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Abstract

Turoctocog alfa (NovoEight�) is a recombinant factor VIII (rFVIII) with a truncated B-domain made from the

sequence coding for 10 amino acids from the N-terminus and 11 amino acids from the C-terminus of the

naturally occurring B-domain. Turoctocog alfa is produced in Chinese hamster ovary (CHO) cells without

addition of any human- or animal-derived materials. During secretion, some rFVIII molecules are cleaved at

the C-terminal of the heavy chain (HC) at amino acid 720, and a monoclonal antibody binding C-terminal to

this position is used in the purification process allowing isolation of the intact rFVIII. Viral inactivation is

ensured by a detergent inactivation step as well as a 20-nm nano-filtration step. Characterisation of the

purified protein demonstrated that turoctocog alfa was fully sulphated at Tyr346 and Tyr1664, which is

required for optimal proteolytic activation by thrombin. Kinetic assessments confirmed that turoctocog alfa

was activated by thrombin at a similar rate as seen for other rFVIII products fully sulphated at these

positions. Tyr1680 was also fully sulphated in turoctocog alfa resulting in strong affinity (low nM Kd) for

binding to von Willebrand factor (VWF). Half-lives of 7.2 � 0.9 h in F8-KO mice and 8.9 � 1.8 h

haemophilia A dogs supported that turoctocog alfa bound to VWF after infusion. Functional studies

including thromboelastography analysis of human haemophilia A whole blood with added turoctocog alfa

and effect studies in mice bleeding models demonstrated a dose-dependent effect of turoctocog alfa. The

non-clinical data thus confirm the haemostatic effect of turoctocog alfa and, together with the

comprehensive clinical evaluation, support the use as FVIII replacement therapy in patients with

haemophilia A.

Key words haemophilia A; N8; rFVIII; recombinant factor VIII; turoctocog alfa

Correspondence Mirella Ezban, Novo Nordisk A/S, Novo Nordisk Park, 2760 Maaloev, Denmark. Tel: +4530790477;

e-mail: mie@novonordisk.com

Accepted for publication 31 March 2014 doi:10.1111/ejh.12366

The human gene for factor VIII (FVIII) was cloned and
expressed in 1984 (1–5), making it possible to produce
recombinant FVIII (rFVIII) for prevention and treatment of
bleeds in patients with haemophilia A. The FVIII gene
encodes a single chain of 2332 amino acid residues with the
domain structure A1-A2-B-A3-C1-C2 (Fig. 1) (1). During
cellular processing, the molecule undergoes posttranslational
modifications, including sulphation of specific tyrosine resi-
dues and glycosylation. Furthermore, the protein is pro-
cessed into a heterodimer consisting of a heavy chain (HC)
with the A1-A2-B domains and a light chain (LC) with the
A3-C1-C2 domains. The two chains are held together by

metal ions (6). While the B-domain plays a role in restrict-
ing the expression of endogenous FVIII, it is apparently not
needed for the function of FVIII (7–9). Acidic regions C-
terminal to the A1 and the A2 domains and N-terminal to
the A3 domain (a1, a2 and a3, respectively) are important for
interaction with thrombin and von Willebrand factor (VWF).
Sulphation of Tyr1680 is essential for high affinity binding
of FVIII to VWF (10,11), which is required for protection
of FVIII from degradation and rapid clearance. During hae-
mostasis, FVIII is activated by specific thrombin cleavages,
thereby producing the A1, A2 and A3-C1-C2 fragments of
activated FVIII (FVIIIa). This results in dissociation of
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VWF and assembly of the tenase complex (FVIIIa/FIXa) on
the surface of activated platelets. FXa is generated, resulting
in a thrombin burst, and ultimately leading to the formation
of a stable haemostatic plug.

The design of turoctocog alfa

Turoctocog alfa (NovoEight�) is a new rFVIII molecule
with a truncated B-domain (Fig. 1). The molecule consists
of a heavy chain containing the A1-A2 domains, a truncated
B-domain coding for 21 amino acids of the naturally occur-
ring B-domain (amino acid 741–750 fused with 1638–1648)
and the light chain (A3-C1-C2 domains). While the B-
domain is dispensable for procoagulant activity of FVIII (8),
cellular expression and secretion is regulated by the B-
domain (12). The truncated B-domain was selected to
achieve a well-defined product when produced in Chinese
hamster ovary (CHO) cells, thereby providing a solid basis
for establishing a robust purification process. In addition, an
O-glycosylation site is present in the B-domain allowing for
future glyco-engineering (13,14). Upon thrombin activation,
the truncated B-domain is removed resulting in rFVIIIa with
a structure similar to endogenous FVIIIa (13,15).
Although the truncated B-domain is derived from the N-

and C-terminal sequences of the B-domain from the native
full-length FVIII molecule, the junction between these
sequences is engineered and might therefore in theory pose
an immunological risk. In silico methods, based on in vitro
affinity of peptides towards major histocompatibility com-
plex (MHC) class II molecules, are used to evaluate poten-
tial risks of immunogenicity of non-native sequences.

Kimchi-Sarfaty et al. (16) used this method to compare the
predicted immunogenicity of turoctocog alfa with that of a
B-domain deleted rFVIII product [ReFacto AF�, Swedish
Orphan Biovitrum AB (publ), Stockholm, Sweden]. While
the junction between the N- and C-terminal parts of the B-
domain is the same for the two proteins, the N-terminal part
of the B-domain for the comparator molecule comprises only
three amino acids in contrast to 10 in turoctocog alfa,
thereby creating a different immunological environment. The
in silico analysis predicted that the B-domain of turoctocog
alfa bound to fewer MHC class II molecules and with lower
affinity than the comparator FVIII product (16), suggesting
that the B-domain of turoctocog alfa is not associated with
an additional risk of inducing an immune response. As the
predictive value of in silico methods is not established, clini-
cal data are required to assess the immunogenicity of turoc-
tocog alfa. No inhibitors were observed in the pivotal
clinical development programme for turoctocog alfa, which
included 213 previously treated patients with severe haemo-
philia A (17,18).

Manufacturing of turoctocog alfa

Turoctocog alfa is produced in CHO cells grown in serum-
free conditions and formulated without animal- or human-
derived materials. The CHO cell is a well-known production
cell line, which has been used to produce therapeutic proteins
within many different therapeutic fields (19). The FVIII
molecule is intracellularly processed by furin, resulting in
cleavage between the B-domain and the LC (Fig. 1). The
purification process (Fig. 2) includes the following steps:
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Figure 1 Molecular structure of full-length FVIII and turoctocog alfa. The upper part of the figure illustrates full-length FVIII coding for 2332 amino

acid residues. The middle part of the figure shows the structure of turoctocog alfa. The molecule consists of the heavy chain containing the A1-

A2 domains, a truncated B-domain coding for 21 amino acids of the naturally occurring B-domain (amino acid 741–750 fused with 1638–1648)

and the light chain (A3-C1-C2 domains). The lower part of the figure shows the sequence coding for the 21 amino acid residue truncated B-

domain (light blue), which represents 10 amino residues from the N-terminal of the B-domain linked to 11 amino acid residues from the C-termi-

nal of the B-domain. Cleavage sites, tyrosine sulphation sites and the epitope detected by F25 during purification are indicated in this region (13).

Reproduced from Thim et al. (13) with permission from John Wiley and Sons.

370 © 2014 The Authors. European Journal of Haematology Published by John Wiley & Sons Ltd.

Turoctocog alfa (NovoEight�) Ezban et al.



concentration (using hydrophobic interaction/cation
exchange), anti-rFVIII immunoaffinity chromatography
(using a recombinant monoclonal antibody), anion exchange
chromatography, and size exclusion (13). Viral inactivation is
ensured by detergent treatment (included in the initial purifi-
cation step) and a 20-nm filtration step prior to the size exclu-
sion step.
During secretion, some rFVIII molecules are cleaved in the

A2 domain leaving part of the FVIII molecules with a heavy
chain with C-terminus at amino acid 720 or 729 (20,21). As
the C-terminal end of the A2 domain (amino acids 720–740)
contains residues required for optimal interaction with throm-
bin (22), the purification process for turoctocog alfa was
optimised in order to secure isolation of molecules with intact
A2 domain. This was obtained by selecting an antibody (F25)
for immunoaffinity chromatography that binds selectively to
molecules with intact A2 domain. The antibody binds to the
C-terminus of the A2 domain (Fig. 1), enabling removal of
FVIII degraded within the A2 domain (13). The gene encod-
ing the antibody was transferred to CHO cells for production
and therefore no additional murine antigens or host cell pro-
teins are introduced (23). The removal of degraded heavy
chain is clearly seen by SDS–PAGE analysis after thrombin
cleavage, where more than one band represents the A2
domain for ReFacto AF� (Fig. 3, lane 8). For turoctocog alfa
(Fig. 3, lane 2) or rFVIII derived from the full-length genes

(Fig. 3, lanes 4 and 6), no C-terminal degradation in the A2
domain was observed.
The SDS-PAGE analysis also shows that the rFVIII pro-

teins produced by the full-length gene, due to multiple
cleavage sites within the B-domain, are a heterogeneous
mixture of heavy chains with different lengths of the B-
domain included (Fig. 3, lanes 3 and 5). For Advate� (lane
3), one of these bands contains both B-domain sequences
and LC sequences, suggesting incomplete processing
between the B-domain and the LC (13,24–26). For turocto-
cog alfa and ReFacto AF�, no such heterogeneity of HC
chain fragments was observed and mainly one band at
90 kDa and a minor band representing the single chain pro-
tein were detected (lanes 1 and 7). The single chain (repre-
senting approximately 3–4% in turoctocog alfa (13)) can be
converted into the A1 and A2 domains after thrombin cleav-
age (lane 2 and 8). The SDS-PAGE analysis also illustrates
that the purification process for turoctocog alfa results in a
homogeneous rFVIII product, which after thrombin cleavage
is identical to native FVIIIa.

Structural characterisation of turoctocog alfa

The purity and homogeneity of turoctocog alfa allowed crys-
tallisation of the protein. The resulting X-ray crystallo-
graphic structure of turoctocog alfa (Fig. 4) confirms that the
protein has a structure similar to those previously reported
for other rFVIII molecules (27,28). The X-ray fluorescence
wavelength scan of the turoctocog alfa crystals identified
two significant peaks, indicating copper (Cu+) and zinc
(Zn2+), respectively (29). The presence of both copper and
zinc was supported by colorimetric data, indicating that the
ion-binding site in the A1 domain is predominantly popu-
lated by zinc, while that in the A3 domain is predominantly
populated by copper (29).

Posttranslational modifications

Known posttranslational modifications of plasma-derived
FVIII include N- and O-linked glycosylations (30). As for the
plasma-derived FVIII, turoctocog alfa contains four N-linked
glycosylations (Asn41 and Asn239 in the A1 domain,
Asn1810 in the A3 domain and Asn2118 in the C1 domain)
and one O-linked glycosylation (Ser750) in the B-domain
(13). Structure analyses have shown that the N-linked glyco-
sylation sites are fully glycosylated, while the degree of occu-
pancy of the O-linked glycan at Ser750 is approximately 65%.
The majority of the complex N-linked glycans at Asn41 in the
A1 domain and Asn1810 in A3 are di-sialylated core
fucosylated bi-antennary structures, while high mannose
glycans are present at Asn239 in A1 and Asn2118 in C1 (13).
Recombinant proteins derived from non-human cell lines

can contain detectable amount of non-human glycoforms
(31). As observed for Advate� (31), N-glycolyl neuraminic
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Figure 2 Purification of turoctocog alfa. From Thim et al. (13).
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acid is also detected in low amounts in turoctocog alfa on
di-sialylated core fucosylated bi-antennary structures (13).
Furthermore, the O-linked glycosylation at Ser750 contains a
doubly sialylated GalNAc-Gal structure, which has also been
described to be present in other rFVIII molecules (32). The
clinical relevance of these observations is unknown. In
agreement with the lack of capacity of producing the anti-
genic epitope in Gala(1,3)Gal structures in CHO cell lines
(33), these structures have not been detected in turoctocog
alfa (13).
An additional posttranslational modification of FVIII is

sulphation of specific tyrosines. A total of six tyrosine sulph-
ation sites (Tyr346 in a1, Tyr718, 719, 723 in a2 and
Tyr1664 and Tyr1680 in a3) have been described for
plasma-derived FVIII (30). The tyrosine sulphation in turoc-
tocog alfa was analysed, and Tyr346, Tyr1664 and Tyr1680
were found to be fully sulphated (Table 1) (34). The high
negative charge of the peptide containing Tyr718, Tyr719
and Tyr723 resulted in weak response in the mass spectrom-
etry analysis thereby preventing reliable quantification. How-
ever, only fully sulphated peptides containing Tyr718,
Tyr719 and Tyr723 were detected. Similar data were found
for a plasma-derived FVIII concentrate Octanate�, whereas
Tyr1680 was not fully sulphated in Advate� (34). The exis-
tence of a small amount (2.6-16.7%) of non-sulphated
Tyr1680 in Advate� was also observed in other studies
(31,35). In these studies, other rFVIII products (Kogenate
FS� and ReFacto AF�) also contained similar amounts of
non-sulphated Tyr1680, while FVIII produced in human

embryonic kidney (HEK) cells (31) or plasma-derived FVIII
(35) did not have detectable amounts of non-sulphated
Tyr1680 (Table 1). The full sulphation of Tyr1680 in turoc-
tocog alfa demonstrates that CHO cells are capable of
providing full tyrosine sulphation.
In agreement with the existence of a small amount of non-

sulphated Tyr1680 in Advate�, the affinity of turoctocog
alfa to immobilised VWF was slightly higher than observed
for Advate�, both when measured by ELISA and by surface
plasmon resonance (SPR) (Table 2) (15). However, for both
FVIII proteins, the Kd values are in the sub-nanomolar range
(15) and the excess VWF in the circulation (30–50 nM VWF
monomer) means that essentially all FVIII will be bound to
VWF after infusion. In agreement with this, comparable
pharmacokinetics of turoctocog alfa and Advate� were
observed in F8-knockout (F8-KO) mice (36), in haemophilia
A dogs (37) and in human clinical trials (38) (see below).

Functional characteristics – in vitro and in vivo

Sulphation of Tyr346 and Tyr1664 are required for optimal
interaction with thrombin (11). In line with the observed full
tyrosine sulphation at Tyr346 and Tyr1664 for both turocto-
cog alfa and Advate�, similar rates of activation by throm-
bin were observed for turoctocog alfa (13.5 � 6.7 9

10�3 per minute) and Advate� (10.6 � 3.5 9 10�3 per
minute) (15). The kinetic assessment furthermore revealed
similar affinity towards FIXa and similar Michaelis constants
(Km) of FX activation for turoctocog alfa and Advate�,
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Figure 3 SDS-PAGE of rFVIII molecules before and after thrombin cleavage. From Kristensen et al. (26).
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suggesting the same cofactor activity of the two FVIII com-
pounds. Inactivation of activated turoctocog alfa and Ad-
vate� by activated protein C (APC) was also similar for the
two products (15). In standard FVIII:C assays, such as one-
stage clotting assay and chromogenic assay, similar activities
were obtained showing in essence no assay discrepancies
(15). The specific activity was 9300 � 400 U/mg (mean and
SD of seven batches) (15). In addition, a field study using
spiked haemophilia A plasma samples mimicking post-
infusion samples showed that turoctocog alfa can be reliably
measured using routine FVIII:C assays in clinical laborato-
ries without use of a product-specific standard. The field
study also showed that the variability between Advate� and
turoctocog was similar across all the laboratories irrespec-
tively of the assay conditions used (39).
In additional functional studies, the thrombin generation

assay and thromboelastography (TEG�) were used to cha-
racterise the activity of turoctocog alfa in human blood or
plasma (15). In the thrombin generation assay, haemophilia
A was mimicked either by using severe haemophilia A
plasma and adding normal human platelets and lipidated tis-
sue factor (40), or by a reconstituted cell-based model (41)
where coagulation factors V, VIII, VIIa, IX, X XI, pro-
thrombin, tissue factor pathway inhibitor (TFPI) and anti-
thrombin were added to normal human platelets and
monocytes stimulated to express tissue factor. In both sys-
tems, a delayed and lowered thrombin generation was seen
when no FVIII was present, while addition of turoctocog
alfa improved the thrombin generation in a concentration-
dependent manner. When turoctocog alfa was added at 1 IU/
mL, the rate of thrombin generation in the plasma-based
model system was 3.7 � 0.8 nM/min similar to the value
obtained for Advate� (3.7 � 0.7 nM/min) (15). Thrombo-
elastography using whole blood from patients with haemo-
philia A showed as expected that the clot formation
time was delayed and the rate of clot formation decreased in
this population. Addition of turoctocog alfa resulted in a
dose-dependent improvement and normalisation of these
parameters.

Figure 4 Crystallographic structure of turoctocog alfa. The heavy

chain consists of the A1 (blue) and A2 (red) domain while the light

chain consists of the A3 (yellow), C1 (grey) and C1 (black) domains.

The three ions, calcium (green), copper (blue) and zink (red), observed

in the structure are shown as spheres. The structure is available at

protein database with the entry code 4bdv (http://www.rcsb.org/pdb/

explore/explore.do?structureId=4BDV) (29).

Table 1 Tyrosine sulphation in turoctocog alfa and other FVIII

products

Product Origin
Non-sulphated
Tyr1680 (%)

Turoctocog alfa CHO Below detection

limit (0.5%)

Octanate� Plasma-derived Below detection

limit (0.5%)

Advate� CHO 2.6–16.7

ReFacto AF� CHO 4.5–13.9

Kogenate FS� BHK 1.0–6.5

Human-cl rhFVIII HEK Below detection limit

From Nielsen et al. 2012 (34), Kannicht et al. 2013 (31) and Grancha

et al. 2011.(35).

CHO, Chinese hamster ovary; BHK, baby hamster kidney; HEK,

human embryonic kidney.

Table 2 VWF binding in turoctocog alfa and Advate�

VWF binding Turoctocog alfa Advate�

VWF binding (ELISA) Kd (nM) (n = 4)† 0.24 � 0.04* 0.48 � 0.13

VWF binding (SPR) (turoctocog alfa

n = 9, Advate� n = 2)1

Kd (nM) 0.23 � 0.13* 0.45 � 0.07

kon (9106/M/s) 4.5 � 2.1 1.2 � 0.6

koff (910�4/s) 9.3 � 4.7 5.5 � 1.9

From Christiansen et al. 2010 (15).

VWF, von Willebrand factor; SPR, surface plasmon resonance.

*Significantly different (P < 0.05) from the value obtained for Advate�

using one-tailed Student’s t-test.
†Values are mean and SD of the numbers of experiments indicated.
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The in vivo effect of turoctocog alfa was evaluated in
F8-KO mice. These mice do not have spontaneous bleeds,
but bleed significantly after injury. In a tail bleeding model
using a 4 mm tail cut, turoctocog alfa induced a dose-
dependent shortening of the bleeding time and a reduction
of the blood loss (36). The turoctocog alfa dose causing
50% reduction (ED50) of these parameters were 29 and
27 IU/kg, respectively (Fig. 5). These ED50 values were
not significantly different from the values obtained for
Advate� (39 and 28 IU/kg, respectively). At a sufficiently
high dose, both FVIII compounds normalised the bleeding
time and blood loss. Lower FVIII doses were required for
normalisation when more subtle injuries were made in the
mice. In a saphenous vein bleeding model, the ED50 of tur-
octocog alfa was 5.7 � 1.3 IU/kg (42), while an ED50 of
1.1 IU/kg [95% confidence intervals 0.09–2.0 IU/kg] was
observed in a tail vein transection model (Peter Johansen
and Tom Knudsen, Novo Nordisk, manuscript submitted).
A single high dose of turoctocog alfa (280 IU/kg) was
evaluated in a needle-induced joint bleeding model in
F8-KO mice (36). While untreated mice showed bleeds in
the joint and concomitant swelling 1 and 3 d after injury,
turoctocog alfa-treated animals showed no signs of or only
minor bleeds in the joints. In conclusion, all mice studies
demonstrated haemostatic efficacy of turoctocog alfa, and
turoctocog alfa was capable of normalising the bleeding
phenotype.

Pharmacokinetics

The pharmacokinetics of turoctocog alfa were assessed in
F8-KO mice and in haemophilia A dogs before initiating the
human clinical trials (36,37). In the human phase 1 clinical
trial, where the pharmacokinetic profile of a single i.v. dose
of turoctocog alfa was comparable to the profile of a single
i.v. dose of Advate� (Table 3) (38).

Clinical safety and efficacy

The clinical safety and efficacy of turoctocog alfa was dem-
onstrated in 213 previously treated patients with severe hae-
mophilia A (FVIII activity ≤ 1%) and no history of
inhibitors. None of these patients developed FVIII inhibitors,
no safety concerns were identified and a prophylactic effect
of turoctocog alfa was demonstrated (17,18). Overall, the
median annualised bleeding rate was 3.0 bleeds per patient
per year (estimated mean annualised bleeding rate 5.3 [95%
CI: 3.9–7.3] bleeds per patient per year) in children and the
median annualised bleeding rate was 3.7 bleeds per patient
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Figure 5 Effect of turoctocog alfa on bleeding in F8-KO mice. Turoctocog alfa or Advate� was administered intravenously at the doses noted to

F8-KO mice 5 min prior to a 4-mm tail cut. Bleeding time (A) and blood loss (B) were measured for 30 min. Data are means and SEM of n = 8.

The left data point (0 IU/kg) reflects the bleeding observed in F8-KO mice receiving vehicle only. Reproduced from Elm et al. (36) with permis-

sion from John Wiley and Sons.

Table 3 Pharmacokinetic parameters for turoctocog alfa in patients

with haemophilia A

Turoctocog alfa Advate�

Mean (SD) Mean (SD)

F8-KO mice (280 IU/kg), N = 3–4

t1/2 (h) 7.2 (0.9) 7.7 (1.4)

Clearance (mL/h/kg) 11 (1) 10 (2)

Mean residence time (h) 10 (1.3) 11 (2.1)

Haemophilia A dogs (100 IU/kg), N = 3

t1/2 (h) 8.9 (1.8) 8.2 (0.2)

Clearance (mL/h/kg) 3.6 (0.6) 5.2 (0.7)

Mean residence time (h) 12 (2) 11 (0)

Humans (50 IU/kg), N = 20

Incremental recovery (IU/mL)/

(IU/kg)

0.019 (0.002) 0.019 (0.003)

AUC (h*IU/mL) 12.97 (3.48) 13.03 (4.25)

t1/2 (h) 10.83 (4.95) 11.19 (3.51)

Clearance (mL/h/kg) 4.11 (1.06) 4.17 (1.20)

From Martinowitz et al., 2011 (38), Elm et al., 2012 (36) and Karpf

et al., 2009 (44) and 2011 (37).

Values were based on FVIII:C measurements. Incremental recovery:

FVIII activity 30 min after end of infusion relative to the administered

dose. AUC, area under the plasma concentration curve; t1/2, terminal

half-life.
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per year (estimated mean annualised bleeding rate 6.5 [95%
CI: 5.3–8.0] bleeds per patient per year) in adults and ado-
lescents. The majority of the bleeding episodes (95% in chil-
dren and 89% in adults and adolescents) were controlled
with 1–2 infusions of turoctocog alfa. Furthermore, the hae-
mostatic responses during and after surgery were rated as
excellent or good in all surgeries (43). These data confirm
the clinical efficacy of turoctocog alfa.

Conclusions

Turoctocog alfa, a new rFVIII, has been carefully designed
to achieve a safe, well-defined and homogeneous product
and the molecular characterisation confirms the quality of
the FVIII protein. The molecular properties of turoctocog
alfa were supported by functional assays, which showed that
turoctocog alfa is fully functional in haemophilia A plasma
and blood. Furthermore, studies in F8-KO mice using bleed-
ing and injury models of different severity all showed that
turoctocog alfa was capable of normalising the bleeding phe-
notype. The data are in line with clinical results, confirming
the haemostatic effect of turoctocog alfa and support the use
of turoctocog alfa as FVIII replacement therapy in patients
with haemophilia A.
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