that implements the tests for testing a simulation

run’s physical validity. This package is open-source and platform-independent. It supports a

number of simulation packages natively (GROMACS, LAMMPS, HOOMD, GROMOS), and

allows to use results obtained from other sources either via text files or Python data structures.

We will continue to maintain this package in the near future, adding more tests and support

for additional simulation packages.

Lastly, we have implemented these physical validity checks in the software testing routines

of GROMACS. Since GROMACS 2018, every major release is required to pass a set of physical

validation tests, adding additional coverage to the already existing unit and regression tests.
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